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This paper proposes a fast heuristic algorithm for solving a combined optimal fleet composition and
multi-period vehicle routing problem. The aim of the problem is to determine an optimal fleet mix,
together with the corresponding vehicle routes, to minimize total cost subject to various customer
delivery requirements and vehicle capacity constraints. The total cost includes not only the fixed, vari-
able, and transportation costs associated with operating the fleet, but also the hiring costs incurred
whenever vehicle requirements exceed fleet capacity. Although the problem under consideration can
be formulated as a mixed-integer linear program (MILP), the MILP formulation for realistic prob-
lem instances is too large to solve using standard commercial solvers such as CPLEX. Our proposed
heuristic decomposes the problem into two tractable stages: in the first (outer) stage, the vehicle
routes are optimized using cross entropy; in the second (inner) stage, the optimal fleet mix corre-
sponding to a fixed set of routes is determined using dynamic programming and golden section search.
Numerical results show that this heuristic approach generates high-quality solutions and significantly
outperforms CPLEX in terms of computational speed.
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1. Introduction

Purchasing a new vehicle fleet is a major commercial expense faced by many companies
and organizations. The size and composition of such a fleet must be carefully considered.
Indeed, the best fleet mix is often non-homogeneous, with the key problem being to
decide how many of each vehicle type to include in the fleet. The optimal fleet mix
usually depends heavily on the vehicle routing requirements, although this dependence
is rarely discussed or exploited in the optimization literature.

For an introduction to the present state of research in optimal fleet composition and
vehicle routing, we direct the reader to two excellent survey papers by Baldacci et al. [2]
and Hoff et al. [9]. The survey by Baldacci et al. [2] focuses solely on optimal routing
techniques, whereas the survey by Hoff et al. [9] focuses on the simultaneous optimiza-
tion of fleet composition and vehicle routing, particularly in the maritime transportation
industry. Although fleet composition has been studied extensively over multiple decades,
several important issues—such as problems with multi-period time horizons and capac-
itated heterogeneous fleets—have yet to receive adequate attention in the literature [7].
Our paper is focused on addressing this gap. In particular, we consider a combined opti-
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mal fleet composition and vehicle routing problem over a multi-period planning horizon
with vehicle capacity constraints.

The problem under consideration is closely related to the so-called periodic vehicle
routing problem (PVRP) in which customers must be visited a prescribed number of
times (visit frequency) over a specified planning horizon. Allowable combinations of visit
periods are typically defined for each customer. For example, a customer could have
allowable visit combinations {1, 3} and {2,4}, meaning that the customer must be visited
twice, either during periods 1 and 3 or during periods 2 and 4.

Various heuristics and meta-heuristics have been developed to solve the PVRP. An
example is the two-phase heuristic algorithm proposed by Chao et al. [4], which works as
follows: in the first phase, a mixed-integer linear program (MILP) is solved to assign visit-
day combinations to each of the customers; in the second phase, several improvement
operators are applied while the vehicle capacity constraints are relaxed. Bertazzi et al. [3]
considered a special case of the PVRP in which a single vehicle is used in each period.
They proposed a solution algorithm that works by iteratively selecting an unvisited
customer, assigning a valid combination of visit days, and, for each visit day, scheduling
the customer in the best position of the current partial route. After a certain number
of iterations, the process is deliberately interrupted and an improvement procedure is
applied to the current solution. Alonso et al. [1] developed a tabu search method for
an extension of the PVRP in which each vehicle can service more than one route per
day, provided that the vehicle’s daily operation time does not exceed a maximum limit.
Moreover, there are constraints on the types of vehicles that can visit each customer.
Other variants of the PVRP have been considered by Francis et al. [7] (service frequency
is a decision variable) and Mourgaya and Vanderbeck [12] (routing cost minimization
and daily workload balance are the main optimization criteria).

The references described in the previous paragraph focus solely on vehicle routing for
a fixed vehicle fleet. Another body of literature focuses on the so-called capacitated fleet
miz problem (CFMP), which involves determining a minimum-cost fleet composition
subject to an upper bound on the fleet size. Salhi and Rand [16] give an overview of
early papers on the CFMP, and in particular stress that most techniques for optimal
fleet composition neglect vehicle routing considerations. Ghiani et al. [8] considered the
CFMP for homogeneous fleets in which the fleet size (number of vehicles) must be chosen
to minimize the sum of fixed, variable, and hiring costs. This CFMP model was extended
by Loxton et al. to capacitated heterogeneous fleets in [10, 11]. Note, however, that both
the original formulation by Ghiani et al. [8] and the extended formulation by Loxton et
al. [10, 11] ignore the effect of vehicle routing on the optimal fleet composition.

In this paper, we extend the CFMP models in [8, 10, 11] to consider vehicle routing
aspects. We develop a new heuristic algorithm based on cross entropy—a concept that
has already found success in the vehicle routing area. For example, Chepuri and Homem-
de-Mello [5] use cross entropy to solve vehicle routing problems with stochastic demands.
Our algorithm combines cross entropy with dynamic programming and golden section
search to solve the combined optimal fleet composition and vehicle routing problem as a
bilevel optimization problem, where the vehicle routes are optimized in the outer level,
and the fleet composition is optimized in the inner level.

The paper is organized as follows. In Section 2, we describe the problem setting, in-
troduce key notation and terminology, and give the precise mathematical formulation of
the optimization problem under consideration. Then, in Section 3, we describe the new
two-stage heuristic algorithm—which is based on cross entropy, dynamic programming,
and golden section search—for solving the problem formulated in Section 2. Finally, in
Section 4, we present numerical results for a range of randomly-generated test problems.
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The results show that our new heuristic algorithm can consistently generate near-optimal
solutions for large-scale problems beyond the reach of existing optimization solvers.

