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In this paper, we analyze the dissipativity for descriptor systems with impulsive behavior based on image space analysis. First, a new
image space is used to characterize state responses for descriptor systems. Based on such characterization and an integral property
of delta function, a new necessary and sufficient condition for the dissipativity of descriptor systems is derived using the linear
matrix inequality (LMI) approach. Also, some of the earlier related results on dissipativity for linear systems are investigated in the
framework proposed in this paper. Finally, two examples are given to show the validity of the derived results.

1. Introduction

Since the notion of dissipative dynamical system was pro-
posed by Willems in [1], it has played an important role
in system analysis and synthesis of various control systems,
such as in circuits, power systems, and mechanical systems
[1, 2]. In fact, this concept is an extension of passivity (or
positive realness) and 𝐻

∞
performance and is heavily used

in stability analysis of nonlinear systems [3, 4]. As we know,
the concept of dissipativity in control systems generalizes
several important results including the passivity theorem,
bounded real lemma, Kalman-Yakubovich lemma, and the
circle criterion [4, 5].

As to the importance of dissipativity, dissipative control
for normal systems has attracted much attention [6–10].
With mild assumptions, the strict quadratic dissipativity of
continuous/discrete normal systems is equivalent to their𝐻

∞

performance problem. Based on this observation, the exis-
tence conditions of feedback controllers to achieve asymp-
totic stability and strict dissipativity are derived, respectively,
for continuous/discrete normal systems in [6, 7]. In [8], the
stability and strict dissipativity conditions for normal delay
systems are investigated. In [9], the dissipativity conditions
for symmetric normal systems are given. In [10], the optimal
controller design is addressed for a class of normal systems

which are dissipative with respect to a quadratic “power
function.”

There has been a growing research interest in descrip-
tor systems in control community, since such systems can
provide accurate representations for interconnected large-
scale systems, economic systems, electrical networks, power
systems, and mechanical systems [11, 12]. Many important
results for descriptor systems have been obtained in the last
two decades, such as controllability and observability [13],
𝐻
2
/𝐻
∞
control [14–16], positive realness [17, 18], and passive

control [19] Dissipative control for descriptor systems has
also attracted particular interest for its various applications
in the literature [20–26]. In [20, 23], some necessary and
sufficient conditions are given, respectively, to make con-
tinuous/discrete descriptor systems admissible and strictly
dissipative. In [21], matrix inequalities are used to charac-
terize necessary and sufficient conditions for dissipativity of
descriptor systems. Based on results in [21], design of output
feedback controllers to achieve dissipativity of the closed-
loop system is investigated in [22]. The dissipativity analysis
for Takagi-Sugeno (T-S) fuzzy descriptor systems with time-
delay is studied in [24]. In [25], the fuzzy controller and
the fuzzy observer are given, which guarantees the closed
loop T-S fuzzy descriptor system to be admissibility and
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strict (𝑄, 𝑉, 𝑆) − 𝛼 dissipativity. In [26], the problem of delay-
dependent𝛼-dissipativity analysis is investigated for a general
class of descriptor systems with Markovian jump parameters
and mode-dependent mixed time-delays.

In fact, dissipative systems theory is linked to Lyapunov
stability theory. There exist some tools from the dissipativity
approach that can be used to construct some Lyapunov
functions, which are related to𝐻

∞
control, positive realness,

and so forth. So far, in [20–25], the dissipative analysis
for descriptor systems is only for impulse-free systems. It
is known that impulsive behavior is one main feature of
descriptor systems being different from normal systems. In
fact, these results are essentially the mild generalization of
dissipativity theorems for normal systems, which do not
reveal the nature of descriptor systems significantly. In [18],
a new method of image space is proposed, and a necessary
and sufficient condition for passivity and positive realness
of descriptor system is given. As motivated by [18], we also
give a new image space expression to characterize the state
responses of descriptor systems with impulsive behavior.
Though the idea is similar, the derived condition in this paper
is much more explicit with expression of smaller matrix of
lower dimensions. Also, we solve the dissipativity problem
here instead of the positive realness problem addressed in
[18].

