NOTICE: this is the author's version of a work that was accepted for publication in the journal Appetite. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in the journal Appetite, Vol.83 (2014). DOI: http://doi.org/10.1016/j.appet.2014.08.037

#### Running head: FOOD-RELATED ATTENTIONAL BIAS

# Food-related attentional bias: Word versus pictorial stimuli and the importance of stimuli calorific value in the dot probe task

Tanya Freijy, Barbara Mullan<sup>1</sup>, and Louise Sharpe

School of Psychology

#### University of Sydney, NSW, 2006 Australia

Correspondence:

Assoc. Prof. Barbara Mullan

Health Psychology & Behavioural Medicine Research Group

School of Psychology & Speech Pathology, Curtin University

GPO Box U1987, Perth WA 6845, Australia

Ph: +61 8 9266 2468

Email: barbara.mullan@curtin.edu.au

Word Count (excluding tables/figures):

Abstract 231

Body 5028

<sup>&</sup>lt;sup>1</sup> Present address: School of Psychology & Speech Pathology, Curtin University, WA 6845, Australia

# Highlights

- Biases were measured toward word and picture, and high- and low-calorie stimuli.
- A stimuli type by calorific value interaction effect was found.
- For pictures, biases were toward high-calorie food and away from low-calorie food.
- For words, biases were toward low-calorie food and away from high-calorie food.
- No associations between biases and BMI, restraint, or external eating were found.

#### Abstract

Objective. The primary aim of this study was to extend previous research on food-related attentional biases by examining biases toward pictorial vs. word stimuli, and foods of high vs. low calorific value. It was expected that participants would demonstrate greater biases to pictures over words, and to high-calorie over low-calorie foods. A secondary aim was to examine associations between BMI, dietary restraint, external eating and attentional biases. It was expected that high scores on these individual difference variables would be associated with a bias toward high-calorie stimuli. Methods. Undergraduates (N = 99) completed a dot probe task including matched word and pictorial food stimuli in a controlled setting. Questionnaires assessing eating behaviour were administered, and height and weight were measured. Results. Contrary to predictions, there were no main effects for stimuli type (pictures vs. words) or calorific value (high vs. low). There was, however, a significant interaction effect suggesting a bias toward high-calorie pictures, but away from high-calorie words; and a bias toward low-calorie words, but away from low-calorie pictures. No associations between attentional bias and any of the individual difference variables were found. Discussion. The presence of a stimulus type by calorific value interaction demonstrates the importance of stimuli type in the dot probe task, and may help to explain inconsistencies in prior research. Further research is needed to clarify associations between attentional bias and BMI, restraint, and external eating.

Keywords: Attentional bias; Dot probe; Stimuli; Food; Eating behaviour; Cognition

1

#### Introduction

2 The phenomenon of selective attention towards personally relevant stimuli has been documented across a range of health concerns, such as anxiety (for a review, see Bar-Haim, 3 4 Lamy, Pergamin, Bakermans-Kranenburg, & van IJzendoorn, 2007), chronic pain (for 5 reviews, see Crombez, Van Ryckeghem, Eccleston, & Van Damme, 2013; Schoth, Nunes, & 6 Liossi, 2012), substance use (for reviews, see Cox, Fadardi, & Pothos, 2006; Field & Cox, 7 2008; Franken, 2003), and eating disorders (for reviews, see Brooks, Prince, Stahl, Campbell, 8 & Treasure, 2011; Faunce, 2002; Giel et al., 2011), such that individuals suffering from these conditions are more likely to attend to behaviour-related cues. Attentional biases have also 9 10 been found toward food cues in non-clinical populations under conditions of hunger (Mogg, Bradley, Hyare, & Lee, 1998; Nijs, Muris, Euser, & Franken, 2010). In this case the salience 11 of food stimuli is increased by the physiological drive for hunger, signalling the body's need 12 13 for food. Such findings have given rise to interest in how other variables, such as weight status, restraint and external motivation for food might influence attentional biases. For 14 15 example, if overweight patients are more likely to attend to food cues, then this attention could act as a trigger for eating and lead to over-eating which could contribute further to 16 weight gain. However, differences in the stimuli and paradigm parameters that are used 17 18 between studies has made it difficult to determine under what conditions these biases are found. If such biases exist this has implications for not only our understanding of attentional 19 bias and its role in the development and maintenance of food-related behaviours but also for 20 designing interventions to help people manage their food intake. One aim of the current study 21 22 was to clarify these inconsistencies in the literature on non-clinical populations. As the 23 majority of studies on food-related attentional bias have used reaction time data, when referring to previous studies we are reporting reaction time data, unless otherwise stated. 24 Early investigations into food-related attentional biases generally employed a 25 modified Stroop (1935) colour naming task. In this paradigm, participants are presented with 26

a series of words printed in different colours. They are asked to inhibit their tendency to read 27 28 the word and instead name the colour in which each word is printed. Reaction times for colour-naming target words (e.g., unhealthy food) are compared with reaction times for 29 colour-naming control words (e.g., non-food). Longer reaction times for target words are 30 interpreted as indicating that the emotional relevance of the word category has caused 31 interference. The presence of such an effect has typically been attributed to an attentional bias 32 33 toward the target stimuli. Investigations of attentional biases towards food-related stimuli using the Stroop task have largely focussed on individuals with eating disorders. Reviews and 34 meta-analyses indicate that such individuals generally take longer to colour-name food-, and 35 36 weight/shape-related words than other words (Brooks et al., 2011; Dobson & Dozois, 2004; Johansson, Ghaderi, & Andersson, 2005; Lee & Shafran, 2004). However, one of the 37 difficulties with the Stroop task is determining the source of the interference effect. It has 38 39 been suggested that the delay in colour naming may occur as a result of either heightened attention to stimuli, or contrastingly, avoidance of stimuli (De Ruiter & Brosschot, 1994). To 40 overcome the limitations of the Stroop task, a growing number of investigators have 41 employed the dot probe task (MacLeod, Mathews, & Tata, 1986). This task involves brief 42 presentations of picture or word pairs on-screen (one experimental and one neutral). Then, a 43 44 probe (commonly a dot, asterisk, or letter) appears in the location of one of the previously shown stimuli, and participants are required to indicate the location of the probe as quickly as 45 possible. This allows differentiation between attention directed toward stimuli and attention 46 directed away from stimuli, providing a more precise measure of attentional allocation. 47 Further, stimuli presentation durations can be modified as a means to test for initial orienting 48 toward a target stimulus (short duration,  $\leq 200$  ms) or sustained attention (longer duration,  $\geq$ 49 500 ms) (Field & Cox, 2008). Therefore, an attentional bias towards target stimuli exists 50 when there is faster detection of probes replacing such stimuli. In contrast, attentional 51

avoidance of target stimuli exists when there is slower detection of probes replacing such 52 53 stimuli.

Increasingly, investigators have employed the dot probe task to assess food-related 54 attentional bias, particularly to assess whether certain groups are more prone to attentional 55 bias than others. Yet, evidence for the existence of an effect remains equivocal. For example, 56 in some cases all individuals appear to selectively attend toward dot probe food cues 57 58 irrespective of how they are grouped, for instance, by level of dietary restraint (Ahern, Field, Yokum, Bohon, & Stice, 2010; Werthmann et al., 2013), or body weight (Nijs et al., 2010). A 59 summary tabulation of existing dot probe research, excluding attentional training studies, 60 61 indicates that inconsistent findings may in part be due to wide variation in sample sizes, stimuli, and task parameters across studies (Supplementary Material, Table S1). However, 62 while these factors may explain why some studies yield positive effects and others do not, it 63 64 is also possible that methodological factors (e.g., the use of word or picture stimuli), physiological variables (e.g., body weight), and/or behavioural variables (e.g., dietary 65 restraint) may also contribute to inconsistencies between studies. 66 The question of whether words and pictures are equally useful as stimuli for the food 67 dot probe task has not yet been examined in the literature. Pictures may be considered more 68 69 ecologically valid than words because they more closely approximate real-world cues. Indeed, it has been shown that pictures are more strongly related to affective information than 70 words (De Houwer & Hermans, 1994). Moreover, high-calorie food pictures can induce 71 72 gustatory responses in brain regions for taste and reward (Simmons, Martin, & Barsalou, 2005). The issue of word versus pictorial stimuli in the dot probe has been tested in other 73

74 contexts, such as in assessments of attentional biases among patients with chronic pain (Dear,

Sharpe, Nicholas, & Refshauge, 2011). Specifically, patients with chronic pain and matched 75

pain-free controls were asked to complete one picture-based and one word-based dot probe

task. An attentional bias toward pictorial stimuli was found, although only when pictures 77

76

were rated as self-relevant. There was no reported attentional bias toward word stimuli. Nosuch study has been conducted using food stimuli.

A second methodological issue that may contribute to inconsistencies between studies 80 is the calorific value of food stimuli. While some studies have compared biases toward high-81 and low-calorie food stimuli and reported null effects when using dot probe response 82 latencies (Castellanos et al., 2009; Tapper, Pothos, & Lawrence, 2010), others have reported 83 84 an attentional bias toward high-calorie foods (Johansson, Ghaderi, & Andersson, 2004; Kemps & Tiggemann, 2009; Nijs et al., 2010) or toward foods in general (Brignell et al., 85 2009; Hou et al., 2011; Mogg et al., 1998) over neutral non-food cues. It is important to test 86 87 whether participants respond differently to high- versus low-calorie food stimuli as such information may be hidden when using mixed calorie stimuli. 88

The relationship between food-related attentional bias and various physiological and 89 behavioural variables also appears to be inconsistent across studies, and may account for 90 some of the discrepancies in findings. It is commonly hypothesised that overweight/obese 91 92 individuals selectively attend toward foods, especially high-calorie foods, and that this tendency may contribute to outcomes such as cravings, overeating and weight gain. In line 93 94 with this argument, Nijs and colleagues (2010) found higher initial orientation at 100ms 95 stimulus presentation towards dot probe food cues in overweight/obese versus normal-weight individuals. Other studies have, however, failed to replicate weight-based differences when 96 using dot probe response latencies (Castellanos et al., 2009; Loeber et al., 2011; Werthmann 97 et al., 2011). Hence, BMI was a variable of interest in the present study. 98

99 The eating behaviour variables of dietary restraint and external eating have been 100 tested in the context of the food dot probe, again with mixed results. Dietary restraint refers to 101 the intention to restrict food intake in order to control body weight (Herman & Mack, 1975). 102 As this intention may lead to preoccupation with food, it is reasonable to speculate that an 103 attentional bias, especially toward high-calorie 'forbidden' foods, may follow. However, support for this relationship is limited. Five dot probe studies (Ahern et al., 2010; Boon,
Vogelzang, & Jansen, 2000; Lee, Shafran, & Fairburn, 2004; Papies et al., 2008; Werthmann
et al., 2013) have investigated the relationship between restrained eating and attentional
biases. Only two of these studies (Lee et al., 2004; Papies et al., 2008) found a relationship,
and of those, the latter included pre-exposure to food words before the dot probe task, which
may have primed participants to the stimuli.

