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Abstract— This paper proposes a genetic algorithm (GA) based 
beamformer to optimize speech recognition accuracy for a pre-
trained speech recognizer. The proposed beamformer is 
designed to tackle the non-differentiable and non-linear 
natures of speech recognition by employing the GA algorithm 
to search for the optimal beamformer weights. Specifically, a 
population of beamformer weights is reproduced by crossover 
and mutation until the optimal beamformer weights are 
obtained. Results show that the speech recognition accuracies 
can be greatly improved even in noisy environments. 
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I. INTRODUCTION 

Speech recognition system is widely used in automatic 
remote control such as logistics warehouse [1], intelligence 
home [2], banking systems [3] and interactive children 
books [4]. It is usually based on the hidden Markov model 
(HMM) chain and is trained to recognize the commands 
using a large database of speech signals [5]. However, noise 
contamination is inevitable in real world environment which 
severely degrades the performance of speech recognition 
systems [6, 7]. This is especially the case in distant-talking 
microphones where the signal of interest is usually under the 
influence of ambient noise and reverberation [8], which 
causes a mismatch in the recognition process. 

One common method to improve the recognition rate is to 
pre-process the signal via array processing methods such as 
beamforming [9, 10]. As such, the distortion mentioned 
above can be compensated spatially by focusing the array to 
point towards the signal of interest. An example is the delay 
and sum beamformer where the received microphone 
signals are time aligned to focus onto the direction of 
interest [11]. An alternative to the delay and sum 
beamformer is the adaptive beamformer where the array 
parameters are optimized in a continuous fashion to 

minimize the power from all directions, whilst maintaining a 
unity from the direction of interest [9, 10]. 

Generally speaking, beamformer design can be viewed as 
a multi-criteria decision problem, where the two most 
common criteria are target signal distortion and noise 
suppression [12]. As pointed out in [13], these two criteria 
must be carefully optimized to produce a good recognition 
rate due to the complexity of the recognizer. For instance, 
an optimum noise suppression capability may not 
necessarily translate to an increase in the recognition rate as 
the target signal may be distorted. Likewise, a strict 
constraint on the target signal distortion may limit the noise 
suppression capability.  

As opposed to optimizing the beamformer in a front-end 
processor fashion, this paper proposes to optimize the 
beamformer weights with respect to speech recognition 
accuracy. Gradient descent methods are the most commonly 
used technique in performing optimization in which a cost 
function is well defined. However, the optimization of 
speech recognition accuracy is a difficult problem since it is 
discontinuous and highly nonlinear. Also, it is not possible to 
formulate the problem into an integer programming problem 
and thus cannot be handled by the gradient descent methods. 
Genetic algorithm on the other hand offers a promising 
solution in solving discontinuous and highly nonlinear 
problems [14, 15]. In this paper, we propose a genetic 
algorithm to optimize the beamforming weights. Validations 
were carried out by designing the beamformers for 
maximizing speech recognition accuracies on two sets of 
contaminated command signals with poor signal to noise 
ratios. Results show that the speech recognition accuracy can 
be improved from low levels to 100% accurate rates by the 
proposed genetic algorithm. 
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II. THE SIGNAL MODEL

In a typical environment of using a pre-trained speech 
recognizer based on the principle of hidden Markov model, 
assume there are a fixed set of n voice commands, denoted 
by {s1, s2, …, sn}, built into the dialog between the system 
and users. A dialog is defined as a finite state machine, 
which consists of states and transitions. A dialog state 
represents one conversational interchange between the 
system and user, typically consisting of a prompt and then 
the user’s response. The system constantly listens to the 
trigger phrase in the system standby phase. As soon as the 
user says the general-purpose trigger phrase, the system will 
respond with an acknowledge tone. The caller is response to 
specify the desired transaction. The caller responds in 
variety of ways but must include one of several keywords 
that define a supported transaction. In the case of a user 
profile transaction, the application will retrieve the pre-
programmed setting of the specified user, and prompt the 
user with confirmation before going back to the system 
standby state. 

Due to the presence of acoustic noise in the environment, 
the input commands are usually distorted by a noise, which 
is given by 

          ,,  ,2,1              ),()()( nikvkskx iii  (1) 

where  )(kvi is the noise signal. Note that the noise signal 
could include a sum of fixed point noise sources together 
with a mixture of coherent and incoherent noise sources. A 
beamformer with M elements in the microphone array is 
proposed to filter the contaminated signal in which the k-th 
sample of the signal received by the j-th microphone is 
represented by: 
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where L is the filter length of the beamformer. The 
beamformer matrix w is represented by: 
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where 1...10 Lwwww jjj
T
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the received i-th command, a vector of scores is calculated, 
denoted by  

)(,),(1
i

n
i yLyL  (5) 

where Lj(yi)  stands for the likelihood that the received 
command is the j-th command. With filtering, the estimated 
command is taken to be  
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the score of correct recognition for a pre-recorded command 
set or a calibrated command set recorded in a quiet 
environment can be calculated as  
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where f is clearly a highly nonlinear function of w. To 
enhance the accuracy of the recognition, it is sufficient to 
optimizing on the beamformer matrix w to maximize f.
Since )(wf  is a non-differentiable and a nonlinear 
function, gradient-based approaches cannot be used 
adequately. A genetic algorithm based method, which is 
proposed to solve the optimization problem (7), is presented 
in the following section. 