This image space presents a new approach for the expres-
sion of descriptor systems. As impulsive behavior is involved
in the system, we deal with the delta function as an approx-
imation of a series of normal functions for mathematical
simplicity. As such, the integrability of a supply function
𝑟(𝑢(𝑡), 𝑦(𝑡)) is considered for descriptor systems with impul-
sive behavior. One can find that there are some constraints for
the supply function in this case, which are different from the
existing results. Then, a design approach which ensures the
integrability of a supply function 𝑟(𝑢(𝑡), 𝑦(𝑡)) is constructed.
Consequently, a necessary and sufficient condition for dis-
sipativity of descriptor systems is derived in terms of LMIs.
This result is valid regardless of the existence of impulsive
behavior, which is significantly different from the existing
results. Thirdly, an algorithm on how to effectively solve
these nonstrict LMIs is presented; meanwhile, the earlier
related results are discussedwith obtained results. Finally, one
practical example and one numerical example are given to
demonstrate the effectiveness of the results in this paper.

The layout of this paper is organized as below. We
will present some preliminary results on characterization of
descriptor systems based on image space in Section 2. The
dissipativity analysis is presented in Section 3. The relation-
ship with typical previous results is investigated in Section 4.
Some illustrative examples are given in Section 5 and the final
conclusions are made in Section 6.

For convenience of presentation, we first give the follow-
ing notations used in this paper.

Notations. Let R, R+, and C denote the sets of real, nonneg-
ative real, and complex numbers, respectively. The notation
R𝑚×𝑛 denotes the set of 𝑚 × 𝑛 matrices with real elements.
Let 𝑀 and 𝑁 be matrices. The notation col(𝑀,𝑁) denotes
the matrix obtained by stacking𝑀 over𝑁.The image of𝑀 is

denoted by im𝑀 and kernel of𝑀 by ker𝑀. The determinant
of𝑀 is denoted by det(𝑀) and rank of𝑀 by rank(𝑀). Let 𝑃
be a square matrix; it is said to be symmetric if 𝑃 = 𝑃

T. We
say that 𝑃 (necessarily symmetric) is positive semidefinite if
VT𝑃V ≥ 0 for all vectors V. We write 𝑃 ≥ 0 by meaning that 𝑃
is positive semidefinite. Negative semidefiniteness is defined
in a similar fashion. The notation deg(∗) is the degree of a
polynomial. For a symmetric matrix represented blockwise,
offdiagonal blocks are abbreviated with ∗; that is,

[
𝑋
11

𝑋
12

𝑋
T
12

𝑋
22

] = [
𝑋
11

𝑋
12

∗ 𝑋
22

] = [
𝑋
11

∗

𝑋
T
12

𝑋
22

] . (1)

The notation 𝑀
𝜔

≤ 0 with 𝜔 being a vector space stands for
󰜚
T
𝑀󰜚 ≤ 0 for all 󰜚 ∈ 𝜔. Let 𝐴𝐶, 𝐶∞, and 𝐶

ℎ−1

𝑝
denote,

respectively, the sets of absolutely continuous, smooth, and
(ℎ − 1) times piecewise continuously differentiable functions.

2. Preliminaries

Consider the following descriptor system:

𝐸𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , (2a)

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) , (2b)

where 𝑥(𝑡) ∈ R𝑛 is the state, 𝑢(𝑡) ∈ R𝑚 is the input, 𝑦(𝑡) ∈ R𝑟
is the output, the matrices 𝐸,𝐴, 𝐵, 𝐶,𝐷 are of appropriate
sizes, and rank𝐸 = 𝑟 ≤ 𝑛. The following concepts for
descriptor systems are essential and will be used throughout
this paper.

Definition 1 (see [11]). System (2a) and (2b) is said to be
regular if det(𝑠𝐸 − 𝐴) is not identically zero. It is said to be
impulse-free if deg(det(𝑠𝐸 − 𝐴)) = rank𝐸.