110 Inconsistent findings have also emerged regarding external eating tendencies and attentional bias. According to the externality theory of overeating, certain individuals are 111 more sensitive to external food cues (e.g., sight, smell, and taste of food) than others, and 112 113 more likely to eat in response to these cues, irrespective of internal physiological signals of hunger and satiety (Schachter & Rodin, 1974). As such, it may be expected that an 114 association exists between external eating and attentional bias toward food stimuli. This 115 prediction has been supported by several studies (Brignell et al., 2009; Hepworth, Mogg, 116 Brignell, & Bradley, 2010; Hou et al., 2011), however others report no associations 117 (Newman, O'Connor, & Conner, 2005; Pothos, Tapper, & Calitri, 2009), or counterintuitive 118 results. For example, Johansson, Ghaderi, and Andersson (2004) found that high externally 119 motivated eaters had a tendency to direct their attention away from food words whilst low 120 121 externally motivated eaters directed attention towards food words in the dot probe task. To assist in clarifying these issues, dietary restraint and external eating were included in the 122 present study. 123

Objective. In light of the literature outlined above, the primary aim of the present
study was to examine the relationships between food-related attentional bias and two
methodological variables, namely stimuli type (words vs. pictures) and stimuli calorific value
(high vs. low) in the dot probe task. In addition, a secondary aim was to examine
relationships between food-related attentional bias and specific behavioural (dietary restraint,
external eating) and physiological (BMI) variables.

130 It was hypothesised that:

131 1. There would be a greater attentional bias toward pictorial stimuli than word stimuli.

132 2. There would be a greater attentional bias toward high-calorie food than low-calorie food.

1333. Higher levels of dietary restraint would be associated with increased attentional biases

toward high-calorie food stimuli.

4. Higher levels of external eating would be associated with increased attentional biasestoward high-calorie food stimuli.

137 5. A higher BMI would be associated with increased attentional bias toward high-calorie food138 stimuli.

Method

139

# 140 **Participants**

The sample consisted of 99 undergraduate students (79 female) from a wide range of courses an Australian university, recruited via the University's online participant recruitment system. Inclusion criteria were 18 years of age or older, and fluency in English. The mean age was 19.34 years (SD = 2.95) and mean BMI was 21.96 (SD = 2.88). The majority were Caucasian (54%) and lived with their parents (65%). The study was approved by the University Human Research Ethics Committee. Participants were reimbursed with course credit in exchange for participation.

## 148 Stimulus material

- 149 One set of word stimuli and a matching set of pictorial stimuli were developed for this
- 150 study. The word stimuli set consisted of:
- 5 high-calorie food–neutral (household items) pairs, e.g., bacon-towel
- 5 low-calorie food–neutral (household items) pairs, e.g., apple-boxes

• 5 high-calorie food–low-calorie food filler pairs, e.g., sausage-carrots. The filler pairs were

- designed as such to juxtapose high- vs low-calorie foods and thereby lead to increased
- salience of the calorific value of food stimuli.

• 5 neutral (music-related)-neutral (travel-related) filler pairs, e.g., guitar-camera
Words that referred to meals or foodstuffs with ambiguous calorific value, e.g. 'yoghurt', or
'spaghetti', were avoided. Word pairs were matched in length and frequency of usage.
Frequency data was sourced from the British National Corpus, a representative sample of
spoken and written late 20<sup>th</sup> Century British English words.

161 The pictorial stimuli consisted of four sets of colour image pairs that directly reflected 162 the word stimuli pairs. Pictures were acquired from copyright-free stock image websites. All 163 images were re-sized to 300 x 300 pixels. Image pairs were matched as closely as possible in 164 brightness, colour, and shape. An additional 5 neutral (animals)–neutral (clothing) word and 165 corresponding picture pairs were developed for use in task practice trials.

A pilot test of the word and picture stimuli was conducted (n = 18) to ascertain (i) 166 whether the images clearly reflected the food and non-food words they were assigned to; (ii) 167 whether participants could discriminate reliably between high-calorie and low-calorie foods; 168 and (iii) whether image pairs appeared matched in appearance. Participants correctly 169 170 identified 19.2 of 20 food images (SD = 0.99), and 28.5 of 30 non-food images (SD = 1.20). Participants also correctly classified the calorific value of 18.7 of the 20 stimuli foods as 171 high-calorie or low-calorie (SD = 1.23). In response to qualitative feedback from the pilot 172 173 test, several images were replaced or altered in brightness or shape, in order to strengthen the degree of pair matching. The final stimuli used can be found in the online Supplementary 174 Material (Table S2). 175

176 **Procedure** 

Upon arrival at the laboratory, participants provided informed consent and completed
a demographics questionnaire and hunger scale. The dot probe task was then administered,
followed by completion of the self-report eating behaviour measures. Height and weight were
then measured by the experimenter. At the conclusion of testing, participants were debriefed.
The duration of each testing session was approximately 25 minutes.

#### 182 Measures

183 Demographics. Age, gender, living conditions, and ethnicity data were collected. A
184 question regarding whether participants were vegetarian was also included.

Hunger. State hunger was measured by asking participants 'How hungry are you
right now?' in a pre-task questionnaire. Responses were rated on a scale of 1 (not hungry at
all) to 7 (extremely hungry).

**Dutch Eating Behavior Questionnaire** (DEBQ; van Strien, Frijters, Bergers, & Defares, 1986). The DEBQ is a well-established measure of dietary restraint (10 questions), external eating (10 questions), and emotional eating (13 questions). Items are scored on a 5point Likert scale ranging from 1 (never) to 5 (very often). The DEBQ has been shown to have good internal consistency and factorial validity (van Strien et al., 1986). Only the restraint and external eating subscales were of interest in the present study.

Body Mass Index (BMI). Weight was measured to the nearest .1 kg and height to the
 nearest .5cm. BMI was calculated using the formula [weight] kg/[height] m<sup>2</sup>.

Dot probe task (MacLeod et al., 1986). The task was programmed using Inquisit 196 software, version 3.0.6.0, and presented on a wide screen 26-inch LCD monitor. Participants 197 were seated approximately 60 cm from the computer screen. The task consisted of ten 198 199 practice trials, followed by one block of 160 trials. Each trial began with presentation of a central fixation cross ('+'; 1cm in height) for 500ms, followed by a pair of words or pictures 200 for 500ms. A 500ms stimulus duration was chosen as it reflects the duration most commonly 201 used in the existing food dot probe literature (see Supplementary Material Table S1). The 202 203 stimuli pair was presented with one word (in capital letters; 1 cm in height) or picture (8 cm x 8cm) in the upper half of the screen and another in the lower half, with 4.5 cm of space 204 between the two stimuli. A visual probe ('p' or 'q'; 1cm in height) then appeared in place of 205 either the upper or lower picture or word and remained until participants pressed the 'p' or 'q' 206

response keys as quickly as possible to indicate the letter they had seen. The inter-trial 207 208 interval was 500 ms. Reaction time (ms) for each trial was recorded by the task software. Each stimulus pair appeared on screen once as pictures and once as words in each of 209 the following four combinations: (i) target upper, probe upper, (ii) target upper, probe lower, 210 (iii) target lower, probe upper, (iv) target lower, probe lower. The order of trials was uniquely 211 randomised for each participant. The probe appeared in the upper or lower halves of the 212 213 screen randomly and with equal probability. There were 80 critical trials (target-neutral) and 80 filler trials in total. 214

Pleasantness. The food stimuli used in critical trials of the dot probe task were rated
on a scale of 1 (extremely pleasant) to 7 (extremely unpleasant) in a post-task questionnaire.

#### 217 Data preparation

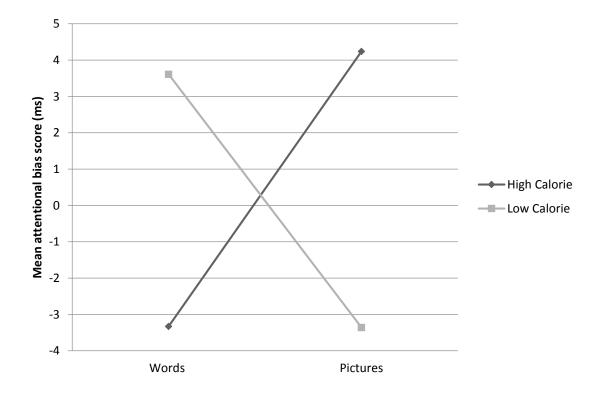
Data from practice and filler trials were removed. Trials with errors were discarded 218 (5.6% of data). In accordance with previous food dot probe studies (di Pellegrino, Magarelli, 219 & Mengarelli, 2011; Hou et al., 2011; Mogg et al., 1998) trials with response latencies < 200 220 221 ms or >1500 ms, and trials with latencies more than 2 SD above the participant's mean latency were then excluded as outliers (4.0% of data). One participant with an exceptionally 222 high error rate (91.4%) was excluded. Trials targeting meat-based foods were removed from 223 224 vegetarian participants' (n = 5) data sets. Four attentional bias scores were calculated for each participant, one for each stimuli category: high-calorie words, high-calorie pictures, low-225 calorie words, and low-calorie pictures. Bias scores were calculated using the formula 226 0.5\*[(TuPl - TlPl) + (TlPu - TuPu)], where T = target stimulus, P = probe, u = upper, and l = 227 lower (MacLeod & Mathews, 1988). In congruent trials (TlPl and TuPu), the probe replaces 228 the target image/word, and in incongruent trials (TuPl and TlPu), the probe replaces the 229 neutral image/word. A positive attentional bias score indicates a bias towards the target 230 (food) stimulus whereas a negative attentional bias score indicates a bias away from the target 231 (food) stimulus. 232

#### 233 Data analysis

Analyses were performed using SPSS version 21. Two variables were transformed to improve normality using established methods (Osborne, 2010): BMI (inverse computed, distribution reversed, then a constant added to each score), and external eating (natural logarithm). Whilst the transformed variables were used in the data analysis, the untransformed means and SDs are provided to facilitate comparisons with previous research. A paired samples t-test was conducted to compare average pleasantness ratings of high- and low calorie foods.

To explore the presence of attentional bias differences, mean attentional bias scores were entered into a 2 (Stimuli: word vs pictures) x 2 (calorific value: high vs low) repeated measures ANOVA. We also conducted a paired samples t-test to compare the biases towards higher calorie foods for words vs pictures. Pearson's correlations were conducted between bias scores and BMI, dietary restraint and external eating. Due to non-normality of the hunger variable distribution, Spearman's Rho correlations were conducted between bias scores and hunger.

248


#### Results

#### 249 Pleasantness

250 On average, low calorie foods (M = 2.05; SD = .70) were rated as more pleasant than 251 high calorie foods (M = 2.94; SD = .98), t(98) = 8.035, p < .001.

#### 252 Hypotheses 1 and 2: Stimuli type and calorific value

There were no main effects for stimuli type, F(1,98) = .006, p = .938, partial  $\eta^2 = .00$ ; or calorific value, F(1,98) = .008, p = .927, partial  $\eta^2 = .00$ ; however, there was a significant interaction between these variables, F(1,98) = 4.30, p = .041, partial  $\eta^2 = .042$ . The conventions for partial  $\eta^2$  are small = 0.01; medium = 0.06; and large = 0.14. The interaction effect (Figure 1) suggests an overall bias toward high-calorie stimuli compared to low-calorie stimuli for pictures, but towards low-calorie stimuli and away from high-calorie stimuli for words. Follow-up t-tests were conducted to determine the nature of the interaction. None of the t-tests reached significance (t < 1.586, p > 0.116). As such, we can conclude that these are relative effects, rather than absolute effects.