2. Optimal fleet composition with multi-period vehicle routing

2.1 Problem description

We consider the problem of composing a heterogeneous vehicle fleet for delivering a single
commodity to various customers over a given planning horizon. If vehicle requirements
exceed fleet capacity during any time period, then additional vehicles must be hired to
address the shortfall.

The parameters in the model are defined as follows:

m = number of potential vehicle types

n = number of customers

T = number of periods in the planning horizon
Viax = maximum fleet size

Q) = capacity of a type-k vehicle

g+ = demand of customer ¢ during period ¢

aj = fixed cost per period of a type-k vehicle

B, = variable cost per period of a type-k vehicle

~, = hiring cost per period of a type-k vehicle

cfj = travelling cost of a type-k vehicle for link (i, j)

Note that, to ensure the problem is non-trivial, we must have oy + S < v (i.e., the
cost of operating an owned vehicle is less than the cost of hiring the same vehicle). This
assumption is also made in references [8, 10, 11].

We define a network (N, A), where N is the node set and A is the arc set. The nodes
in NV represent the start/end depots and the various customers; the arcs in A represent
the possible transportation links. Note that both fully-connected and partially-connected
networks can be considered. The nodes in N are enumerated as follows:

N ={0,1,...,n,n+ 1},

where 0 represents the start depot, n+ 1 represents the end depot, and 1, ..., n represent
the customers. Note that 0 and n + 1 may in fact refer to the same point.
Our decision variables are defined below:

e v = number of type-k vehicles in the fleet
° rf = number of type-k vehicles required during period ¢t

° xfjt = binary variable indicating whether a type-k vehicle travels from customer

1 to customer j during period ¢ (xfjt = 1 if this occurs; xfjt = 0 otherwise)

e y;;x = commodity flow from node i to node j during period ¢

We assume that split service is prohibited (i.e., each customer is served by precisely
one vehicle in each period, though the particular vehicle may change from period to
period). We also assume that customer demands are always non-zero and each customer
is directly accessible from the start depot (if this is not possible, then we can simply add
a dummy arc with sufficiently high cost).

If v < 7F, then all v, owned vehicles of type k are used during period ¢ and an
additional hiring cost is incurred for rf — v, type-k vehicles. Conversely, if v, > rF,
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then only rf owned type-k vehicles are used during period ¢. Hence, the total number of
owned type-k vehicles used during period ¢ is min{vy, rf }. Similarly, the total number of
type-k vehicles hired during period ¢ is maux{r,’;C — v, 0}. It thus follows that the total cost
associated with type-k vehicles (consisting of fixed, variable, hiring, and transportation
costs) is

T
k .k . k
Cr(vk, i, 735) = Togog + B E min{vg, 7y }

Fixed cost =1

~
Variable cost

T T
+ Y Zmax{rf — v, 0} + Z Z cfjx%t .
t=1

t=1 (i,j)cA

Hiring cost Travelling cost

This cost function is an extension of the cost functions in [8, 10, 11]. Our aim is to
minimize the overall cost of owning and operating the fleet subject to the operational
constraints described below.

e Fleet size constraint:

ka < Vmax- (1)
k=1

Each customer is visited precisely once during each period (recall our assumption
that the customer demands are always non-zero):

S ah=1 vie{l..n), we{l,.. T} 2)
k=1jeN: (ji)cA

Vehicle routes cannot start or end at a customer:
k k .
Z le’t = Z xijt’ \V/Z G {1,...,”},
JEN:(ji)eA JEN: (i,j)eA (3)
vie{l,...,T}, Vke{l,...,m}.

Customer demand requirements:

Z Yjit — Z Yijt = it Vi € {L---an}a vt € {177T} (4)

JEN: (4i)eA JEN: (i,§)€A

Vehicle capacity constraints:

> Qb > yoir, Vie{l,...,n}, Vte{l,...,T}. (5)
k=1

Commodity is transported between two nodes only if the corresponding link is
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m
k .o
> Qualy > i, V(i,j) €A, Vtefl,... T} (6)
=1

The number of type-k vehicles used during any period is equal to the number of
type-k vehicles departing from the start depot during that period:

Y ag=rf, Vte{l,...,T}, Vke{l,...,m} (7)

e No commodity is delivered to the end depot:

Z Yjm+1)t = 0, Vie {1, s aT} (8)
JEN: (jn+1)eA

Non-negativity constraints:

v >0, Vke{l,...,m}, (9)
k>0, vte{l,...,T}, Vke{l,...,m}, (10)
Yijt >0, V(l,]) cA, Vte {1, ce ,T}. (11)

Integer/binary constraints:

v €2, Vke{l,...,m}, (12)
rfez, vee{l,...,T}, Vke{l,...,m}, (13)
wy, €{0,1}, V(i,j) € A, vte{l,..., T}, Vke{l,...,m}. (14)

Our optimization problem can now be stated formally as follows: Choose the decision

. k; k P . .
variables vy, 7, Tyt and y;;; to minimize the cost function

m T
Z (vk, 7y 2lyy) = Z{TakkarﬁkZmin{vk,Tf}

k=1 t=1

T
+’Ykzmax{rt Uk70}+z Z CZ] Ut}
t=1

1(i,5)eA

(15)

subject to the constraints (1)-(14).