As we know from [11], only when system (2a) and (2b)
is regular, it has unique solution. Usually this regularity
condition is required for all control problems of descriptor
systems. In this case, there exist two invertible matrices𝑀 ∈

R𝑛×𝑛 and 𝑇 ∈ R𝑛×𝑛 such that

𝐸 = MET = [
𝐼 0

0 𝑁
] , 𝐴 = MAT = [

𝐴
1
0

0 𝐼
] ,

𝐵 = MB = [
𝐵
1

𝐵
2

] , 𝐶 = CT = [𝐶
1
𝐶
2
] ,

(3)

where 𝐴
1
∈ R𝑛1×𝑛1 , 𝐵

𝑖
∈ R𝑛𝑖×𝑚, and 𝐶

𝑖
∈ R𝑟×𝑛𝑖 , 𝑖 = 1, 2 and

𝑛
1
+ 𝑛
2
= 𝑛. 𝑁 is nilpotent; that is, 𝑁ℎ = 0 for some integer

ℎ ≥ 1. Then the restricted equivalent form of system (2a) and
(2b) can be, respectively, expressed as

𝑥̇
1
(𝑡) = 𝐴

1
𝑥
1
(𝑡) + 𝐵

1
𝑢 (𝑡) , (4a)

𝑁𝑥̇
2
(𝑡) = 𝑥

2
(𝑡) + 𝐵

2
𝑢 (𝑡) , (4b)

which is called the Weierstrass canonical form. In fact, the
invertible matrices 𝑀 and 𝑇 may be not unique and the
transformed system is unique in this canonical form.
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Throughout the paper, we are interested in the solutions of
system (2a) and (2b) at an initial value𝑥

0
.Then, any trajectory

of (2a) and (2b) is given by (see [27])

𝑥
1
(𝑡) = 𝑒

𝐴
1
𝑡

𝑥
1
(0) + ∫

𝑡

0

𝑒
𝐴
1
(𝑡−𝜏)

𝐵
1
𝑢 (𝜏) 𝑑𝜏, (5a)

𝑥
2
(𝑡) = −

ℎ−1

∑

𝑖=0

𝑁
𝑖

𝐵
2
𝑢
(𝑖)

(𝑡) − 𝑥
20
(𝑡) , (5b)

where

𝑥
20
(𝑡) =

ℎ−1

∑

𝑖=0

𝛿
(𝑖−1)

(𝑡)𝑁
𝑖

𝑥
20
+

ℎ−1

∑

𝑖=0

𝑖−1

∑

𝑘=0

𝑁
𝑖

𝐵
2
𝛿
(𝑘)

𝑢
(𝑖−𝑘−1)

0
. (6)

One can see that if𝑁 ̸= 0, this system will have impulsive
behavior for nonzero initial values 𝑥

20
, 𝑢𝑖−𝑘−1
0

, and discon-
tinuity 𝑢(𝑖)(𝑡). Meanwhile, we know there are no impulsive
terms in substate 𝑥

1
(𝑡) when 𝑢(𝑡) ∈ 𝐶

ℎ−1

𝑝
. For simplicity, we

assume consistent initial values in this paper; that is, 𝑥
20
= 0

and 𝑢
(𝑖−𝑘−1)

0
= 0. In this case, the main impulsive nature of

the system is characterized by 𝑁 ̸= 0 in (5b). That indicates
that if 𝑢(𝑖)(𝑡) has a discontinuity point at 𝑡 = 𝜏, 𝑥

2
(𝑡) will

have impulsive behavior. In fact, when𝑁 = 0, the system will
have no impulsive behavior and the initial jump may appear
as discussed in [28].

In order to investigate the solution of systems (2a) and
(2b) from a new perspective, we follow the technique in [18]
and define the following two sets:

S = { (𝑥 (𝑡) , 𝑢 (𝑡)) | (𝑥 (𝑡) , 𝑢 (𝑡)) is a solution of system

(2a) , (2b) , 𝑢 (𝑡) ∈ 𝐴𝐶, 𝑢 (𝑡) ∈ 𝐶ℎ
𝑝
} ,

S
𝑠
= { (𝑥 (𝑡) , 𝑢 (𝑡)) | (𝑥 (𝑡) , 𝑢 (𝑡)) is a solution of system

(2a) , (2b) , 𝑢 (𝑡) ∈ 𝐶∞} .
(7)

One can see that S
𝑠
⊂ S. Further we have the following

results.