262

*Figure 1.* Interaction effect between stimuli type and calorific value in food dot probe

264 *Note:* A positive score indicates a bias toward the target stimulus; a negative score indicates a bias away from265 the target stimulus

266

#### 267 Hypotheses 3, 4, & 5: Dietary restraint, external eating, and BMI

268 Pearson's correlations between the study variables were conducted. These, and means

- for all study variables are presented in Table 1. No significant associations were found.
- Spearman's Rho correlations between hunger (M = 2.47, SD = 1.64) and all attentional bias
- indices were non-significant, ps > .22.
- 272 Overall bias to food stimuli
- 273 Biases toward high- and low calorie stimuli were averaged, confirming no significant overall
- bias toward food pictures (M = .439; SD = 29.216) or words (M = .139; SD = 24.504).
- 275 Similarly, in the trials including high and low calorie food, there was no difference in the

| 276 | biases towards high calorie words ( $M =0038$ , $SD = 38.61$ ) or pictures ( $M = .7885$ , $SD =$       |
|-----|---------------------------------------------------------------------------------------------------------|
| 277 | 38.10), ( $t(1,98) = -0.153$ , $p = 0.878$ ). Further, the only significant correlation was between the |
| 278 | attention bias towards high vs low calorie words and the bias towards low calorie vs neutral            |
| 279 | words ( $r =213$ , $p = .034$ ).                                                                        |

280

#### 281 **Table 1**

#### 282 Pearson's correlations and descriptive statistics for study variables

|                             | 1      | 2      | 3       | 4      | 5     | 6    | 7    |
|-----------------------------|--------|--------|---------|--------|-------|------|------|
| 1. AB high-calorie words    | _      |        |         |        |       |      |      |
| 2. AB high-calorie pictures | 02     | _      |         |        |       |      |      |
| 3. AB low-calorie words     | 07     | .04    | _       |        |       |      |      |
| 4. AB low-calorie pictures  | 07     | .21*   | .07     | _      |       |      |      |
| 5. BMI                      | .13    | .18    | .13     | 11     | _     |      |      |
| 6. External eating          | 05     | .16    | 03      | .06    | .04   | _    |      |
| 7. Restrained eating        | 02     | .01    | 13      | 13     | .11   | .03  | _    |
| Mean                        | -3.33  | 4.24   | 3.61    | -3.36  | 21.96 | 3.44 | 2.77 |
| SD                          | 35.63  | 37.90  | 36.73   | 37.76  | 2.88  | .55  | .89  |
|                             | -84.08 | -90.35 | -114.73 | -94.05 | 17.75 | 2.10 | 1.10 |
| Range                       | to     | to     | to      | to     | to    | to   | to   |
|                             | 129.88 | 134.75 | 80.73   | 112.08 | 31.06 | 5.00 | 5.00 |
| Ν                           | 99     | 99     | 99      | 99     | 99    | 99   | 99   |

283 \* significant at 0.05 level (2-tailed); AB = attentional bias (ms)

- 284
- 285

## Discussion

The aim of the present study was to investigate whether differences in attentional bias exist between word and pictorial stimuli, and between high- and low-calorie stimuli. In addition, relationships between attentional bias and BMI, dietary restraint, and external eating were examined. The results indicated that neither stimuli type nor calorific value alone affected attentional bias, however, a significant interaction between these variables was found. When using pictures, a bias toward high-calorie foods and away from low-calorie foods was seen, whereas when using words the opposite pattern was observed. As low calorie foods were rated as more pleasant than high calorie foods on average, palatability of high calorie food cannot account for the findings. There were no associations between attentional bias and restraint, external eating, or BMI.

296 The significant interaction observed between stimuli type and calorific value provides new evidence for the importance of stimuli type in the food dot probe task, indicating that 297 298 attentional bias outcomes vary depending on whether words or pictures are used, and whether they are high or low-calorie. The decision to incorporate task filler pairs that juxtaposed high-299 vs low-calorie foods may have led to increased salience of the calorific value of food stimuli 300 301 and thereby contributed to the reported effect. We do not know whether participants would have responded differently to each set of words had they been presented separately. 302 Nonetheless, the influence of calorific value on attentional bias outcomes may help to clarify 303 304 inconsistencies in previous dot probe research. It may be that in studies that used a mixture of high and low-calorie picture stimuli (e.g., Loeber et al., 2011), participants selectively 305 attended toward high-calorie pictures, and away from low-calorie pictures and this 306 discrepancy would not have been detected as the stimuli used were of mixed calorific value. 307 Calculation of an overall attentional bias score toward a mixed set of pictures would collapse 308 309 together the biases toward high-calorie stimuli and away from low-calorie stimuli, leaving a negligible attentional bias index and potentially, a null effect. Indeed, the current data 310 indicate negligible overall biases toward food pictures (0.44 ms), and words (0.14 ms). 311 Similarly in previous food dot probe studies using word stimuli of mixed calorific value 312 results may have been masked (e.g., Boon et al., 2000). For this reason it is recommended 313 that in future studies, high- and low-calorie stimuli be grouped and analysed separately. 314 The pattern of the interaction effect, particularly the biases toward high calorie 315 pictures and low calorie words, may be explained by existing research that indicates 316 differential cognitive processing of pictures and words. Stimuli presented in picture form are 317

more easily recalled (e.g., Noldy, Stelmack, & Campbell, 1990; Paivio & Csapo, 1973) and 318 319 recognised (e.g., Shepard, 1967; Snodgrass, Volvovitz, & Walfish, 1972) than stimuli presented in word form; this phenomenon is known as the picture superiority effect. Pictures 320 are more strongly related to affective information than words (Glaser & Glaser, 1989). In line 321 with this prediction, De Houwer and Hermans (1994), Experiment 1 reported that the 322 affective categorisation of a word was slowed down when the word was accompanied by a 323 324 distracting picture. Words, however, did not interfere with affective categorisation of pictures. Moreover, pictures were categorised much faster than words. According to Glaser 325 and Glaser (1989) such results indicate that pictures have privileged access to the network in 326 327 which affective information is stored, known as the semantic executive system. Given that high calorie picture stimuli are biologically relevant and may reinforce previously 328 experienced affective states such as pleasure, images of such foods in the dot probe task may 329 330 be particularly visually attractive for participants. This may help to explain why there was an overall bias toward high calorie picture stimuli in the present study. Glaser and Glaser (1989) 331 propose that the while the semantic executive system controls perception of pictures and 332 action on objects, the lexical executive system controls perception and production of spoken 333 and written language. Words can only access semantic (and thus affective) information after 334 335 they have passed the lexicon. Electrophysiological responses to word and picture stimuli have shown that affective information indeed modulates the processing of pictures yet has little 336 influence on the processing of words (Hinojosa, Carretie, Valcarcel, Mendez-Bertolo, & 337 Pozo, 2009). Early stage processing of words is therefore more likely to draw on analytical 338 rather than affective information. Assuming that participants had prior knowledge of low 339 calorie foods (in this case fruits and vegetables) being a healthier choice than high calorie 340 foods, this may explain why there was an overall bias toward low calorie word stimuli in the 341 present study. It should be noted that the current results reflect the biases of a majority-female 342 sample of undergraduates who, on average, rated low calorie, healthy foods as more pleasant 343

than high calorie foods, and that other groups of individuals (such as overweight or those
scoring high on restraint) may show a different pattern of biases when exposed to the same
stimuli.

In this study no associations between food-related attentional bias and any of the individual difference variables were found. The lack of association between hunger and attentional bias is inconsistent with previous dot probe research (Mogg et al., 1998; Nijs et al., 2010), however this result was likely due to the majority of participants rating themselves as not hungry, therefore it is likely that the result was due to a restriction in range.

With regard to restraint, the current result supports prior research in which no 352 353 relationship between restraint and attentional bias was found (Ahern et al., 2010; Boon et al., 2000). It has been suggested that the dot probe task may not be sensitive enough for non-354 clinical restrained eaters and is instead a better measure of attentional bias among patients 355 356 with eating disorders (Boon et al., 2000). Certainly, the existence of attentional biases toward food and body-related cues is well documented in the latter population (Brooks et al., 2011; 357 Faunce, 2002; Giel et al., 2011). Further, in a non-clinical sample, Diamantis (1992) found 358 that rather than being linked with attentional bias, restraint was linked with a memory bias for 359 food words, especially 'forbidden' food words. This relationship has been tested by Israeli 360 361 and Stewart (2001), who found a relative memory bias for 'forbidden' food words in highly restrained eaters when compared to those with low levels of restraint. Therefore, whilst the 362 present results indicate that relationship between restraint and attentional bias appears weak 363 and difficult to detect, it may be worthwhile exploring other cognitive biases, such as 364 memory bias, in restrained eaters. 365

There was no association between BMI and attentional bias, which may be in part due to the sample being predominantly of healthy weight. However, the lack of effect of BMI on attentional bias generally confirms existing research based on dot probe response latencies (Castellanos et al., 2009; Loeber et al., 2011; Pothos, Tapper, et al., 2009; Werthmann et al., 2011). Further, food-related attentional bias, as measured by the dot probe, has failed to
predict changes in individuals' BMI at one-year follow up (Calitri, Pothos, Tapper,
Brunstrom, & Rogers, 2010). As indicated by studies that combined the dot probe with eyetracking (Castellanos et al., 2009; Werthmann et al., 2011), an association between BMI and
attentional bias may only be detectable when using eye-tracking as it is a more sensitive
measure of attentional allocation. Thus it may be worthwhile to add eye tracking to future dot
probe studies to increase precision of measurement.

The finding of no association between external eating and attentional bias is 377 consistent with some evidence (Pothos, Tapper, et al., 2009) yet conflicts with other reports 378 379 (Brignell et al., 2009; Hepworth et al., 2010; Hou et al., 2011). In previous studies assessing attentional bias toward food pictures, external eating correlation coefficients were .42 380 (Brignell et al., 2009), .39 (Hepworth et al., 2010), and .36 (Hou et al., 2011). In contrast, the 381 382 correlation coefficients found in the present study (.16 for high-calorie pictures and .06 for low-calorie pictures) are comparatively low. The mean scores for external eating, however, 383 remain similar between this study and others (Hou et al., 2011; Hepworth et al., 2010). The 384 relationship between external eating and attentional bias thus remains unclear and warrants 385 further attention. Separating out high and low-calorie stimuli before conducting correlations 386 with external eating may help to facilitate comparisons with the current findings. 387

The limitations of the current study should be considered when interpreting the results. Although there was a significant interaction effect indicating that relative to low calorie food stimuli, participants focussed more on high calorie stimuli when pictures were presented, whereas the reverse was true when words were presented. However, the absolute differences between response times to these stimuli did not differ from one another, as indicated by the follow-up t-tests. Further, the effect size of the significant interaction was small. We acknowledge that using 'plates' as a neutral word and picture stimulus may have elicited food-related thoughts, however options were limited as each food word was pairedwith a household object of matched word length and frequency.

#### 397 Conclusions

In summary, the present study yielded a novel finding regarding the importance of 398 stimuli in the dot probe task and is the first to examine stimuli type and calorific value of 399 400 stimuli together. It was found that attentional bias outcomes vary depending on whether words or pictures are used, and whether they are high- or low-calorie. This finding may help 401 to explain null effects in prior studies that mixed high- and low-calorie food stimuli together. 402 Based on the finding it is recommended that in future high- and low-calorie stimuli be 403 404 analysed separately. In the current study, no relationships were found between attentional bias and BMI, restraint, or external eating. Further research is therefore needed to clarify 405 these associations, or lack thereof. In particular, it is advised that in future dot probe studies 406 407 concurrent eye-tracking be employed in order to increase measurement precision. The present study has highlighted the complex nature of food-related attentional bias, and is a step toward 408 409 a greater understanding of this phenomenon.