2.2 MILP formulation

The fleet composition problem described above is a mixed-integer nonlinear program due
to the presence of the nonlinear “min” and “max” terms in the cost function (15). This
problem can, however, be transformed into a mixed-integer linear program by introducing
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additional decision variables and constraints. First, let h,’f denote the number of type-k
vehicles hired during period ¢. Then the “min” and “max” terms can be rewritten as

min{vg, rF} = rF — ¥, max{rF — v, 0} = h¥.
Thus, the cost function for type-k vehicles becomes

Ck(vkahzl?’rt’ z]t) Takvk—{_ﬁkz _ht +7’€th+z Z C Z]t

= 1 (i,5)eA
T T T
:Takvk+ﬁk2rf + (v — Br) th+z Z C Ut
t=1 1 (i,5)eA

Accordingly, the overall cost function (15) becomes

m

m T T
S Cfop bl b 2k ) = 30 {Takvk 0 S (e ) SR
k=1 t=1 t=1

k=1
(16)
T Z Z c th}
1 (,5)eA
The following constraints are also required:
0<hF<sk wvie{1,...,T}, Vke{l,...,m}, (17)
and
R <B4, VEe{l,...,T}, Vke{l,...,m}. (18)

These constraints ensure that h¥ = 0 when r} < v;, and h¥ = rf — v when 7F > vy. To
explain why, recall that ay + S, < v, and thus the coefficient (v, — Bk) in (16) is positive.
It therefore follows that the optimal value of h¥ is the smallest value that ensures (18) is
satisfied. If r} < vy, constraint (18) is satisfied for any non-negative value of h¥, and thus
the optimal solution must be k¥ = 0. On the other hand, if rf > vz, then the minimum
value of hf satisfying constraint (18) is kY = rF — vg.

The MILP formulation for our fleet composition problem can now be stated as follows:
Choose the decision variables vy, hf, rf, mfjt, and y;;¢ to minimize the cost function (16)
subject to the original constraints (1)-(14) and the new constraints (17)-(18). In principle,
this MILP formulation can be solved using commerical solvers such as CPLEX. The dis-
advantage with this approach, however, is that the MILP’s dimension typically explodes
as the number of customers increases. For example, if there are 10 customers, 5 time pe-
riods, 5 vehicle types, and the transportation network is fully-connected, then the MILP
formulation contains 3,655 discrete-valued decision variables and 720 continuous-valued
decision variables. If the number of customers is increased to 20 and everything else stays
the same, then the new MILP formulation contains 12,155 discrete-valued decision vari-
ables and 2,420 continuous-valued decision variables. As we discuss in Section 4, CPLEX
struggles to solve problems of this size.
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Note that our problem formulation does not contain any subtour elimination con-
straints. This is because subtours are automatically prohibited by the assumption of
non-zero customer demands (i.e., g;z > 0 for all ¢ and ¢). Indeed, suppose to the contrary
that there exists a subtour {i1,...,%,,4} such that

E .k _ ok
Tipe = =Xy = T g = L

Then constraints (2) and (4) imply
Yii_vit — Yiispat = Qigts vl e {1a cee ,p},

where iy = 4, and 4,41 = 41. Thus, for each | =1,...,p,

!
Yivigeat = Yipint — E Qigt-
d=1

Applying this equation for [ = p gives

p
Yipist = Yipint — E Qigt
d=1

and hence

p
Z Gigt = 0.
d=1

But since the customer demands are always non-zero, this is a contradiction, as required.

3. A two-stage heuristic algorithm

We now introduce a two-stage heuristic algorithm for solving the combined fleet compo-
sition and vehicle routing problem described in Section 2. This algorithm is based on the
following bi-level decomposition:

m m

min ZCk(vk,rf,xfjt) = min minZCk(vk,rf,th), (19)

k ok k ok
VisTe 5T 5¢,Yigt =1 T Yige Uk 1

where the minimizations are subject to constraints (1)-(14). The inner minimization on
the right-hand side of (19) involves determining the best fleet mix given fixed vehicle
routes (as defined by rf, xfjt, and y;;; in the outer stage). This is a CFMP that can
be solved using the dynamic programming method developed in [10, 11]. The outer
minimization on the right-hand side of (19) involves determining optimal vehicle routes
for servicing the customer demands in each period. The two stages of our heuristic
algorithm are described further below.
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3.1 Inner-stage optimization: Dynamic programming and golden section
search

The last term of C} depends only on xfjt and is therefore constant in the inner stage.

Thus, the inner-level optimization problem can be stated as follows: Given rf , xfjt, and
Yijt, choose vy to minimize the cost function

m m

T T
> Crlor) = {Takvk + B > minfvr, 7} 4+ Y max{ry — v, 0}}
t=1 t=1

k=1 k=1
subject to constraints (1) and (9). Consider the following subproblem for fixed ! and &:

l

T T
min Z {Takvk + Bk Z min{vg, 7} + vi Z max{ry — vy, O}}7 (20)
=1 t=1

V1,...,01 20
v <€ k=1

where v1,...,v; are integer decision variables. Let ¢;(§) denote the optimal cost of (20).
For [ =1,

T T
91(§) = min {Talvl + B min{or,ri}+y1 ) max{r; — v, 0}}-
t=1 t=1

v1€{0,....£}

For [ > 2, it follows from the principle of optimality that

l

T T
g1(§) = min Z {Takvk + Bk Z min{vy, rf} + Vi Z max{rf — Uk, 0}}
=1

V1,...,0, 20
vty <g k=1 t=1

l T T
= nin min Z Tougvy + B Z min{vy, 77} + Y& Z max{ry — vy, 0}
vle{ov"-vg} V15,01 —120 — —/
vt <E—uy k=1 t= t=

T T
= mmin [Tozlvl + 5 Z min{vy, ’I“i} + v Z max{ri —,0}
€06} ot ot

V1peeyU—120
V1o <E—uy =1

1-1 T T
+ min Z {Takvk + Bk Zmin{vk, R+ Z max{rf — vy, O}H
t=1 t=1

T T
= el{%in o [Tozzvz + 8y minf,ri} 4+ Y max{r} — v, 0} + g1 (§ — vl)} - (21
v geeey =1 =1

Starting with gy = 0, we can use equation (21) to compute g1, g2, and so on until
9m(Vinax), which is the optimal cost of the inner-stage optimization problem. To suc-
cessfully implement this recursion process, we need a fast method for performing the
minimization on the right-hand side of (21). Instead of applying the brute force method
of individually testing each value of v;, we can apply the golden section method for much
faster convergence, as shown in reference [11].
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To do this, we extend the domain of g; from {0,1,...,£} to [0,00) as follows:

g = g(lnl) + (= [n]) - {a(ln] + 1) = a([n])},

for each n € [0,00). It can be shown that this extended function is convex on [0, c0) (see
references [10, 11]).