Lemma 2. For system (2a) and (2b), there exist matrices 𝑉 ∈

R𝑛×𝑙, 𝑈 ∈ R𝑚×𝑙, and 𝑊 ∈ R𝑛×𝑙 with 𝑙 = 𝑛 + 𝑚 and EW =

AV + BU such that the following statements hold.
(i) If (𝑥(𝑡), 𝑢(𝑡)) ∈ S is a solution,

col (𝑥̇ (𝑡) , 𝑥 (𝑡) , 𝑢 (𝑡)) ∈ im {col (𝑊,𝑉,𝑈)} . (8)

(ii) If 𝜉 ∈ im{col(𝑊,𝑉,𝑈)}, there exists a smooth solution
(𝑥(𝑡), 𝑢(𝑡)) ∈ S

𝑠
such that

col (𝑥̇ (1) , 𝑥 (1) , 𝑢 (1)) = 𝜉, (9)

where

𝑉 = [
𝐼 0 0

0 −𝐵
2
𝑁
] ,

𝑊 = [
𝐴
1
𝐵
1
0

0 0 𝐼
] ,

𝑈 = [0 𝐼 0] .

(10)

Proof. This proof is similar to Lemma 3.2 in [18]. We omit
them here.

Remark 3. The above lemma describes descriptor systems
with impulsive behavior in terms of an image space. The
image space im{col(𝑊,𝑉,𝑈)} can include all impulsive solu-
tions of system (2a) and (2b) with consistent initial values. If
we take

𝑥̇
2
(𝑡) = −

ℎ−1

∑

𝑖=0

𝑁
𝑖

𝐵
2
𝑢
(𝑖+1)

(𝑡) (11)

into (24), we can obtain Lemma 3.2 in [18]. In terms of the
expression formulae, Lemma 2 in this paper is more explicit
than description of Lemma 3.2 in [18]. In detail, the matrices
involved in Lemma 2 have lower dimensions and thus are
more computationally efficient. One can see from the main
results of this paper in next section that this new characteri-
zation is more powerful in solving the dissipativity problem
for descriptor systems. Instead, [18] is only concerned with
the passivity problem, which is a special case of this paper.

The next two lemmas will be used in the proof of main
results in next section.

Lemma 4 (see [29]). Given a nilpotent matrix 𝑁 ∈ R𝑛×𝑛
and a symmetric matrix 𝑊 ∈ R𝑛×𝑛, 𝑊 ≥ 0. If there exists a
symmetric matrix 𝑉 ∈ R𝑛×𝑛, 𝑉 ≥ 0 such that

𝑁
𝑇

𝑉 + 𝑉𝑁 = −𝑁
𝑇

𝑊𝑁 (12)

and then

𝑁
T
𝑊𝑁 = 0, 𝑁

T
𝑉𝑁 = 0. (13)

Definition 5. A state space model (𝐸, 𝐴, 𝐵, 𝐶,𝐷) is a realiza-
tion of a transfer function𝐻(𝑠) if 𝐶(𝑠𝐸 − 𝐴)

−1

𝐵 + 𝐷 = 𝐻(𝑠).
A realization (𝐸, 𝐴, 𝐵, 𝐶,𝐷) of a transfer function𝐻(𝑠) is said
to be minimal if no other realization of 𝐻(𝑠) has smaller
dimension.

In order to investigate the dissipativity of descriptor
systems, we need one integral property of delta function.
As we know, delta function is a generalized function and its
properties can be investigated along the generalized function
theory as in [30]. For mathematical simplicity and rigorous-
ness, we treat this problem from engineering intuition by
taking the delta function as an approximation of a series of
normal functions as was done in [31]. We will investigate its
generic correctness in the future.

Lemma 6 (see [31]). If the Dirac delta function 𝛿(𝑡) is defined
as a limit of the following 𝑔

𝜀
(𝑥) as 𝜀 goes to zero, then it is not

square integrable.
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Proof. As 𝛿(𝑡) is defined as the limit of the following 𝑔
𝜀
(𝑥) as

𝜀 goes to zero, then, for any continuous function𝑓(𝑡), one has
the following properties:

𝛿 (𝑡) = 0, 𝑡 ̸= 0,

∫

∞

−∞

𝛿 (𝑡) 𝑑𝑡 = 1,

∫

∞

−∞

𝑓 (𝑡) 𝛿 (𝑡) 𝑑𝑡 = 𝑓 (0) ,

(14)

where 𝑓(0) is the function 𝑓(𝑡) at 𝑡 = 0 and

𝑔
𝜀
(𝑥) =

{{{

{{{

{

1

𝜀2
(𝑥 + 𝜀) , −𝜀 ≤ 𝑥 ≤ 0,

1

𝜀2
(𝜀 − 𝑥) , 0 ≤ 𝑥 ≤ 𝜀.