410

411

#### 412 Acknowledgements

The authors would like to thank the University of Sydney Health Psychology Lab group fortheir helpful comments on an earlier draft of this manuscript

415

- 416
- 417
- 418
- 419
- 420

| 421 | References                                                                                     |
|-----|------------------------------------------------------------------------------------------------|
| 422 | Ahern, A. L., Field, M., Yokum, S., Bohon, C., & Stice, E. (2010). Relation of dietary         |
| 423 | restraint scores to cognitive biases and reward sensitivity. Appetite, 55(1), 61-68. doi:      |
| 424 | 10.1016/j.appet.2010.04.001                                                                    |
| 425 | Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van IJzendoorn, M.        |
| 426 | H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: a            |
| 427 | meta-analytic study. Psychological Bulletin, 133(1), 1-24. doi: 10.1037/0033-                  |
| 428 | 2909.133.1.1                                                                                   |
| 429 | Benas, J. S., & Gibb, B. E. (2011). Cognitive biases in depression and eating disorders.       |
| 430 | Cognitive Therapy and Research, 35(1), 68-78. doi: 10.1007/s10608-009-9279-1                   |
| 431 | Boon, B., Vogelzang, L., & Jansen, A. (2000). Do restrained eaters show attention toward or    |
| 432 | away from food, shape and weight stimuli? European Eating Disorders Review, 8(1),              |
| 433 | 51-58. doi: 10.1002/(sici)1099-0968(200002)8:1<51::aid-erv306>3.0.co;2-e                       |
| 434 | Brignell, C., Griffiths, T., Bradley, B. P., & Mogg, K. (2009). Attentional and approach       |
| 435 | biases for pictorial food cues. Influence of external eating. Appetite, 52(2), 299-306.        |
| 436 | doi: 10.1016/j.appet.2008.10.007                                                               |
| 437 | Brooks, S., Prince, A., Stahl, D., Campbell, I. C., & Treasure, J. (2011). A systematic review |
| 438 | and meta-analysis of cognitive bias to food stimuli in people with disordered eating           |
| 439 | behaviour. Clinical Psychology Review, 31(1), 37-51. doi: 10.1016/j.cpr.2010.09.006            |
| 440 | Calitri, R., Pothos, E. M., Tapper, K., Brunstrom, J. M., & Rogers, P. J. (2010). Cognitive    |
| 441 | biases to healthy and unhealthy food words predict change in BMI. Obesity, 18(12),             |
| 442 | 2282-2287. doi: 10.1038/oby.2010.78                                                            |
| 443 | Castellanos, E. H., Charboneau, E., Dietrich, M. S., Park, S., Bradley, B. P., Mogg, K., &     |
| 444 | Cowan, R. L. (2009). Obese adults have visual attention bias for food cue images:              |
| 445 | evidence for altered reward system function. International Journal of Obesity, 33(9),          |
| 446 | 1063-1073. doi: 10.1038/ijo.2009.138                                                           |
|     |                                                                                                |

21

- Cooper, M. J., & Fairburn, C. G. (1992). Selective processing of eating, weight and shape
  related words in patients with eating disorders and dieters. *British Journal of Clinical Psychology*, *31*(3), 363-365. doi: 10.1111/j.2044-8260.1992.tb01007.x
- 450 Cox, W. M., Fadardi, J. S., & Pothos, E. M. (2006). The addiction-Stroop test: Theoretical
- 451 considerations and procedural recommendations. *Psychological Bulletin, 132*(3), 443.
- 452 doi: 10.1037/0033-2909.132.3.443
- 453 Crombez, G., Van Ryckeghem, D. M. L., Eccleston, C., & Van Damme, S. (2013).
- 454 Attentional bias to pain-related information: A meta-analysis. *Pain, 154*(4), 497-510.
  455 doi: 10.1016/j.pain.2012.11.013
- 456 De Houwer, J., & Hermans, D. (1994). Differences in the affective processing of words and
  457 pictures. *Cognition & Emotion*, 8(1), 1-20. doi: 10.1080/02699939408408925
- De Ruiter, C., & Brosschot, J. F. (1994). The emotional Stroop interference effect in anxiety:
  Attentional bias or cognitive avoidance? *Behaviour Research and Therapy*, *32*(3),
- 460 315-319. doi: 10.1016/0005-7967(94)90128-7
- 461 Dear, B. F., Sharpe, L., Nicholas, M. K., & Refshauge, K. (2011). Pain-related attentional
  462 biases: The importance of the personal relevance and ecological validity of stimuli.

463 *The Journal of Pain, 12*(6), 625-632. doi: 10.1016/j.jpain.2010.11.010

- di Pellegrino, G., Magarelli, S., & Mengarelli, F. (2011). Food pleasantness affects visual
  selective attention. *Quarterly Journal of Experimental Psychology*, 64(3), 560-571.
- doi: 10.1080/17470218.2010.504031
- 467 Diamantis, J. A. (1992). *An investigation of cognitive biases in dietary restraint*. ((Doctoral
  468 dissertation) C322906). Retrieved from ProQuest Dissertations & Theses database.
  469 (C322906)
- Dobson, K. S., & Dozois, D. J. (2004). Attentional biases in eating disorders: A meta-analytic
  review of Stroop performance. *Clinical Psychology Review*, *23*(8), 1001-1022. doi:
- 472 10.1016/j.cpr.2003.09.004

473 Faunce, G. J. (2002). Eating Disorders and Attentional Bias: A Review. *Eating Disorders*,

474 *10*(2), 125-139. doi: 10.1080/10640260290081696

- 475 Field, M., & Cox, W. M. (2008). Attentional bias in addictive behaviors: A review of its
- 476 development, causes, and consequences. *Drug and Alcohol Dependence*, 97(1–2), 1-
- 477 20. doi: 10.1016/j.drugalcdep.2008.03.030
- 478 Franken, I. H. (2003). Drug craving and addiction: integrating psychological and
- 479 neuropsychopharmacological approaches. *Progress in Neuro-Psychopharmacology*480 *and Biological Psychiatry*, 27(4), 563-579. doi: 10.1016/S0278-5846(03)00081-2
- 481 Giel, K. E., Teufel, M., Friederich, H. C., Hautzinger, M., Enck, P., & Zipfel, S. (2011).
- 482 Processing of pictorial food stimuli in patients with eating disorders—A systematic
- 483 review. International Journal of Eating Disorders, 44(2), 105-117. doi:
- 484 10.1002/eat.20785
- 485 Glaser, W. R., & Glaser, M. O. (1989). Context effects in Stroop-like word and picture

486 processing. Journal of Experimental Psychology: General, 118(1), 13-42. doi:

- 487 10.1037/0096-3445.118.1.13
- 488 Hepworth, R., Mogg, K., Brignell, C., & Bradley, B. P. (2010). Negative mood increases
- selective attention to food cues and subjective appetite. *Appetite*, *54*(1), 134-142. doi:
- 490 10.1016/j.appet.2009.09.019
- Herman, C. P., & Mack, D. (1975). Restrained and unrestrained eating. *Journal of Personality*, 43(4), 647-660. doi: 10.1111/j.1467-6494.1975.tb00727.x
- Hinojosa, J. A., Carretie, L., Valcarcel, M. A., Mendez-Bertolo, C., & Pozo, M. A. (2009).
- 494 Electrophysiological differences in the processing of affective information in words
- 495 and pictures. *Cognitive, Affective & Behavioral Neuroscience, 9*(2), 173-189. doi:
- 496 10.3758/CABN.9.2.173

- Hou, R. H., Mogg, K., Bradley, B. P., Moss-Morris, R., Peveler, R., & Roefs, A. (2011).
- 498 External eating, impulsivity and attentional bias to food cues. *Appetite*, *56*(2), 424499 427. doi: 10.1016/j.appet.2011.01.019
- Israeli, A. L., & Stewart, S. H. (2001). Memory bias for forbidden food cues in restrained
  eaters. *Cognitive Therapy and Research*, 25(1), 37-48. doi:
- 502 10.1023/A:1026422731313
- Johansson, L., Ghaderi, A., & Andersson, G. (2004). The role of sensitivity to external food
  cues in attentional allocation to food words on dot probe and Stroop tasks. *Eating*
- 505 *Behaviors*, 5(3), 261-271. doi: 10.1016/j.eatbeh.2004.01.005
- Johansson, L., Ghaderi, A., & Andersson, G. (2005). Stroop interference for food- and bodyrelated words: a meta-analysis. *Eating Behaviors*, 6(3), 271-281.
- Kemps, E., & Tiggemann, M. (2009). Attentional Bias for Craving-Related (Chocolate) Food
  Cues. *Experimental & Clinical Psychopharmacology*, *17*(6), 425-433. doi:
- 510 10.1037/a0017796
- Lee, M., & Shafran, R. (2004). Information processing biases in eating disorders. *Clinical Psychology Review*, 24(2), 215-238. doi: 10.1016/j.cpr.2003.10.004
- Lee, M., & Shafran, R. (2008). Processing biases in eating disorders: The impact of temporal
  factors. *International Journal of Eating Disorders*, *41*(4), 372-375. doi:
- 515 10.1002/eat.20495
- 516 Lee, M., Shafran, R., & Fairburn, C. G. (2004). Attentional biases in eating disorders:
- 517 Assessment using an enhanced methodology. *International Journal of Eating*518 *Disorders*, 35(4), 402-403. doi: 10.1002/eat.20051
- 519 Loeber, S., Grosshans, M., Korucuoglu, O., Vollmert, C., Vollstädt-Klein, S., Schneider, S., .
- 520 . . Kiefer, F. (2011). Impairment of inhibitory control in response to food-associated
- 521 cues and attentional bias of obese participants and normal-weight controls.
- 522 International Journal of Obesity, 36, 1334-1339. doi: 10.1038/ijo.2011.184

| 523 | Loeber, S., Grosshans, M., Herpertz, S., Kiefer, F., & Herpertz, S. C. (2013). Hunger           |
|-----|-------------------------------------------------------------------------------------------------|
| 524 | modulates behavioral disinhibition and attentional allocation to food-associated cues           |
| 525 | in normal weight controls. Appetite, 71(1), 32-39. doi: 10.1016/j.appet.2013.07.008             |
| 526 | MacLeod, C., & Mathews, A. (1988). Anxiety and the allocation of attention to threat. The       |
| 527 | Quarterly Journal of Experimental Psychology Section A, 40(4), 653-670. doi:                    |
| 528 | 10.1080/14640748808402292                                                                       |
| 529 | MacLeod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders.           |
| 530 | Journal of Abnormal Psychology, 95(1), 15. doi: 10.1037/0021-843X.95.1.15                       |
| 531 | Mogg, K., Bradley, B. P., Hyare, H., & Lee, S. (1998). Selective attention to food-related      |
| 532 | stimuli in hunger: are attentional biases specific to emotional and psychopathological          |
| 533 | states, or are they also found in normal drive states? Behaviour Research and                   |
| 534 | <i>Therapy</i> , 36(2), 227-237. doi: 10.1016/s0005-7967(97)00062-4                             |
| 535 | Newman, E., O'Connor, D., & Conner, M. (2005). Stress-induced eating: An investigation of       |
| 536 | attentional biases for food words in external eaters. Psychology & Health, 20(S1),              |
| 537 | 192-192. doi: 10.1080/14768320500221275                                                         |
| 538 | Nijs, I. M., Muris, P., Euser, A. S., & Franken, I. H. (2010). Differences in attention to food |
| 539 | and food intake between overweight/obese and normal-weight females under                        |
| 540 | conditions of hunger and satiety. Appetite, 54(2), 243-254. doi:                                |
| 541 | 10.1016/j.appet.2009.11.004                                                                     |
| 542 | Noldy, N. E., Stelmack, R. M., & Campbell, K. B. (1990). Event-related potentials and           |
| 543 | recognition memory fpr pictures and words: The effects of intentional and incidental            |
| 544 | learning. Psychophysiology, 27(4), 417-428. doi: 10.1111/j.1469-                                |
| 545 | 8986.1990.tb02337.x                                                                             |
| 546 | Osborne, J. W. (2010). Improving your data transformations: Applying the Box-Cox                |
| 547 | transformation. Practical Assessment, Research & Evaluation, 15(12), 1-9. doi:                  |