Suppose now that we relax the integer constraint on the right-hand side of equa-
tion (21). Then we obtain the following relaxed subproblem:

T T
‘Sﬂonﬂ hi(v) = Toquy + B Y min{vg, i} +3 Y max{r] — v, 0} + gi1(§ —v).  (22)
vt t=1 t=1

According to the results in [10, 11], since g;_1 is convex, h; is also convex. Moreover,
if £ is an integer, then the minimization problem defined in (22) always has an integer
solution. Thus, the integer constraint on the right-hand side of equation (21) is actually
redundant, and it follows that we can compute ¢;(§) by solving (22). This problem is a
convex optimization problem (see [10, 11]) and can be solved extremely quickly using
the well-known golden section method. Please see [10, 11] for more details.

3.2 Quter-stage optimization: Cross entropy

The cross entropy method was originally introduced by Rubinstein [13] to estimate the
probabilities of rare events in complex stochastic networks. It was soon realized that cross
entropy can be adapted to solve difficult combinatorial optimization problems. This is
done by transforming the deterministic optimization problem into a related stochastic
optimization problem and then applying the rare event simulation techniques developed
by Rubinstein and others [6, 14, 15, 17].

A typical iteration of the cross entropy method involves the following two steps [15]:

1. Generate a random sample of potential solutions according to some random mech-
anism (which depends on various adjustable parameters).

2. Based on the random sample obtained in Step 1, update the parameters of the
random mechanism with the aim of producing an improved random sample in the
next iteration.

For optimization problems, we start with an initial probability distribution defined over
the feasible region (normally just the uniform distribution). At each iteration, the prob-
ability distribution is updated adaptively based on the random sample collected in the
previous iteration. As the algorithm progresses, the probability distribution ideally con-
verges to a discrete uniform distribution that assigns equal positive probabilities to global
optima and zero probabilities elsewhere.

Our heuristic algorithm for solving the fleet composition problem (19) uses cross en-
tropy to generate random samples of routes in the outer-stage optimization problem.
Since some of the randomly-generated routes may violate the vehicle capacity constraints
(5), the algorithm includes steps to decompose routes when necessary.

The routes are generated using a random variable z;(t), which represents the node
serving node ¢ during period ¢. This random variable is defined by a n x (n+1) probability
matrix P(t) = [P;;(t)], where P;;(t) denotes the probability that z;(t) = j. Clearly, the
sum of each row in P(t) is one. Note also that the column index for P(t) ranges from 0
to n (since z;(t) can assume any integer in {0, ...,n}). Furthermore, let P;(¢) denote the
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ith row of P(t).
Initially, each node can be served via any of its connected nodes with equal likelihood.
Thus, in the first iteration,

1 . ..
P@](t): W7 if (]71) E'Aia

where A; denotes the set of arcs entering node i. For example, if customer 1 is connected
to the depot, customer 5, and customer 6, then the first row of P(t) is

[300003%0---0].

The procedure for randomly generating routes using P(t) is described below. Note that
the probabilities in P(t) are updated whenever a new value for z;(t) is selected. This is to
ensure that the algorithm creates a series of valid paths starting at node 0. For example, if
customer 1 is served via customer 2 during any period, then the probability that another
customer is served via customer 2 in the same period is zero, and the probability that
customer 2 itself is served via customer 1 is also zero. Moreover, when selecting the value
of z;(t), we need to exclude any node on the unique path starting at i to avoid cycles
(the unique path starting at node i could consist of just i itself).

ALGORITHM 3.1 Generates random vehicle routes using the distribution matrix P(t).

1. Set 1 > ¢ and 1 — 4.

2. Set Py(t) — 0 = [0, ...,0,].

3. Set 0 — 0, () for all j =1,...,7— 1 such that z;(t) # 0.

4. Determine the set M; consisting of all nodes on the unique path starting at node 4
(note that i € M; and thus M; # 0).

5. Set 0 — 6; for all j € M;.

6. Normalize 0:

0

— — 0.
Z?:o 9]’

7. Generate a random instance of z;(t) using the distribution defined by 6.

8. If i < n, then set i + 1 — 4 and return to Step 2. Otherwise, go to Step 9.

9. If t < T, then set 1 — 4 and ¢t + 1 — ¢t and return to Step 2. Otherwise, stop.

The output of Algorithm 3.1 is a set of values z;(t), i = 1,...,n,t = 1,...,T, that
define the vehicle routes during each period. Our cross entropy heuristic works by contin-
ually invoking Algorithm 3.1 to generate different sets of routes. The cost corresponding
to each set of routes is computed by solving the inner-stage optimization problem, and
then this information is used to update the probability matrix P(t), with the aim of
producing better routes in the next iteration. Ideally, P(¢) should converge to a periodic
certainty matrix in which each row has exactly one element equal to 1 and all other
elements equal to 0. Since 0 < P;;(t) < 1, we have P;;(t)? < P;;(t). Hence,

S PP < Y Pyl = 1
5=0 5=0

10
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This implies that the Euclidean norm of the probability matrix P(t) satisfies

Any n x (n + 1) periodic certainty matrix has the maximum Euclidean norm of /n.
Hence, we use the following convergence criterion:

—e < |P@)|| —vn<e Vte{l,...,T}

where € > 0 is a given tolerance parameter. Our cross entropy algorithm terminates when
this inequality is satisfied, or when the best upper bound for the optimal cost does not
change over py.x iterations.