(15)

One can prove easily that as 𝜀 goes to zero, 𝑔
𝜀
(𝑥) will satisfy

the above properties and it can approximate the Dirac delta
function. This 𝑔

𝜀
(𝑥) function is integrable, and the integral

of this function is 1 which is independent of the value of 𝜀.
In fact, this integral can be computed explicitly (noting the
integral symmetry) as

∫

∞

−∞

𝑔
𝜀
(𝑥) 𝑑𝑥 =

2

𝜀2
∫

𝜀

0

(𝜀 − 𝑥) 𝑑𝑥 =
2

𝜀2
[𝑥𝜀 −

𝑥
2

2
]

𝜀

0

= 1.

(16)

Now, we can compute the integral of the square of this
function as follows (again, noting the symmetry of this
function):

∫

∞

−∞

𝑔
2

𝜀
(𝑥) 𝑑𝑥

=
2

𝜀4
∫

𝜀

0

(𝜀 − 𝑥)
2

𝑑𝑥 =
2

𝜀4
[𝑥𝜀
2

− 𝑥
2

𝜀 +
𝑥
3

3
]

𝜀

0

=
2

3𝜀
.

(17)

In the limit as 𝜀 → 0, the integral of the square of this
function approaches infinity. Thus, the Dirac delta function
is not square integrable. This completes the proof.

There are different types of approximations for delta
function by using different normal functions. Another typical
one is using Gaussian function [32]. In fact, Lemma 6 is
also true for the case of Gaussian approximation. With
the approximation technique, we can obtain the following
corollary.

Corollary 7. If 𝛼 is a constant variable, and the function
𝛿(𝑡)𝛼𝛿(𝑡) with 𝛿(𝑡) defined as a limit of 𝑔

𝜀
(𝑥) is Lebesgue

integrable, then we have 𝛼 = 0.

With the above property, we can prove the following
lemma, which will play an important role in the proof of our
main result in next section.

Lemma 8. If the function 𝜂
T
Γ𝜂 is Lebesgue integrable on

(−∞, +∞) for ∀𝑢 ∈ 𝐶ℎ−1
𝑝

, where

𝜂 =

[
[
[
[

[

𝑢 (𝑡)

𝑢̇ (𝑡)

...
𝑢
(ℎ−1)

(𝑡)

]
]
]
]

]

, Γ =

[
[
[
[

[

Γ
0

0 ⋅ ⋅ ⋅ 0

0 Γ
1
⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ Γ

ℎ−1

]
]
]
]

]

, (18)

then we have

Γ
𝑖
= 0, 𝑖 = 1, 2, . . . , ℎ − 1. (19)

Proof. Because 𝜂TΓ𝜂 is Lebesgue integrable on (−∞, +∞) for
all 𝑢 ∈ 𝐶ℎ−1

𝑝
, we can specially choose 𝑢(𝑡) to meet that 𝑢(𝑖)(𝑡),

𝑖 = 0, 1, . . . , ℎ − 2 are the Lebesgue integrable functions and
𝑢
(ℎ−1)

(𝑡) = 𝛿(𝑡). By Corollary 7, we can obtain Γ
ℎ−1

= 0.
Then, we can specially choose 𝑢(𝑡) iteratively such that 𝑢(𝑖)(𝑡),
𝑖 = 0, 1, . . . , ℎ − 3 are the Lebesgue integrable functions and
𝑢
(ℎ−2)

(𝑡) = 𝛿(𝑡). We will have Γ
ℎ−2

= 0. Iteratively, we can
prove that Γ

𝑖
= 0, 𝑖 = 1, 2, . . . , ℎ − 1. This completes the

proof.

3. Dissipativity Analysis

Following the intuition of dissipativity for a dynamic system
given in [1], one can see that dissipativity of a dynamic implies
that the internal energy storage of a system never exceeds
the energy storage supplied to the system. In this paper, we
formulate the notion of dissipativity for the system (2a) and
(2b) via the so-called dissipativity inequality.