548 Retrieved from http://pareonline.net/

- Paivio, A., & Csapo, K. (1973). Picture superiority in free recall: Imagery or dual coding? *Cognitive Psychology*, 5(2), 176-206. doi: 10.1016/0010-0285(73)90032-7
- Papies, E. K., Stroebe, W., & Aarts, H. (2008). The allure of forbidden food: On the role of
  attention in self-regulation. *Journal of Experimental Social Psychology*, 44(5), 1283-
- 553 1292. doi: 10.1016/j.jesp.2008.04.008
- Piech, R. M., Pastorino, M. T., & Zald, D. H. (2010). All I saw was the cake. Hunger effects
  on attentional capture by visual food cues. *Appetite*, *54*(3), 579. doi:
- 556 10.1016/j.appet.2009.11.003
- 557 Placanica, J. L., Faunce, G. J., & Soames Job, R. F. (2002). The effect of fasting on
- attentional biases for food and body shape/weight words in high and low Eating
- 559 Disorder Inventory scorers. *International Journal of Eating Disorders*, *32*(1), 79-90.
- 560 doi: 10.1002/eat.10066
- 561 Pothos, E. M., Calitri, R., Tapper, K., Brunstrom, J. M., & Rogers, P. J. (2009). Comparing
- 562 Measures of Cognitive Bias Relating to Eating Behaviour. *Applied Cognitive*
- 563 *Psychology*, 23(7), 936-952. doi: 10.1002/acp.1506
- Pothos, E. M., Tapper, K., & Calitri, R. (2009). Cognitive and behavioral correlates of BMI
  among male and female undergraduate students. *Appetite*, *52*(3), 797-800. doi:
- 566 10.1016/j.appet.2009.03.002
- 567 Schachter, S., & Rodin, J. (1974). *Obese humans and rats*. Washington, DC:
  568 Erlbaum/Halsted.
- 569 Schoth, D. E., Nunes, V. D., & Liossi, C. (2012). Attentional bias towards pain-related
- 570 information in chronic pain; a meta-analysis of visual-probe investigations. *Clinical*571 *Psychology Review*, 32(1), 13-25. doi: 10.1016/j.cpr.2011.09.004
- Shafran, R., Lee, M., Cooper, Z., Palmer, R. L., & Fairburn, C. G. (2007). Attentional bias in
  eating disorders. *International Journal of Eating Disorders*, 40(4), 369-380. doi:
- 574 10.1002/eat.20375

| 575 | Shafran, R., Lee, M., Cooper, Z., Palmer, R. L., & Fairburn, C. G. (2008). Effect of             |
|-----|--------------------------------------------------------------------------------------------------|
| 576 | psychological treatment on attentional bias in eating disorders. International Journal           |
| 577 | of Eating Disorders, 41(4), 348-354. doi: 10.1002/eat.20500                                      |
| 578 | Shepard, R. N. (1967). Recognition memory for words, sentences, and pictures. Journal of         |
| 579 | Verbal Learning and Verbal Behaviour, 6(1), 156-163. doi: 10.1016/S0022-                         |
| 580 | 5371(67)80067-7                                                                                  |
| 581 | Simmons, W. K., Martin, A., & Barsalou, L. W. (2005). Pictures of Appetizing Foods               |
| 582 | Activate Gustatory Cortices for Taste and Reward. Cerebral Cortex, 15(10), 1602-                 |
| 583 | 1608. doi: 10.1093/cercor/bhi038                                                                 |
| 584 | Snodgrass, J. G., Volvovitz, R., & Walfish, E. R. (1972). Recognition memory for words,          |
| 585 | pictures, and words + pictures. Psychonomic Science, 27(6), 345-347. doi:                        |
| 586 | 10.3758/BF03328986                                                                               |
| 587 | Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of             |
| 588 | Experimental Psychology, 18, 643-662. doi: 10.1037/h0054651                                      |
| 589 | Tapper, K., Pothos, E. M., & Lawrence, A. D. (2010). Feast your eyes: Hunger and trait           |
| 590 | reward drive predict attentional bias for food cues. Emotion, 10(6), 949-954. doi:               |
| 591 | 10.1037/a0020305                                                                                 |
| 592 | van Strien, T., Frijters, J. E. R., Bergers, G. P. A., & Defares, P. B. (1986). The Dutch Eating |
| 593 | Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external              |
| 594 | eating behavior. International Journal of Eating Disorders, 5(2), 295-315. doi:                  |
| 595 | 10.1002/1098-108x(198602)5:2<295::aid-eat2260050209>3.0.co;2-t                                   |
| 596 | Werthmann, J., Roefs, A., Nederkoorn, C., Mogg, K., Bradley, B. P., & Jansen, A. (2011).         |
| 597 | Can(not) take my eyes off it: Attention bias for food in overweight participants.                |
| 598 | Health Psychology, 30(5), 561-569. doi: 10.1037/a0024291                                         |
|     |                                                                                                  |

| 599 Werthmann, J., Roefs, A., Nederkoorn, C., Mogg, K., Bradl | ey, B | B. P., | & Jansen, | Α. | (2013) | J. |
|---------------------------------------------------------------|-------|--------|-----------|----|--------|----|
|---------------------------------------------------------------|-------|--------|-----------|----|--------|----|

- Attention bias for food is independent of restraint in healthy weight individuals: An
- 601 eye tracking study. *Eating Behaviors*. doi: 10.1016/j.eatbeh.2013.06.005

# Table S1Summary of food dot probe attentional bias (AB) studies

| Reference and country                                          | Groups                                          | Ν                           | Age<br>M (SD)                     | Gender                             | BMI<br>M (SD)                      | Measures                                                                                                       | Dot probe stimuli                                                                                                                   | Parameters                                                                                                    | Relevant results                                                                                                               | AB<br>found? |
|----------------------------------------------------------------|-------------------------------------------------|-----------------------------|-----------------------------------|------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------|
| Ahern, Field,<br>Yokum,<br>Bohon, and<br>Stice (2010)<br>UK    | High restraint<br>(HR)<br>Low restraint<br>(LR) | 63 across<br>both<br>groups | 20.3<br>(0.47)<br>20.06<br>(0.35) | 63/63<br>female                    | 23.97<br>(0.64)<br>21.43<br>(0.53) | Dot probe<br>BMI (self-reported)<br>Height/weight<br>DEBQ-R<br>SRC task<br>FRT<br>THT<br>POFS<br>SPSRQ<br>EDDS | Pictures: food.<br>Foods rated least<br>and most<br>appetizing were<br>used. Each food<br>paired with<br>household object.          | Fixation cross 500ms<br>Picture pair 500ms<br>ITI 500ms<br>10 x practise<br>2 x buffer<br>1 block x 80 trials | No relation between restraint<br>scores and AB. Both high and<br>low scorers attended toward<br>food cues over control stimuli | NO           |
| Benas and<br>Gibb (2011)<br>USA                                | Healthy normal<br>(HN)                          | 202                         | 18.93<br>(1.17)                   | 202/202<br>female                  | 23.25<br>(3.53)                    | Dot probe<br>IAT<br>EDE<br>EDE-Q<br>HRSD<br>BDI-II<br>Height/weight                                            | Pictures: positive<br>or negative facial<br>expressions,<br>food, and body.<br>Each paired with<br>neutral image,<br>non-specified. | Fixation cross 1000ms<br>Picture pair<br>1000ms<br>ITI n.r.<br>Trials n.r.                                    | Neither depressive nor ED<br>symptoms were correlated with<br>any ABs                                                          | NO           |
| Boon,<br>Vogelzang, and<br>Jansen (2000)<br>The<br>Netherlands | HR<br>LR                                        | 29<br>30                    | n.r.                              | 29/29<br>female<br>30/30<br>female | n.r.                               | Dot probe<br>Restraint scale<br>Word recognition<br>Hunger                                                     | Words: 24 food<br>paired with 24<br>home; and 24<br>weight/shape<br>paired with 24<br>office.                                       | Fixation stimulus n.r.<br>Word pair 500ms<br>10 x practise<br>48 trials                                       | No hyperattention or avoidance<br>of food or weight/shape cues<br>among restrained eaters.                                     | NO           |

| Reference and country                                                | Groups                                                                  | Ν                                                 | Age<br>M (SD)                       | Gender                               | BMI<br>M (SD)                      | Measures                                                                                                                                                | Dot probe stimuli                                                                                                                                                                                        | Parameters                                                                                                                                                                          | Relevant results                                                                                                                                                                                                                                                                                                               | AB<br>found?           |
|----------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------|--------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Brignell,<br>Griffiths,<br>Bradley, and<br>Mogg (2009)<br>UK         | High external<br>eaters (HEX)<br>Low external<br>eaters (LEX)           | 19<br>24                                          | 30.58<br>(12.04)<br>36.5<br>(16.12) | 17/19<br>female<br>18/24<br>female   | 26.53<br>(8.18)<br>29.03<br>(9.28) | Dot probe<br>DEBQ-Ex<br>BMI<br>Grand hunger<br>SLIM satiety scale<br>EAT-26<br>Desire to eat<br>Hrs between meals<br>SRC<br>Pleasantness rating<br>task | Pictures: 20 food<br>(mixture of high<br>calorie and low<br>calorie) paired<br>with non-food<br>matched controls<br>20 filler pairs<br>non-food<br>12 food-control<br>for practise and<br>buffer trials. | Fixation cross 500ms<br>Pic pair 500ms or<br>2000ms<br>ITT 500ms or 1500ms<br>12 x practise<br>2 buffer<br>2 blocks x 120 trials<br>(160 critical, 80 filler),<br>2 buffer between. | High external eaters showed<br>greater AB for food cues than<br>low external eaters at 2000ms,<br>and a non-significant trend at<br>500ms.                                                                                                                                                                                     | YES                    |
| Calitri, Pothos,<br>Tapper,<br>Brunstrom, and<br>Rogers (2010)<br>UK |                                                                         | 151 at<br>baseline<br>102 at<br>1-yr follow<br>up | 19 (1.0)<br>19 (1.0)                | 88/151<br>female<br>58/102<br>female | 23.32<br>(3.52)<br>23.64<br>(3.50) | Dot probe<br>DEBQ<br>DASS<br>Physical activity scale<br>Height/weight<br>Stroop (food and<br>neutral words)                                             | Words: 20 food<br>(10 healthy, 10<br>unhealthy), 20<br>office                                                                                                                                            | Fixation cross 500ms<br>Word pair 500 or<br>1250ms<br>ITI 1000ms<br>8 x prac.<br>4 x buffer<br>2 blocks x 80 trials, 4<br>buffer between                                            | No AB or DEBQ indices predicted BMI change.                                                                                                                                                                                                                                                                                    | NO                     |
| Castellanos et<br>al. (2009)<br>USA                                  | Obese (OB; fed or<br>fasted)<br>Normal weight<br>(NW; fed or<br>fasted) | 18<br>18                                          | 29.5<br>(4.48)<br>27.61<br>(3.45)   | 18/18<br>female<br>18/18<br>female   | 38.69<br>(6.87)<br>21.73<br>(1.85) | Dot probe<br>BMI<br>Visual acuity<br>TPQ<br>BIS/BAS scales<br>TFEQ<br>DEBQ<br>Hunger scale<br>Eye Tracking<br>Height/weight                             | Pictures: 20 high<br>calorie food, 20<br>low calorie food,<br>20 nature scenery                                                                                                                          | Fixation cross 1000ms<br>Pic pair 2000ms<br>ITI n.r.<br>Trials n.r.                                                                                                                 | No differences between<br>conditions for dot probe.<br>However, eye-tracking revealed<br>NW more likely to shift gaze<br>toward food rather than non-<br>food when hungry rather than<br>fed. In contrast OB focussed<br>greater visual attention on food<br>compared with non-food<br>regardless of whether hungry or<br>fed. | NO for<br>dot<br>probe |