The conceptual framework for the cross entropy algorithm is described below. The
input parameters are: M (sample size), M, (elite sample size), o € [0,1] (smoothing
parameter), € (tolerance parameter), pmax (convergence indicator). We use C}: .. to denote
the upper bound for the optimal cost.

ALGORITHM 3.2 Solves the outer-stage optimization problem using cross entropy.
1. Set co — C} . and 0 — p.
2. Define the probability matrix P(t) as follows:

where A; denotes the set of arcs entering node 1.

3. Using Algorithm 3.1 with probability matrix P(t), generate M sets of vehicle routes
{R1,...,Rum}, where each set of routes satisfies constraints (2) and (3).

4. For each [ = 1,..., M, determine the values of (rf,xfﬁ,yijt) corresponding to R;.
Each set of values (rf, xf}t, yi;t) satisfies constraints (2)-(8), (10)-(11), and (13)-(14).

5. For each | = 1,..., M, solve the inner-level optimization problem in (19) corre-
sponding to R;. Let C7,...,C}, denote the optimal costs obtained.

6. If min{CY,...,C}y;} < Cf ., then set min{C},...,C},} = C . and 0 — p. Other-
wise, set p+ 1 — p.

7. If p = pmax, then stop: take the best set of routes found thus far as the optimal
solution for the outer-stage optimization. Otherwise, go to Step 8.

8. If —e < ||P(t)|| —/n < eforeach t =1,...,T, then stop: take the best set of routes
found thus far as the optimal solution for the outer-stage optimization. Otherwise,
go to Step 9.

9. Form the elite sample by collecting the best M. elements of {Rq,..., Ry} (as
measured by cost).

10. For eachi=1,...,n,j=0,...,n,and t = 1,...,T, determine v;;(t), the number
of times customer i is served via customer j during period ¢ in the elite sample.

11
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11. Update the probability matrix P(t):

(1 - )Py (1) + a1 by

e

Vie{l,...,n}, Vje{0,...,n}, Vvte{l,...,T}.

12. Return to Step 3.

In Algorithm 3.2, each set of routes R; is defined by the corresponding values of
zi(t) (obtained via Algorithm 3.1). The smoothing parameter « governs the relative
contribution between historical data and elite sample data when updating the probability
matrix in Step 11. We want the updated probability matrix to mimic the best routes in
the elite sample. Note that

n

D wi(t) =M., Vie{l,....n}, Vte{l,..., T}
j=0

Thus, the n x (n+1) matrix with (, j)th element equal to v;;(t)/M, is a valid probability
matrix in the same form as P(¢). This ensures that the matrix update in Step 11 is
feasible.

Step 4 of Algorithm 3.2 involves determining the values of (Tf , xfjt, Yijt) corresponding
to the routes generated in Step 3 (which are defined by the values of z;(t)). The problem
with using these routes directly is that some of them may be too long for a single vehicle
to service. For example, consider a route with three customers, each requiring 10 units
of commodity. Since the route requires total deliveries of 30 units, if the capacity of each
vehicle is less than 30, then the vehicle capacity constraints will never be satisfied for
this route. Such routes must first be decomposed into shorter routes before determining
the corresponding values of (rF, xfjt, Yij¢). This is done using the following procedure.

ALGORITHM 3.3 Determines the values of (Tf, xfjt, yi;t) corresponding to a given set of
routes R; (each route starts at node 0 and ends at node n + 1).

1. Set 0 — xfjt and 0 — y;;; for all (i,j) € A, t € {l,..., T}, and k € {1,...,m}.
2. Set 1 —t.
3. Collect the vehicle routes for period ¢ into a set R;(t).
4. Select ¢ € Ry(t).
5. List the nodes of v in order of occurrence as g, 71, . . ., i, Where ig = 0 and 4, = n+1.
6. Compute
é.j:é.j—l—i_quh VJG {1,7]7_1},
where £ = 0.

7. If §—1 > maxy, Qf, then define j* € {1,...,p — 1} as the unique integer such that
§jr-1 <maxQp < &j-.
8. If {,—1 > maxy Qf, then ¢ must be decomposed: replace ¢ = {ig,i1,...,ip} in

Ry(t) with {0,41,...,45+-1,n 4+ 1} and {0,%+,...,ip—1,n + 1} and return to Step 4.

12
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Otherwise, route decomposition is not required: set

¥ =1, Vje{l,...,p},

ijlljt

J—1
yij,lijt == gp—l - Zqﬁh v] S {17 LRI 7p}7
=1

where
E* =argmin{ oy + B + 7 {p—1 < Qk }-

9. Remove ¢ = {ig, i1,...,%,} from R;(t).
10. If Ry(t) # 0, then return to Step 4. Otherwise, go to Step 11.
11. If t < T, then set t + 1 — ¢ and return to Step 3. Otherwise, define

=Sl vte{l,....T}, Vke{l,...m}.
j=1

Algorithm 3.3 can be used to implement Step 4 in Algorithm 3.2. Notice that, when
assigning vehicles to routes, Algorithm 3.3 always chooses the least expensive vehicle type
(see the definition of k* in Step 8). Although this is certainly a logical choice, it may not
be the best choice. In fact, assigning the least expensive vehicle type in Algorithm 3.3
could result in hiring an additional vehicle while an owned vehicle sits idle. For example,
suppose that a route can be serviced by either type-1 or type-2 vehicles, with type-1
vehicles the cheapest option. Suppose also that, due to routing requirements in other
periods, the optimal fleet mix includes type-2 vehicles, but not type-1 vehicles. In this
case, Algorithm 3.2 will assign a type-1 vehicle to the route, thus incurring an unnecessary
hiring cost when type-2 owned vehicles are available. To avoid situations like this, we can
implement the following improvement procedure to modify the values of (rf, xfjt, Yijt)-

ALGORITHM 3.4 Modifies vehicle assignments to eliminate unnecessary hiring costs,

given a fleet composition (v1,...,v,) and set of routes defined by (rF, x%t, Yijt)-
1. Set 1 — t.
2. Set vy > wg, k=1,...,m.
3. Collect the vehicle routes for period ¢ into a set R;(t).
4. Select 1 € Ry(t).
5. List the nodes of ¢ in order of occurrence as ig, i1, . . . , i, Where ig = 0 and i, = n+1.
6. Compute the total commodity load for route :

p—1
£ = Z Qijt-
j=1

7. I {ke{l,...,m}: £ < Q, wyp >0} #0, then set

argmin{ oy + B + 7 : £ < Qk, wr >0} — k7,

W+ — 1— Wi .