Definition 9. System (2a) and (2b) with supply rate 𝑟(𝑢(𝑡),
𝑦(𝑡)) which is locally Lebesgue integrable independently of
the input and the initial conditions is said to be dissipative
if there exists a nonnegative function 𝑉(𝑥(𝑡)) : R𝑛 → R+
(called the storage function) such that

𝑉 (𝑥 (𝑡
1
)) ≤ 𝑉 (𝑥 (𝑡

0
)) + ∫

𝑡
1

𝑡
0

𝑟 (𝑢 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 (20)

for all 𝑡
0
, 𝑡
1
with 𝑡

1
≥ 𝑡
0
and the solution (𝑥(𝑡), 𝑢(𝑡)) of system

(2a) and (2b). If the above inequality is strict, then the system
is said to be strictly dissipative.

Furthermore, the energy supply function 𝑟(𝑢(𝑡), 𝑦(𝑡)) of
systems (2a) and (2b) is usually defined as

𝑟 (𝑢 (𝑡) , 𝑦 (𝑡)) = 𝑦
T
(𝑡) 𝑄𝑦 (𝑡) + 2𝑦

T
(𝑡) 𝑆𝑢 (𝑡) + 𝑢

T
(𝑡) 𝑅𝑢 (𝑡) ,

(21)

where 𝑄, 𝑆, and 𝑅 are real matrices with 𝑄 and 𝑅 being
symmetric. In this case, the dissipative system (2a) and (2b)
is said to be (𝑄, 𝑆, 𝑅) dissipative. In practice, the following
assumptions are usually put on for the study of dissipativity.

Assumption 10. Consider 𝑄 ≤ 0.

Remark 11. From Definition 9, we know that the above strict
(𝑄, 𝑆, 𝑅) dissipativity includes𝐻

∞
performance and passivity
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as special cases. For example, if 𝑄 = −𝐼, 𝑆 = 0, and 𝑅 =

𝛾
2

𝐼, (20) reduces to an𝐻
∞

performance index. If 𝑄 = 0, 𝑆 =
𝐼, and 𝑅 = 0, (20) corresponds to the passivity or positive
realness for systems as discussed in [18].

One can see from the above remark that dissipativity
analysis is more general in comparison to 𝐻

∞
performance,

positive realness, and passivity analysis. Though there are
some results on other problems for descriptor systems with
impulsive behavior, to the best of our knowledge, the analysis
for dissipativity is still not available in the existing literature.

In order to give the main result in the following theorem,
we use the following notations for simplicity:

Π = 𝑅 + 𝐷
T
𝑆 + 𝑆

T
𝐷 + 𝐷

T
𝑄𝐷,

Ω = 𝐶
T
𝑆 + 𝐶

T
𝑄𝐷.

(22)

3.1. Design Energy Supply Function 𝑟(𝑢(𝑡),𝑦(𝑡)). In order
to investigate the impulsive behavior for system (2a) and
(2b), we need to discuss the integrability of supply function
𝑟(𝑢(𝑡), 𝑦(𝑡)). There is a significant difference for descriptor
systems with or without impulsive behavior. First, we give the
following theorem based on Lemma 8.

Theorem 12. The supply function 𝑟(𝑢(𝑡), 𝑦(𝑡)) of system (2a)
and (2b) is Lebesgue integrable for all 𝑢 ∈ 𝐶ℎ−1

𝑝
if and only if

𝑄𝐶
2
𝑁
𝑖

𝐵
2
= 0, 𝑖 = 1, 2, . . . , ℎ − 1 (23)

𝑆𝐶
2
𝑁
𝑖

𝐵
2
= 0, 𝑖 = 2, 3, . . . , ℎ − 1. (24)

Proof. To prove this theorem, we rewrite

𝑟 (𝑢 (𝑡) , 𝑦 (𝑡)) = 𝑦
T
(𝑡) 𝑄𝑦 (𝑡) + 2𝑦

T
(𝑡) 𝑆𝑢 (𝑡) + 𝑢

T
(𝑡) 𝑅𝑢 (𝑡)