| Reference and country                                             | Groups                                 | Ν                                           | Age<br>M (SD)                             | Gender                             | BMI<br>M (SD)                  | Measures                                                                                                                            | Dot probe stimuli                                                                                                                                                                                     | Parameters                                                                                                                                                                          | Relevant results                                                                                                                                                                                                                                                              | AB<br>found? |
|-------------------------------------------------------------------|----------------------------------------|---------------------------------------------|-------------------------------------------|------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| di Pellegrino,<br>Magarelli, and<br>Mengarelli<br>(2011)<br>Italy | HN pre-satiety<br>HN post-satiety      | 26<br>26 (same<br>group, later<br>session). | 25.1<br>(n.r)<br>across<br>both<br>groups | 26/26<br>female<br>26/26<br>female | n.r.                           | Dot probe<br>Hunger<br>EAT-26                                                                                                       | Pictures: 1<br>savoury food, 1<br>sweet food, 1<br>neutral food, 1<br>telephone token.                                                                                                                | Fixation cross 800ms<br>Pic pair 200 or 700ms<br>Probe 100ms<br>ITI 1000ms or 1500ms<br>24 practise<br>144 trials                                                                   | The food-specific devaluation<br>induced a reduction in AB for<br>devalued (eaten) foods, and a<br>decrease in perceived<br>pleasantness of those foods. AB<br>toward valued (uneaten) foods<br>did not change significantly.                                                 | YES          |
| Hepworth,<br>Mogg,<br>Brignell, and<br>Bradley (2010)<br>UK       | HN Neutral mood<br>HN Negative<br>mood | 37<br>43                                    | 20.4<br>(2.8)<br>21.0<br>(5.6)            | 37/37<br>female<br>43/43<br>female | 22.8<br>(3.8)<br>22.3<br>(2.8) | Dot probe<br>DEBQ<br>BDI-II<br>Mood VAS<br>Appetite VAS<br>MHQ<br>POMS-A<br>POMS-D<br>PSS<br>BIS/BAS scales<br>SDS<br>Height/weight | Pictures: 20 food<br>(mixture of high<br>calorie and low<br>calorie) paired<br>with non-food<br>matched controls<br>20 filler pairs<br>non-food<br>12 food-control<br>for prac. and<br>buffer trials. | Fixation cross 500ms<br>Pic pair 500ms or<br>2000ms<br>ITI 500ms or 1500ms<br>12 x practise<br>2 buffer<br>2 blocks x 120 trials<br>(160 critical, 80 filler),<br>2 buffer between. | Induced negative mood<br>increased attentional bias to<br>food cues. Correlational<br>analyses showed that AB was<br>also positively associated with<br>measures of trait eating style<br>(emotional, external and<br>restrained eating), perceived<br>stress, and dysphoria. | YES          |
| Hou et al.<br>(2011)<br>UK                                        | ΗN                                     | 42                                          | 22.0<br>(4.7)                             | 29/42<br>female                    | 21.75<br>(3.36)                | Dot probe<br>DEBQ-Ex<br>BIS<br>BAS<br>SPSRQ<br>Grand Hunger<br>Height/weight                                                        | Pictures: 20 food<br>(mixture of high<br>calorie and low<br>calorie), 20 home<br>objects. Extra 10<br>non-food fillers,<br>extra 10 food-<br>control for buffer<br>and practice<br>trials.            | Fixation cross 500ms<br>Pic pair 2000ms<br>10 practise<br>2 buffer<br>120 trials (80 food-<br>nonfood critical, 40<br>filler)                                                       | AB for food cues correlated<br>positively with external eating<br>and trait impulsivity.                                                                                                                                                                                      | YES          |

| Reference and country                                   | Groups                                            | Ν        | Age<br>M (SD)                               | Gender                             | BMI<br>M (SD)                      | Measures                                                                                                                                                               | Dot probe stimuli                                                                                                                                                                            | Parameters                                                                                   | Relevant results                                                                                                                                                                                                                                                                                                            | AB<br>found? |
|---------------------------------------------------------|---------------------------------------------------|----------|---------------------------------------------|------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Johansson,<br>Ghaderi, and<br>Andersson<br>(2004)<br>UK | HEX<br>LEX                                        | 22<br>21 | 22.23<br>(2.11)<br>22.24<br>(2.21)          | 22/22<br>female<br>21/21<br>female | 21.76<br>(1.16)<br>22.19<br>(1.12) | Dot probe<br>DEBQ<br>Rosenberg Self-<br>Esteem Scale<br>BSQ<br>EAT-26<br>Stroop (voice<br>response; food, body<br>shape)                                               | Words: 10 high<br>calorie food, 10<br>body/shape, 20<br>neutral words.<br>Extra 10 neutral<br>word pairs for<br>filler material.                                                             | Fixation cross n.r.<br>Word pair 500 ms<br>ITI 500ms<br>10 practise<br>80 trials             | High external eaters directed<br>attention away from food words,<br>whereas low external eaters<br>directed attention toward food<br>words on the dot probe task. No<br>differences found for Stroop<br>task.                                                                                                               | YES          |
| Kemps and<br>Tiggemann<br>(2009): Study 1<br>Australia  | HN choc cravers<br>(CC)<br>HN non-cravers<br>(NC) | 40<br>40 | 19.70<br>(2.08)<br>across<br>both<br>groups | 40/40<br>female<br>40/40<br>female | 21.60<br>(3.30)<br>22.60<br>(3.70) | Dot probe<br>General attention<br>Response speed<br>Trait chocolate<br>craving<br>Grand Hunger<br>DEBQ-R<br>EAT-26                                                     | Pictures: 8<br>chocolate-<br>containing, 8<br>non-choc<br>palatable, 16<br>transport.<br>Stimulus pairs:<br>Critical choc-<br>food, Control<br>food-food, Filler<br>transport-<br>transport. | Fixation cross 1000ms<br>Pic pair 500ms<br>ITI 500ms<br>12 practise<br>2 buffer<br>96 trials | Chocolate cravers showed an<br>AB for chocolate cues. No<br>differences between groups in<br>hunger, restraint, ED<br>symptomatology, general<br>attention, or response speed.<br>The AB stemmed from<br>difficulty in disengaging<br>attention from chocolate cues<br>rather than hypervigilence<br>toward chocolate cues. | YES          |
| Kemps and<br>Tiggemann<br>(2009): Study 2<br>Australia  | HN craving<br>manipulation<br>(CM)<br>HN control  | 53<br>53 | 21.14<br>(2.42)<br>across<br>both<br>groups | 106/106<br>female                  | 23.10<br>(5.70)<br>23.40<br>(8.00) | Dot probe<br>General attention<br>Response speed<br>Trait chocolate<br>craving<br>Grand Hunger<br>DEBQ-R<br>EAT-26<br>Chocolate rating VAS<br>Chocolate craving<br>VAS | Pictures: 8<br>chocolate-<br>containing, 8<br>non-choc<br>palatable, 16<br>transport.<br>Stimulus pairs:<br>Critical choc-<br>food, Control<br>food-food, Filler<br>transport-<br>transport. | Fixation cross 1000ms<br>Pic pair 500ms<br>ITI 500ms<br>12 practise<br>2 buffer<br>96 trials | Individuals in whom a craving<br>for chocolate was induced<br>showed an AB for chocolate<br>cues. The AB stemmed from<br>difficulty in disengaging<br>attention from chocolate cues<br>rather than hypervigilence<br>toward chocolate cues.                                                                                 | YES          |

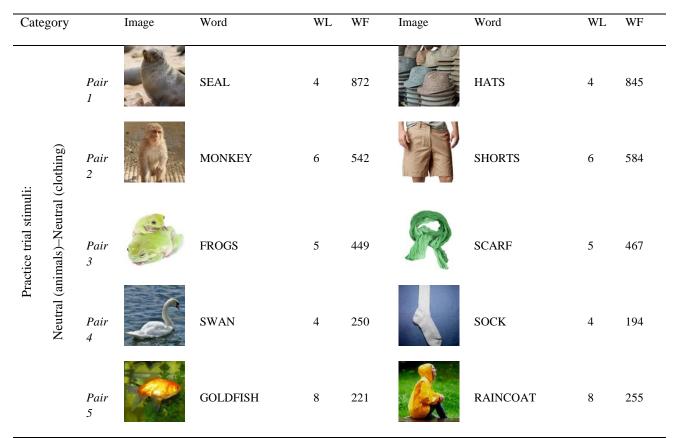
| Reference and country                   | Groups                         | Ν            | Age<br>M (SD)               | Gender                                    | BMI<br>M (SD)             | Measures                                                                                                           | Dot probe stimuli                                                                                           | Parameters                                         | Relevant results                                                                                                                                                                                             | AB<br>found?                 |
|-----------------------------------------|--------------------------------|--------------|-----------------------------|-------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Lee and<br>Shafran (2008)               | ED patients<br>Hi anxiety      | 23           | 22.17<br>(3.58)             | 23/23<br>female                           | 21.79<br>(4.98)           | Dot probe<br>EDEQ                                                                                                  | Pictures:<br>positive,                                                                                      | Fixation digit 1000ms<br>Pic pair 1000ms           | ED patients had an AB toward positive and negative eating                                                                                                                                                    | YES<br>but                   |
| UK                                      | controls (ANX)<br>HN low shape | 19           | 26.26<br>(7.52)             | 19/19<br>female                           | 22.33<br>(3.35)           | BDI-II<br>BAI                                                                                                      | negative, neutral eating/shape;                                                                             | ISI 500ms or 2000ms<br>84 trials                   | stimuli, negative and neutral shape stimuli and weight stimuli                                                                                                                                               | only at<br>500ms             |
|                                         | concern (HNL)                  | 31           | 23.39                       | 31/31                                     | 22.21                     | Height/weight                                                                                                      | neutral weight;                                                                                             | o r uluis                                          | when using an ISI of 500 ms.                                                                                                                                                                                 | ISI                          |
|                                         | HN mod. shape concern (HNM)    | 21           | (6.69)<br>27.90             | female<br>21/21                           | (2.34)<br>25.04           |                                                                                                                    | animal controls.                                                                                            |                                                    | However, with an ISI of 2000 ms patients attended only to                                                                                                                                                    |                              |
|                                         | HN high shape                  | 21           | (8.26)                      | female                                    | (5.62)                    |                                                                                                                    |                                                                                                             |                                                    | weight stimuli.                                                                                                                                                                                              |                              |
|                                         | concern (HNH)                  | 23           | 24.26<br>(5.63)             | 23/23<br>female                           | 25.21<br>(3.29)           |                                                                                                                    |                                                                                                             |                                                    |                                                                                                                                                                                                              |                              |
| Lee, Shafran,<br>and Fairburn<br>(2004) | ED (self-reported)<br>HN       | n.r.<br>n.r. | n.r.                        | All female                                | n.r.<br>n.r.              | Dot probe<br>EDEQ                                                                                                  | Pictures:<br>positive,<br>negative, or                                                                      | Fixation cross n.r.<br>Pic pair 1000ms<br>ITI n.r. | Participants with eating<br>disorders showed AB toward<br>negative eating stimuli and                                                                                                                        | YES                          |
| UK<br>Conference<br>abstract.           |                                |              |                             |                                           | 11.1.                     |                                                                                                                    | neutral eating,<br>shape/weight;<br>animal controls.                                                        | Trials n.r.                                        | away from positive eating<br>stimuli as compared to other<br>groups. AB correlated with<br>restraint and eating concerns.                                                                                    |                              |
| Loeber et al.<br>(2011)                 | OB                             | 20           | 47.90<br>(12.50)            | 20/20<br>female                           | 38.80<br>(6.30)           | Dot probe<br>TFEQ                                                                                                  | Pictures: 20 food<br>(mixture of high                                                                       | Fixation cross 500ms<br>Pic pair 50ms              | No AB toward food cues for OB or HN. Salience of the food cues                                                                                                                                               | NO                           |
| Germany                                 | HN                             | 20           | (12.30)<br>44.90<br>(11.70) | 20/20<br>female                           | (0.30)<br>22.60<br>(1.10) | BIS<br>Grand Hunger<br>Go/no-Go<br>D2 Test of attention<br>Auditive verbal<br>learning<br>Trail-making test<br>WCS | (instance of high<br>calorie and low<br>calorie), 20<br>objects. Extra 40<br>neutral objects<br>for filler. | ITI n.r.<br>160 trials                             | seems too low for such an early<br>modulation of attention.                                                                                                                                                  |                              |
| Loeber,<br>Grosshans,                   | Hungry                         | 18           | 24.28<br>(4.50)             | 27/28<br>female and                       | 21.63<br>(1.84)           | Dot probe<br>TFEQ                                                                                                  | Pictures: 20 food<br>(mixture of high                                                                       | Fixation cross 500ms<br>Pic pair 50ms or 500ms     | No difference in AB between hungry and sated groups,                                                                                                                                                         | NO for hunger.               |
| ,                                       | Sated                          | 30           | (4.50)<br>24.68<br>(4.81)   | 21/48<br>male<br>across<br>both<br>groups | (1.64)<br>21.60<br>(2.35) | Grand Hunger<br>Go/no-Go<br>Blood glucose level<br>(BGL)                                                           | calorie and low<br>calorie), 20<br>objects. Extra 40<br>neutral objects<br>for filler.                      | ITI 1000ms<br>160 trials                           | although hungry participants<br>had longer reaction times in<br>general. Participants with a<br>lower BGL had a bias toward<br>food cues and those with a<br>higher BGL showed an<br>avoidance of food cues. | YES<br>for<br>BGL at<br>50ms |