13
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10.
11.

Otherwise, set

argmin{ ay + B+ £ < Qp} — K.

Set
jiy‘*—lijt =1, Vje{l,...,p},
7j—1
Yij_vijt = & — Z%t, Vie{l,...,p}.
=1
. Remove ¢ = {ig,i1,...,ip} from R;(t).

If Ry(t) # 0, then return to Step 4. Otherwise, go to Step 11.
If t < T, then set t + 1 — t and return to Step 2. Otherwise, define

="k, wte{l,...,T}, Vke{l,...m}
j=1

Note that £* in Algorithm 3.4 is the minimum-cost vehicle type among all idle vehicle
types in the fleet. After applying Algorithms 3.3 and 3.4, we can solve the inner-level
optimization problems corresponding to (rf,xfﬁ,yijt) and (ff,ifﬁ,g]ijt). The best solu-

tion (in terms of cost) out of (rf, mfjt, yij¢) and (FF, ifﬁ, 7ij¢) should then be used in the
cross entropy procedure, with the inferior solution discarded. The following algorithm is
a modification of Algorithm 3.2 that incorporates this idea.

ALGORITHM 3.5 Solves the outer-stage optimization problem using cross entropy with
the improvement procedure in Algorithm 3.4.

1.
2.

10.
11.

© XN oA

Set co — C* .. and 0 — p.

max

Define the probability matrix P(t) as follows:

1 e
Pj;(t) = A if (j,1) € A,

where A; denotes the set of arcs entering node 1.

Using Algorithm 3.1 with probability matrix P(t), generate M sets of vehicle routes
{Rl, e ,RM}

Set 1 — 1.

Use Algorithm 3.3 to determine the values of (7, xf}t, Yy;j¢) corresponding to R;.

Solve the inner-level optimization problem corresponding to (rf, xf}t, Yijt)-

Use Algorithm 3.4 to determine the values of (7F, j%t, Uijt) corresponding to R;.
Solve the inner-level optimization problem corresponding to (ff, jfjt, Uijt)-

If the optimal cost of (ff,ifjt,gjijt) is less than the optimal cost of (rf,xfjt,yijt),
then keep (7, ifjt, 3ij+) and discard (r, xfjt, Yijt). Otherwise, keep (7, xfjt, Yij¢) and
discard (ff,ifjt,ﬂijt).

Ifl < M, then set [ + 1 — [ and return to Step 5. Otherwise, go to Step 11.

Let CT,...,C}; denote the optimal costs corresponding to Ri,...,Ru.

14
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12. If min{CY,...,C},} < Cp
wise, set p+ 1 — p.

13. If p = pmax, then stop: take the best set of routes found thus far as the optimal
solution for the outer-stage optimization. Otherwise, go to Step 14.

14. If —e < ||P(t)|| — v/n < e for each t = 1,...,T, then stop: take the best set of routes
found thus far as the optimal solution for the outer-stage optimization. Otherwise,
go to Step 15.

15. Form the elite sample by collecting the best M, elements of {Rq,..., Ry} (as
measured by cost).

16. For eachi=1,...,n,j=0,...,n,and t = 1,...,T, determine v;;(t), the number
of times customer i is served via customer j during period ¢ in the elite sample.

17. Update the probability matrix P(t):

axs then set min{C7,...,C5,;} — C¥ .. and 0 — p. Other-

Vie{l,...,n}, Vje{0,...,n}, Vte{l,..., T}

18. Return to Step 3.

4. Numerical results
For numerical testing, we implemented Algorithm 3.5 in the Fortran programming lan-
guage. We considered three categories of test problems:

e Small-size problems (n =6, m =6, T = 6)

e Medium-size problems (n = 20, m = 10, T' = 5)

e Large-size problems (n = 60, m =5, T' = 4)
For each category, we randomly generated 20 feasible problem instances. These instances
vary in complexity, as the feasible region can be extremely tight for some choices of the
problem parameters.

Recall that Section 2 gives a MILP formulation for the optimal fleet composition

problem. An alternative MILP formulation can be obtained by introducing new non-
negative decision variables 5;”9 and 5t_k, t=1,..., 7T, k=1,...,m, such that

loe —rf| = 6% + 67", (23)
The “min” and “max” terms in the cost function (15) can then be rewritten as follows:
. k —k
minon, £} = 3t + Jui — How —of] = b+ Jo— 307 — 15

and

_ 1.k 1 15+k 1c—k
_§Tt _ivk‘_}—ﬁ&t +§6t .
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The cost function for type-k vehicles thus becomes

T
Cre(vg, 7F, ¥ Tyt 5% 67K) = Taguy, + %Bk Z {rf + o — 0% — 5{’“}
t=1
k k
Z’ykZ{rt — v + 0+ 6 }—i—Z Z cw th.
t=1 (i,j)eA
Hence, the overall cost function (15) becomes

m m
Z Uk, rt7 z]t7 5+k 57]6) Z {Takvk + 25]? Z {Tt + v — 5+k k}
k=1 k=1 =

ZIWCZ{Tt_vk_{_(Sij_{_& k}+z Z z] mt}

t=1 (i,7)eA

This equation can be rearranged as follows:

m m T
Z Nk(vkvrf7 z]t75+k 5_k) = Z {Takvk + 'Yk - 5k Z {5:_k + 5t_k}

k=1 k=1 t=1 4
. (24)
%(5]? - VR)TUR + 516 + ’Yk er + Z Z CZ] Ut}
t=1 t=1 (Z,])E.A
The following constraints must also be imposed:
v —rf =0 —67%, wvte{l,...,T}, Vke{l,...,m}, (25)
and
stk >0, &*F>0 wte{1,...,T}, Vke{l,...,m}. (26)

The alternative MILP formulation is stated as follows: Choose the decision variables vy,
k. xfjt, Yijt, 5:']“, and 5t_k to minimize the cost function (24) subject to the original
constraints (1)-(14) and the new constraints (25) and (26). In our numerical experience,
this new MILP formulation is easier to solve than the formulation in Section 2.