III. GENETIC ALGORITHM BASED METHOD

In order to simulate the situation of typical voice control 
devices, a configuration of four element square microphone 
array with 30cm apart horizontally and vertically is used and 
is illustrated in Figure 1. The command source is standing 
1m away from the microphone array as illustrated in Figure 
2. The near-field noise is placed 1m in front of the array and 
1m to the left of the speaker. Each command is super-
imposed by the near-field noise and test for correctness by 
feeding into the speech recognizer. This configuration 
simulates a real home environment, where a recognizer is 
placed in front of a user and a noise source like a radio is 
placed beside the user. 

In this test, three various kinds of near-field noises (music 
noise, radio noise and song noise illustrated in Figure 3, 4 
and 5) are used. All the near-field noises and the calibration 
source signals are recorded in an anechoic environment with 
a sampling rate of 16kHz. Two sets of commands are 
created to test the proposed method. The first set consists of 
names of Christmas songs (jingle bells; santa claus is 
coming totown; sleigh ride; let it snow; winter wonderland)
typically used in a music-box. This is a typical command set 
with phrases. We denote this set of commands by Musicbox 
and the first command, jingle bells, is illustrated in Figure 6. 
The second set of commands is a set of nine single word-
based commands using the simple numbers. We denote this 
set of commands by Numbers, and the first command, one,
is illustrated in Figure 7. 

The actual signal-to-noise ratios are measured by a sound 
pressure level (SPL) meter. The level of noise is increased 
gradually until the total recognition accuracy is below 50%. 
This corresponds to 8dB for the command set Numbers and 
2dB for the command set Musicbox. The command set 
Numbers is based on a single word while the command set 
Musicbox is based on a phrase consisting of a few words. 
The spectral patterns of phrases are easier to be recognized 
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than the ones of the single words. Therefore the command 
set Musicbox is easier to be recognized than the one with 
Numbers, and the corresponding signal to noise ratio for the 
command set Numbers is higher than the command set 
Musicbox.

For the command set Musicbox, Table 1 shows that the 
recognition accuracy has fallen below 40% without any 
enhancement. However, by using the proposed 
beamforming method, a fairly uniform improvement to 
100% can be achieved for almost all the tested noise, which 
the filter length L=16 is used in all kinds of noises.  

Table 1 Correct recognition rates for the command set 
Musicbox 

Noise 
type 

Pure 
recognition 

Recognition 
with 

beamformer 

Filter length 
of 

beamformer 
(L)

Music 40% 100% 16 
Radio 40% 100% 16 
Song 40% 100% 16 

For the command set Numbers, Table 2 shows that the 
findings are generally similar to the results for the Musicbox. 
Clearly the improvement is significant over the recognition 
without any enhancement. In general, this is not a 
recommended command set for recognition due to the 
similarity among commands and the short durations which 
make the recognitions very difficult. Therefore the longer 
filtering length L=32 is required to achieve 100% accuracy 
in radio noise. Nevertheless, the proposed beamforming 
method still achieves reasonable improvement for this 
difficult command set. The results demonstrate that the 
proposed method works well in a real home environment to 
enhance recognition accuracy. 

Table 2 Correct recognition rates for the command set 
Numbers 

Noise 
type 

Pure 
recognition 

Recognition 
with 

beamformer 

Filter length 
of 

beamformer 
(L)

Music 66.67% 100% 16 
Radio 11.11% 100% 32 
Song 44.44% 100% 16 

IV. CONCLUSION AND FURTHER WORK

A new speech enhancement method, which uses GA to 
optimize the performance of beamformer, has been proposed 
to directly maximize speech recognition accuracy. It 
compensates the deficiencies of the existing enhancement 
methods, which is designed for minimizing signal distortion 
or maximizing noise suppression, but cannot directly deal 
with speech recognition accuracies. The performance of the 
proposed method is evaluated by using a pre-trained 
recognizer embedded with two sets of speech commands. 
Results show that full scored accuracy rates of speech 
recognitions, which are contaminated by three types of noise, 
can be achieved. It demonstrated that the performance of 

speech recognizer can be upgraded by the proposed method 
while it works on noisy environments as in real situation. 

In the future, we will apply our developed GA [16] on 
solving this speech recognition problem. It is expected that 
the computational time can be shorter. 
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Appendix 

Figure 1 Front view of the microphone array.
Figure 2 Configuration 1 simulated the environment of home intelligent.
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Figure 3 Music noise in the four channels. 
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Figure 4 Radio noise in the four channels. 
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Figure 5 Song noise in the four channels. 
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Figure 6 Command jingle bells in the four channels. 
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Figure 7 Command one in the four channels. 
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