| Reference and country                                                      | Groups                                                                                     | Ν                                                  | Age<br>M (SD)                                                            | Gender                                                                   | BMI<br>M (SD)                                                            | Measures                                                                                        | Dot probe stimuli                                                                                                                     | Parameters                                                                                               | Relevant results                                                                                                                                                                                                                                                                                                                                                                                   | AB<br>found?                                            |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Mogg, Bradley,<br>Hyare, and Lee<br>(1998)<br>UK                           | Low hunger (LH)<br>High hunger (HH)                                                        |                                                    | 20.90<br>(2.00)<br>20.60<br>(0.90)                                       | 7/15<br>female<br>9/16<br>female                                         | n.r.<br>n.r.                                                             | Dot probe<br>Lexical decision task<br>Grand Hunger<br>EAT-26                                    | Words: 64 food-<br>related (mixture<br>of high calorie<br>and low calorie),<br>64 transport.<br>Extra 64 neutral<br>filler word pairs | Fixation cross 500ms<br>Word pair 14ms or<br>500ms.<br>ITI 500ms or 1500ms<br>12 practise<br>128 trials  | Participants with high hunger<br>showed a greater AB for food<br>words presented for 500ms<br>compared with those with low<br>hunger No hunger-related bias<br>found in pre-attentive processes<br>(14ms and masked<br>presentation).                                                                                                                                                              | YES                                                     |
| Newman,<br>O'Connor, and<br>Conner (2005)<br>UK<br>Conference<br>abstract. | HEX<br>LEX                                                                                 | 32 stress or<br>control<br>37 stress or<br>control |                                                                          | n.r.<br>n.r.                                                             | n.r.<br>n.r.                                                             | Dot probe<br>Stroop (food words)                                                                | Words: food,<br>control.                                                                                                              | n.r.                                                                                                     | Null effects for dot probe. For<br>Stroop, high external eaters<br>showed an increased bias when<br>stressed, and low external eaters<br>demonstrated the opposite<br>pattern.                                                                                                                                                                                                                     | NO for<br>dot<br>probe                                  |
| Nijs, Muris,<br>Euser, and<br>Franken (2010)<br>The<br>Netherlands         | OV/OB sated<br>OV/OB hungry<br>NW sated<br>NW hungry                                       | 13<br>13<br>20<br>20                               | 22.08<br>(3.01)<br>20.92<br>(3.71)<br>20.60<br>(1.60)<br>22.15<br>(1.46) | 13/13<br>female<br>13/13<br>female<br>20/20<br>female<br>20/20<br>female | 29.85<br>(2.98)<br>30.14<br>(5.96)<br>20.76<br>(1.05)<br>20.50<br>(1.24) | Dot probe<br>DEBQ<br>Eye tracking<br>EEG/ERP<br>Bogus taste test<br>Hunger VAS<br>Height/weight | Pictures: 15 high<br>calorie snacks<br>paired with 15<br>office items.<br>Extra 10 pairs of<br>tool pictures for<br>filler.           | Fixation cross 1000ms<br>Pic pair 100ms or<br>500ms<br>ITI 500ms<br>10 practise<br>4 blocks x 100 trials | At 100ms, there was an AB<br>towards food pictures in hungry<br>vs. satiated participants, and in<br>OV/OB (especially hungry<br>OV/OB) vs. NW. The latter<br>finding only approached<br>significance.<br>No between-condition<br>differences for 500ms trials.<br>Results suggest all participants<br>demonstrated maintained<br>attention to food, irrespective of<br>weight group or condition. | YES<br>for<br>hungry<br>at<br>100ms.<br>NO for<br>500ms |
| Papies,<br>Stroebe, and<br>Aarts (2008)<br>Study 1<br>The<br>Netherlands   | HR food pre-<br>exposure<br>HR non-exposure<br>LR food pre-<br>exposure<br>LR non-exposure | 104 across<br>all groups                           | n.r.                                                                     | 79/104<br>female                                                         | n.r.                                                                     | Dot probe<br>Lexical decision task<br>Revised restraint scale<br>Hedonic ratings                | Words: 10<br>palatable food-<br>office pairs and<br>10 control food-<br>office pairs.<br>Extra 20 filler<br>word pairs.               | Fixation cross 500ms<br>Word pair 200ms<br>ITI n.r.<br>20 practise<br>2 blocks x 80 trials.              | After exposure to food cues,<br>restrained eaters allocated<br>attention towards hedonically<br>rated food.                                                                                                                                                                                                                                                                                        | YES                                                     |

| Reference and country                                          | Groups                                                                                                                                                                                              | Ν                    | Age<br>M (SD)                              | Gender           | BMI<br>M (SD)   | Measures                                                                                      | Dot probe stimuli                                                                                                                                                            | Parameters                                                                                                                                               | Relevant results                                                                                                                                                                                                        | AB<br>found?                             |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|------------------|-----------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Papies et al.<br>(2008) Study 2<br>The<br>Netherlands          | HR food pre-<br>exposure<br>HR non-food pre-<br>exposure<br>HR food pre-<br>exposure plus<br>prime<br>LR food pre-<br>exposure<br>LR non-food pre-<br>exposure<br>LR food pre-<br>exposure<br>prime | 138                  | n.r.                                       | 98/138<br>female | n.r.            | Dot probe<br>Lexical decision task<br>Revised restraint scale<br>Hedonic ratings              | Words: 10<br>palatable food-<br>office pairs and<br>10 control food-<br>office pairs.<br>Extra 20 filler<br>word pairs. 5<br>restraint-related<br>words for diet<br>priming. | Fixation letter strings<br>250ms<br>Prime 30ms<br>Postmask letter string<br>350ms<br>Word pair 200ms<br>ITI n.r.<br>20 practise<br>2 blocks x 80 trials. | After exposure to food cues,<br>restrained eaters allocated<br>attention towards hedonically<br>rated food. Restrained eaters'<br>AB did not occur when they<br>were primed with the concept of<br>dieting.             | YES                                      |
| Placanica,<br>Faunce, and<br>Soames Job<br>(2002)<br>Australia | High EDI fasted<br>High EDI<br>nonfasted<br>Low EDI fasted<br>Low EDI<br>nonfasted                                                                                                                  | 19<br>19<br>19<br>19 | 18.10<br>(n.r.)<br>across<br>all<br>groups | 56/56<br>female  | n.r.            | Dot probe<br>EDI-2<br>Grand Hunger Scale<br>Word rating scales                                | Words: 14 high<br>calorie and 14<br>low calorie food<br>paired with<br>household items;<br>14 negative and<br>14 positive<br>weight/shape<br>paired with<br>transport.       | Word pair 500ms<br>ISI 50ms<br>ITI 1000ms<br>224 trials                                                                                                  | Fasting increased AB toward<br>high calorie foods across all<br>participants. High EDI-2 scorers<br>showed an AB toward low<br>calorie food words, but only<br>when nonfasted.                                          | YES                                      |
| Pothos, Tapper,<br>and Calitri<br>(2009)<br>UK                 | HN                                                                                                                                                                                                  | 128                  | 18.70<br>(0.78)                            | 69/128<br>female | 22.74<br>(2.94) | Dot probe<br>Food Stroop<br>EAST<br>Recognition task<br>DEBQ<br>DASS<br>BPAS<br>Height/weight | Words: 10<br>unhealthy food<br>and 10 healthy<br>food, paired with<br>20 office. 12<br>number words<br>for prac. and<br>buffer.                                              | Fixation cross 500ms<br>Word pair 500ms or<br>1250ms<br>ITI 1000ms<br>8 practise<br>4 buffer<br>2 blocks x 80 trials                                     | BMI did not predict any indices<br>of AB. In females, dietary<br>restraint was positively<br>correlated with AB toward<br>healthy foods. No significant<br>correlations between AB and<br>emotional or external eating. | YES<br>for<br>restraint<br>in<br>females |