To explain why &;" k¥ and o; F satisfy (23), first note that v, > B and thus the coefficient
in front of 0% 4 6, in (24) is positive. Hence, constraint (25) ensures that any optimal
solution satisfies 6;%6, % = 0. If ;% > 0, then 6; ¥ = 0 and

S o7 = oF = ot — o7k = vy, —F = | —rf, (27)
as required. Similarly, if 6, k>0, then 5? k=0 and
5ok =6 =0k — 6 =1 — v = |k —1f). (28)
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Equations (27) and (28) show that the transformed cost function (24) reconciles with
the original cost function (15) through identity (23).

For the numerical simulations, we randomly generated 20 small-size problems, 20
medium-size problems, and 20 large-size problems with the parameters given at the
beginning of this section. The computer used in our simulations was equipped with an
Intel 2 Core CPU with 2GB RAM. Each test instance was transformed into a MILP using
the formulation described above and then solved using CPLEX 12.4. For each small-size
and medium-size problem instance, CPLEX was run until termination and our bilevel
heuristic was run 1,000 times; for each large-size problem instance, CPLEX was run for
a fixed time of 2 hours and our bilevel heuristic was run 100 times. Tables 1-3 show the
average run times and average cost values for our algorithm compared with the corre-
sponding values for CPLEX. The percentage of routes that need to be decomposed is also
given. Note that CPLEX could only verify optimality (i.e., obtain a zero optimality gap)
in 9 of the 20 small-size problems, and none of the medium-size and large-size problems.
For the instances where the optimality gap from CPLEX is zero, we have reported the
optimality gap for our heuristic (see the “Av. Cost” column in Table 1). The average
gap for our heuristic over the 9 feasible small-size problem instances is 3.25%, which
shows that the heuristic can achieve near-optimal solutions in a short period of time. It
is not possible to compare solutions when CPLEX’s optimality gap is positive because
the solution obtained by CPLEX in this case may not be feasible for the original prob-
lem. Recall that our algorithm always produces a feasible solution, whereas CPLEX may
produce infeasible results (only the optimal solution of the MILP formulation described
in (24)-(26) is guaranteed to be feasible for the original problem).

Table 4 gives a comparison between our algorithm and CPLEX for a fixed running
time of 2 hours, where the “Difference %” column gives the percentage improvement
of CPLEX compared with our heuristic. The test problems for this comparison are the
same as the large-size test problems in Table 3. CPLEX produces feasible solutions in
only 6 of the 20 test instances and the “Difference %” column is only applicable for
these instances. For these “CPLEX feasible” instances, our algorithm produces feasible
results within 3% of CPLEX’s solution on average. For the other instances, our algorithm
produces a feasible solution whereas CPLEX does not.

The results clearly show that our heuristic algorithm compares well with CPLEX in
terms of optimal objective value, and importantly, it can generate feasible solutions in
situations where CPLEX struggles. Moreover, in terms of computational time, our algo-
rithm is significantly quicker than CPLEX: in all instances in Tables 1-3, our algorithm
took less than 3.5% of CPLEX’s computation time.

5. Conclusion

In this paper, we considered a combined optimal fleet composition and multi-period
vehicle routing problem. As shown in Section 2, this problem can actually be formulated
as a large-scale MILP, but our numerical experience shows that commercial MILP solvers
such as CPLEX are ineffective with large-scale problem instances. To overcome this
challenge, we developed a two-stage heuristic algorithm based on cross entropy, dynamic
programming, and golden section search. Extensive numerical testing (see Section 4)
indicates that this heuristic has excellent convergence properties, consistently yielding
optimal or near-optimal solutions in rapid time. Future work will involve extending the
algorithm to more complex problem settings, including those with uncertain demand
requirements and time window constraints.
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CPLEX Bilevel Heuristic
Instance Time [s] Cost Gap % Av. Time [s] Av. Cost Av. Gap % RO %
1 1.0478 x 10*  6.335 x 103 0.00 3.86 6.931 x 103 8.60 23.18
2 4.9480 x 103 7.494 x 102 0.00 4.40 7.510 x 103 0.21 23.90
3 1.9020 x 10%  7.145 x 103 0.00 4.66 7.504 x 103 4.78 22.80
4 3.5404 x 10*  7.467 x 102 0.23 4.29 7.491 x 103 - 23.87
5 6.4584 x 10*  7.347 x 103 3.73 4.29 7.366 x 103 - 24.30
6 5.9070 x 103 7.253 x 103 0.00 4.46 7.618 x 103 4.79 23.70
7 8.1305 x 10*  8.157 x 103 0.00 6.30 8.208 x 103 0.62 17.29
8 5.4600 x 103  7.366 x 103 0.00 4.77 7.572 x 103 2.72 22.39
9 2.1450 x 10*  6.858 x 103 3.16 5.05 7.012 x 103 - 21.07
10 1.6788 x 10 6.594 x 103 0.30 4.75 7.094 x 103 - 21.04
11 1.2488 x 104 7.187 x 103 6.16 6.54 7.466 x 103 - 15.97
12 5.6729 x 10*  6.769 x 103 4.43 4.52 7.071 x 103 - 20.92
13 1.3167 x 10*  7.396 x 103 9.47 5.24 7.313 x 103 - 20.55
14 1.1668 x 10%¢  7.667 x 103 0.00 4.86 7.952 x 103 3.58 21.93
15 2.5860 x 10 7.775 x 103 14.62 5.41 7.589 x 103 - 20.04
16 5.6930 x 103  7.504 x 103 0.00 7.34 7.763 x 103 3.34 15.44
17 2.0410 x 10*  8.112 x 103 7.48 6.31 7.963 x 103 - 16.46
18 4.5510 x 103 8.204 x 103 9.25 5.78 8.157 x 103 - 18.52
19 2.5409 x 10*  7.811 x 103 5.43 5.81 7.889 x 103 - 17.90
20 4.8000 x 102 8.095 x 102 0.00 7.16 8.147 x 103 0.64 16.09