= 𝑥
T
1
(𝑡) 𝐶

T
1
𝑄𝐶
1
𝑥
1
(𝑡) + 𝑥

T
2
(𝑡) 𝐶

T
2
𝑄𝐶
2
𝑥
2
(𝑡)

+ 2𝑥
T
1
(𝑡) 𝐶

T
1
𝑄𝐶
2
𝑥
2
(𝑡) + 𝑢

T
(𝑡) Π𝑢 (𝑡)

+ 2𝑥
T
2
(𝑡) 𝐶

T
2
(𝑄𝐷 + 𝑆) 𝑢 (𝑡)

+ 2𝑥
T
1
(𝑡) 𝐶

T
1
(𝑄𝐷 + 𝑆) 𝑢 (𝑡) .

(25)

Sufficiency. From (23)-(24) and 𝑥
2
= −∑

ℎ−1

𝑖=0
𝑁
𝑖

𝐵
2
𝑢
(𝑖)

(𝑡), we
have
𝑟 (𝑢 (𝑡) , 𝑦 (𝑡))

= [

[

𝑥
1
(𝑡)

𝑢 (𝑡)

𝑢̇ (𝑡)

]

]

T

[

[

𝐶
T
1
𝑄𝐶
1
Ξ
1

0

∗ Ξ
2
𝑆
T
𝐶
2
𝑁𝐵
2

∗ ∗ 0

]

]

[

[

𝑥
1
(𝑡)

𝑢 (𝑡)

𝑢̇ (𝑡)

]

]

,

Ξ
1
= 𝐶

T
1
𝑆 + 𝐶

T
1
𝑄 (𝐷 − 𝐶

2
𝐵
2
) ,

Ξ
2
= 𝑅 + (𝐷 − 𝐶

2
𝐵
2
)
T
𝑄 (𝐷 − 𝐶

2
𝐵
2
) + (𝐷 − 𝐶

2
𝐵
2
)
T
𝑆

+ 𝑆
T
(𝐷 − 𝐶

2
𝐵
2
) .

(26)

And 𝑥
1
(𝑡) and 𝑢(𝑡) are locally integrable Lebesgue func-

tions, so the supply function is Lebesgue integrable.
Necessity. Assume that the supply function 𝑟(𝑢(𝑡), 𝑦(𝑡)) of
system (2a) and (2b) is Lebesgue integrable for all 𝑢 ∈ 𝐶

ℎ−1

𝑝
,

and then we have that

𝑥
T
2
(𝑡) 𝐶

T
2
𝑄𝐶
2
𝑥
2
(𝑡)

= (−

ℎ−1

∑

𝑖=0

𝑁
𝑖

𝐵
2
𝑢
(𝑖)

(𝑡))

T

𝐶
T
2
𝑄𝐶
2
(−

ℎ−1

∑

𝑖=0

𝑁
𝑖

𝐵
2
𝑢
(𝑖)

(𝑡))

=

[
[
[
[

[

𝑢 (𝑡)

𝑢̇ (𝑡)

...
𝑢
(ℎ−1)

(𝑡)

]
]
]
]

]

T

Γ

[
[
[
[

[

𝑢 (𝑡)

𝑢̇ (𝑡)

...
𝑢
(ℎ−1)

(𝑡)

]
]
]
]

]

(27)

is Lebesgue integrable, where

Γ =

[
[
[
[
[
[
[
[
[
[

[

𝐵
T
2
𝐶
T
2
𝑄𝐶
2
𝐵
2

𝐵
T
2
𝐶
T
2
𝑄𝑁𝐶
2
𝐵
2

⋅ ⋅ ⋅ 𝐵
T
2
𝐶
T
2
𝑄𝐶
2
𝑁
ℎ−1

𝐵
2

𝐵
T
2
𝑁

T
𝐶
T
2
𝑄𝐶
2
𝐵
2

𝐵
T
2
𝑁

T
𝐶
T
2
𝑄𝐶
2
𝑁𝐵
2
⋅ ⋅ ⋅ 𝐵

T
2
𝑁

T
𝐶
T
2
𝑄𝐶
2
𝑁
ℎ−1

𝐵
2

...
... d

...