| Reference and country                                                                    | Groups           | Ν               | Age<br>M (SD)   | Gender          | BMI<br>M (SD)             | Measures                                              | Dot probe stimuli                                                                                                         | Parameters                                                                            | Relevant results                                                                                      | AB<br>found? |
|------------------------------------------------------------------------------------------|------------------|-----------------|-----------------|-----------------|---------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------|
| Shafran, Lee,<br>Cooper,                                                                 | ED patients      | 23              | 22.17<br>(3.58) | 23/23<br>female | 21.79<br>(4.98)           | Dot probe<br>BAI                                      | Pictures: 6<br>positive eating, 6                                                                                         | Fixation stimulus<br>1000ms                                                           | ED patients had an AB toward negative eating stimuli and an                                           | YES          |
| Palmer, and<br>Fairburn<br>(2007) Study 1<br>UK                                          | ANX 19<br>HNL 31 | X 19            | 26.26<br>(7.52) | 19/19<br>female | 22.33<br>(3.35)           | EDE<br>Height/weight                                  | negative eating,<br>6 neutral eating,                                                                                     | Pic pair 1000ms<br>ITI n.r.                                                           | avoidance of positive eating stimuli.                                                                 |              |
|                                                                                          |                  | 23.39<br>(6.69) | 31/31<br>female | 22.21<br>(2.34) | Emotional valence ratings | Emotional valence24 body-related,2ratingspaired with8 | 2 practise<br>84 trials                                                                                                   |                                                                                       |                                                                                                       |              |
|                                                                                          | HNM 21           |                 | 27.90<br>(8.26) | 21/21<br>female |                           |                                                       |                                                                                                                           | BDI-II                                                                                |                                                                                                       |              |
|                                                                                          | HNH              | 23              | 24.26<br>(5.63) | 23/23<br>female | 25.21<br>(3.29)           |                                                       |                                                                                                                           |                                                                                       |                                                                                                       |              |
| Shafran et al.<br>(2007) Study 2                                                         | ED patients      | 82              | 25.87<br>(6.92) | 82/82<br>female | 21.59<br>(4.12)           | Dot probe<br>EDE-Q                                    | Pictures: 6<br>positive eating, 6                                                                                         | Fixation stimulus<br>1000ms                                                           | ED patients had an AB toward negative eating stimuli and a                                            | YES          |
| UK                                                                                       | HN               | 44              | 26.41<br>(6.50) | 44/44<br>female | 23.09<br>(3.92)           |                                                       | negative eating,<br>6 neutral eating,<br>24 body-related,<br>paired with<br>animals.                                      | Pic pair 1000ms<br>ITI n.r.<br>2 practise<br>84 trials                                | bias away from positive eating stimuli.                                                               |              |
| Shafran, Lee,<br>Cooper,<br>Palmer, and<br>Fairburn<br>(2008) Study 2 <sup>a</sup><br>UK | ED patients      | 31              | 26.03<br>(6.94) | 31/31<br>female | 22.72<br>(4.24)           | Dot probe<br>EDE-Q                                    | Pictures: 6<br>positive eating, 6<br>negative eating,<br>6 neutral eating,<br>24 body-related,<br>paired with<br>animals. | Fixation stimulus<br>1000ms<br>Pic pair 1000ms<br>ITI n.r.<br>2 practise<br>84 trials | AB toward positive and<br>negative eating stimuli reduced<br>with cognitive-behavioural<br>treatment. | YES          |

| Reference and country                           | Groups                             | Ν        | Age<br>M (SD)                      | Gender                             | BMI<br>M (SD)                      | Measures                                                                                                                                   | Dot probe stimuli                                                                                                        | Parameters                                                                                                                   | Relevant results                                                                                                                                                                                                                                                                                                                                                                                              | AB<br>found?           |
|-------------------------------------------------|------------------------------------|----------|------------------------------------|------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Tapper, Pothos,<br>and Lawrence<br>(2010)<br>UK | HN                                 | 105      | 22.70<br>(4.69)                    | 69/105<br>female                   | 22.90<br>(3.14)                    | Dot probe<br>Hunger VAS<br>BAS                                                                                                             | Pictures: 10<br>appetizing foods,<br>10 bland foods,<br>50 household<br>items.                                           | Fixation cross 500ms<br>Pic pair 100ms, 500ms,<br>or 2000ms<br>ITI 500ms<br>10 practise<br>4 buffer<br>3 blocks x 120 trials | There was an AB for appetizing<br>foods at 100ms, 500ms, and<br>2000ms. Bias at 100ms and<br>500ms likely due to delayed<br>disengagement rather than<br>enhanced orienting. However, at<br>2000ms there was evidence for<br>both.<br>Hunger predicted AB to all food<br>cues at<br>100ms, but not 500 or 2000ms.<br>Trait reward-drive predicted<br>delayed disengagement from<br>appetizing foods at 100ms. | YES                    |
| Werthmann<br>(2011)<br>The<br>Netherlands       | Overweight/<br>Obese (OW/OB)<br>NW | 22<br>29 | 19.86<br>(1.28)<br>19.31<br>(1.95) | 22/22<br>female<br>29/29<br>female | 28.03<br>(3.74)<br>21.16<br>(2.03) | Dot probe<br>Eye Tracking<br>Restraint Scale<br>DEBQ-Ex<br>PFS<br>PANAS<br>Craving VAS<br>Satiety VAS<br>Height/weight (self-<br>reported) | Pictures:<br>Palatable foods<br>paired with<br>musical<br>instruments,<br>filler office-<br>traffic picture<br>pairs.    | Fixation cross n.r.<br>Pic pair 2000ms<br>ITI n.r.<br>120 trials (80 critical,<br>40 filler).                                | Dot probe RT bias score did not<br>differ between groups.<br>However, eye tracking data<br>showed OW/OB directed first<br>gaze more often toward high-fat<br>food images than NW, but<br>subsequently showed reduced<br>maintenance of attention on<br>these pictures. OW/OB<br>consumed more snack food than<br>NW.                                                                                          | NO for<br>dot<br>probe |
| Werthmann<br>(2013)<br>The<br>Netherlands       | HR<br>LR                           | 24<br>21 | 21.50<br>(1.34)<br>21.87<br>(2.66) | 24/24<br>female<br>21/21<br>female | 21.77<br>(1.59)<br>21.11<br>(1.60) | Dot probe<br>Eye Tracking<br>Restraint Scale<br>Hunger VAS<br>BMI (self-reported)                                                          | Pictures: High<br>calorie foods<br>paired with<br>musical<br>instruments,<br>filler office-<br>traffic picture<br>pairs. | Fixation cross n.r.<br>Pic pair 2000ms<br>ITI n.r.<br>120 trials (80 critical,<br>40 filler).                                | For both dot probe and eye<br>tracking, all participants showed<br>an AB toward food cues,<br>irrespective of restraint status.                                                                                                                                                                                                                                                                               | NO                     |


*Note:* ITI = inter-trial interval; ISI = inter-stimulus interval; DEBQ-R = Dutch Eating Behaviour Questionnaire–Restraint; SRC = Stimulus Response Compatibility; FRT = Food Reinforcement Task; THT = Taste Habituation Task; POFS = Power of Food Scale; SPSRQ = Sensitivity to Punishment Sensitivity to Reward Questionnaire; EDDS = Eating Disorders Diagnostic Scale; IAT = Implicit Association Test; EDE = Eating Disorder Examination; EDE-Q = Eating Disorder Examination Questionnaire; HRSD = Hamilton Rating Scale for Depression; BDI-II = Beck

Depression Inventory; DEBQ-Ex = Dutch Eating Behaviour Questionnaire–External Eating; EAT-26 = Eating Attitudes Test; DASS = Depression, Anxiety, and Stress Scale; TPQ = Tridimensional Personality Questionnaire; BIS/BAS = Behavioural Inhibition System/Behavioural Activation System; TFEQ = Three-Factor Eating Questionnaire; VAS = visual analogue scale; MHQ = Modified Hunger Questionnaire; POMS-A = Shortened Profile of Mood States: Tension/Anxiety; POMS-D = Shortened Profile of Mood States: Depression; SDS = Social Desirability Scale; BSQ = Body Shape Questionnaire; BAI = Beck Anxiety Inventory; WCS = Wisconsin Card Sorting Test; EEG/ERP = Electroencephalography/Event-related Potentials; EDI-2 = Eating Disorder Inventory–2; EAST = Extrinsic Affective Simon Task ; BPAS = Brief Physical Assessment Tool; PANAS = Positive and Negative Affect Scale. <sup>a</sup> Shafran et al. (2008) Study 1 omitted from table as it is a duplicate of Shafran et al. (2007) Study 2

| Category                                    |           | Image    | Word         | WL | WF   | Image | Word         | WL | WF   |
|---------------------------------------------|-----------|----------|--------------|----|------|-------|--------------|----|------|
|                                             | Pair<br>1 | S        | SUGAR        | 5  | 3237 |       | CLOCK        | 5  | 2785 |
| sehold items)                               | Pair<br>2 | <b>@</b> | BUTTER       | 6  | 1977 |       | PLATES       | 6  | 1776 |
| d-Neutral (hou                              | Pair<br>3 | X        | BACON        | 5  | 881  | A     | TOWEL        | 5  | 871  |
| High-calorie food-Neutral (household items) | Pair<br>4 | 1        | DOUGHNUTS    | 9  | 55   |       | DETERGENT    | 9  | 76   |
| ł                                           | Pair<br>5 |          | LOLLIES      | 7  | 23   | 1     | BATHTUB      | 7  | 25   |
|                                             | Pair<br>1 | ()       | APPLE        | 5  | 2020 |       | BOXES        | 5  | 2471 |
| usehold items)                              | Pair<br>2 |          | ΡΟΤΑΤΟ       | 6  | 871  |       | BUCKET       | 6  | 997  |
| Low-calorie food-Neutral (household items)  | Pair<br>3 |          | PLUM         | 4  | 280  | è     | HOSE         | 4  | 248  |
| Low-calorie fo                              | Pair<br>4 |          | CHERRIES     | 8  | 210  |       | DOORBELL     | 8  | 216  |
|                                             | Pair<br>5 | X        | STRAWBERRIES | 12 | 271  |       | REFRIGERATOR | 12 | 297  |

 Table S2. Word and pictorial stimuli pairs

| Cate     | Category                                         |           | Image | Word       | WL | WF   | Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Word       | WL | WF   |
|----------|--------------------------------------------------|-----------|-------|------------|----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|------|
|          |                                                  | Pair<br>1 |       | CHIPS      | 5  | 1723 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BEANS      | 5  | 1322 |
|          | alorie food                                      | Pair<br>2 | R     | SAUSAGE    | 7  | 513  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CARROTS    | 7  | 474  |
| Fillers: | High-calorie food-Low-calorie food               | Pair<br>3 | En en | HAMBURGER  | 9  | 99   | ( Constanting of the second se | ASPARAGUS  | 9  | 100  |
|          |                                                  | Pair<br>4 |       | COOKIES    | 7  | 63   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PEACHES    | 7  | 94   |
|          |                                                  | Pair<br>5 |       | ICE CREAM  | 8  | 32   | ST?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BEETROOT   | 8  | 30   |
|          |                                                  | Pair<br>1 | 1.    | GUITAR     | 6  | 2705 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAMERA     | 6  | 2588 |
|          | Neutral (music-related)–Neutral (travel-related) | Pair<br>2 | 4     | BELL       | 4  | 1714 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAXI       | 4  | 1879 |
| Fillers: | ted)-Neutral                                     | Pair<br>3 | P     | HEADPHONES | 10 | 203  | AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOOTHBRUSH | 10 | 124  |
|          | ıtral (music-rela                                | Pair<br>4 |       | VIOLINS    | 7  | 131  | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PADLOCK    | 7  | 117  |
|          | Neı                                              | Pair<br>5 | 80    | CYMBALS    | 7  | 51   | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SNOWMAN    | 7  | 58   |



*Note:* WL = Word length in characters; WF = Word frequency per million words according to the British National Corpus (http://ucrel.lancs.ac.uk/bncfreq/). Images sourced from copyright-free stock image websites (http://www.dreamstime.com and http://www.istockphoto.com)