Table 1. Numerical results for a suite of 20 randomly-generated small-size problems, where “RO” refers to the

route overload percentage (i.e., the percentage of routes that are overloaded and need to be decomposed in our
heuristic algorithm).
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CPLEX Bilevel Heuristic
Instance Time [s] Cost Gap % Av. Time [s] Av. Cost RO %
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19 3.4266 x 10*  1.9502 x 10* 17.61 16.76 1.9469 x 10 36.96
20 3.4266 x 104 1.7995 x 104 22.68 16.24 1.6407 x 104 34.50

Table 2. Numerical results for a suite of 20 randomly-generated medium-size problems, where “RO” refers to the
route overload percentage (i.e., the percentage of routes that are overloaded and need to be decomposed in our
heuristic algorithm).
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CPLEX Bilevel Heuristic
Instance Time [s] Cost Gap % Av. Time [s] Av. Cost RO %
1 7.2x 10  5.3239 x 10*  21.10 102.94 5.2620 x 10*  41.67
2 7.2 x 10  5.5372 x 10% 20.65 102.67 5.5343 x 10*  41.72
3 7.2x 10  5.5273 x 10*  18.40 102.91 5.6623 x 10*  41.83
4 7.2 x 10  4.0153 x 10% 28.00 103.81 4.1721 x 10*  41.42
5 7.2x 102 4.2752 x 10*  23.94 102.42 4.0085 x 10*  40.34
6 7.2 x 10 4.2615 x 10% 16.50 99.07 4.5745 x 10*  41.46
7 7.2x 102  4.2728 x 10*  21.50 99.01 4.3827 x 10*  41.53
8 7.2 x 10 4.6420 x 10% 19.50 100.75 4.8419 x 10*  42.23
9 7.2x 102  4.1085 x 10*  18.50 104.99 4.0503 x 10*  41.27
10 7.2 x10%  5.2795 x 10% 23.20 102.45 4.9525 x 10*  42.14
11 7.2 x 10  5.2404 x 10* 17.20 102.92 5.5103 x 10*  42.78
12 7.2 x10%  4.6431 x 104 32.29 99.76 3.9211 x 104 40.86
13 7.2 x 10 4.8294 x 104 33.05 104.49 3.8304 x 10*  40.13
14 7.2 x 103  4.3490 x 104 21.43 100.44 4.3201 x 104 42.28
15 7.2 x 10°  4.5189 x 104 27.80 99.21 4.0479 x 104 41.41
16 7.2x10%  5.2562 x 10*  20.66 101.95 5.4934 x 10*  42.85
17 7.2 x 10 4.9057 x 10% 18.26 103.93 4.7761 x 104 42.40
18 7.2x10% 5.3574 x 10*  31.44 103.19 4.4465 x 104 41.50
19 7.2 x10%  5.8138 x 10*  35.20 103.09 5.1038 x 10*  43.17
20 7.2 x 102  4.6574 x 10*  26.05 99.87 4.7627 x 10*  42.91

Table 3. Numerical results for a suite of 20 randomly-generated large-size problems, where “RO” refers to the
route overload percentage (i.e., the percentage of routes that are overloaded and need to be decomposed in our
heuristic algorithm).

CPLEX Bilevel Heuristic
Instance Cost Gap %  Feasible Routes? Cost Difference %

1 5.3239 x 104 21.10 No 5.2015 x 103 -
2 5.5372 x 10*  20.65 No 5.4346 x 103 -
3 5.5273 x 104 18.40 Yes 5.5931 x 103 1.20
4 4.0153 x 10*  28.00 Yes 4.0621 x 103 1.20
5 4.2752 x 10* 23.94 No 3.9280 x 103 -
6 4.2615 x 10*  16.50 Yes 4.5033 x 103 5.70
7 4.2728 x 10 21.50 No 4.2629 x 103 -
8 4.6420 x 104 19.50 Yes 4.7607 x 103 2.60
9 4.1085 x 104 18.50 No 3.9642 x 103 -
10 5.2795 x 10* 23.20 No 4.8676 x 103 -
11 5.2404 x 10*  17.20 Yes 5.4160 x 103 3.40
12 4.6431 x 104 32.29 No 3.8168 x 103 -
13 4.8294 x 10*  33.05 No 3.7204 x 103 -
14 4.3490 x 104 21.43 No 4.2355 x 103 -
15 4.5189 x 10*  27.80 No 3.9266 x 103 -
16 5.2562 x 10* 20.66 Yes 5.3221 x 103 1.30
17 4.9057 x 10* 18.26 No 4.6963 x 103 -
18 5.3574 x 10* 31.44 No 4.3845 x 103 -
19 5.8138 x 10*  35.20 No 5.0175 x 103 -
20 4.6574 x 10% 26.05 No 4.6175 x 103 -

Table 4. Comparing CPLEX and the bilevel heuristic over a fixed run time of 2 hours: numerical results for the
same 20 large-size problems as for Table 3.
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