𝐵
T
2
(𝑁
ℎ−1

)
T
𝐶
T
2
𝑄𝐶
2
𝐵
2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵
T
2
(𝑁
ℎ−1

)
T
𝐶
T
2
𝑄𝐶
2
𝑁
ℎ−1

𝐵
2

]
]
]
]
]
]
]
]
]
]

]

. (28)

By Lemma 8, we can have

𝐵
T
2
𝑁
𝑖T
𝐶
T
2
𝑄𝐶
2
𝑁
𝑖

𝐵
2
= 0, 𝑖 = 1, 2, . . . , ℎ − 1. (29)

Recall that 𝑄 ≤ 0; we can obtain

𝑄𝐶
2
𝑁
𝑖

𝐵
2
= 0, 𝑖 = 1, 2, . . . , ℎ − 1. (30)

With similar reasoning, we can derive that

𝑢
T
(𝑡) 𝑆

T
𝐶
2
𝑥
2
(𝑡) = −𝑢

T
(𝑡) 𝑆

T
𝐶
2
(

ℎ−1

∑

𝑖=0

𝑁
𝑖

𝐵
2
𝑢
(𝑖)

(𝑡))

= −

ℎ−1

∑

𝑖=0

𝑢
T
(𝑡) 𝑆

T
𝐶
2
𝑁
𝑖

𝐵
2
𝑢
(𝑖)

(𝑡)

(31)
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is Lebesgue integrable. Then, we can obtain

𝑆
T
𝐶
2
𝑁
𝑖

𝐵
2
= 0, 𝑖 = 2, 3, . . . , ℎ − 1. (32)

This completes the proof.

Remark 13. One can see from the above proof that if the
descriptor system is impulse-free (i.e., 𝑁 = 0), the supply
function is always Lebesgue integrable. Otherwise, the selec-
tion of parameters 𝑄 and 𝑆 has some restrictions as stated in
the above theorem.However, if the descriptor system (2a) and
(2b) is output impulsive-free (i.e., 𝐶

2
𝑁 = 0), the selection for

parameters (𝑄 ≤ 0, 𝑆, 𝑅) would be very flexible. If the delta
function is in general case, we can put these constraints as a
requirement to eliminate impulse in the storage function.

Based on the observations from previous sections, we can
state our main results in this paper.

3.2. Dissipativity Analysis

Theorem 14. Consider system (2a) and (2b); the following
statements are equivalent.

(1) System (2a) and (2b) is (𝑄, 𝑆, 𝑅) dissipative.

(2) The following LMIs,

𝑃 = 𝑃
T
≥ 0, (33)

[

[

0 𝑃 0

∗ −𝐶
T
𝑄𝐶 −𝐶

T
𝑆 − 𝐶

T
𝑄𝐷

∗ ∗ −Π

]

]

𝜔

≤ 0, (34)

have a common solution 𝑃, where 𝜔 = im[𝑊𝑇, 𝑉𝑇, 𝑈𝑇]𝑇.

Proof. (1) ⇒ (2).
Suppose that system (2a) and (2b) is (𝑄, 𝑆, 𝑅) dissipative

with the storage function given below:

𝑉 (𝑥) = 𝑥
T
(𝑡) 𝑃𝑥 (𝑡) , (35)

where 𝑃 ∈ R𝑛×𝑛, 𝑃 ≥ 0. Let (𝑥(𝑡), 𝑢(𝑡)) ∈ S
𝑠
. From the

dissipativity inequality, we can obtain

∫

𝑡
1

𝑡
0

𝑑𝑉 (𝑡)

𝑑𝑡
𝑑𝑠 ≤ ∫

𝑡
1

𝑡
0

𝑟 (𝑢 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 (36)

for all 𝑡
1
≥ 𝑡
0
. Since all involved functions are smooth, we can

derive

𝑟 (𝑢 (𝑡) , 𝑦 (𝑡)) ≥
𝑑𝑉 (𝑡)

𝑑𝑡
. (37)

Let

𝑟 (𝑢 (𝑡) , 𝑦 (𝑡)) = 𝑦
T
(𝑡) 𝑄𝑦 (𝑡) + 2𝑢(𝑡)

T
𝑄𝑦 (𝑡) + 𝑢

T
(𝑡) 𝑄𝑢 (𝑡) .

(38)

Then, we can have

𝑑𝑉 (𝑡)

𝑑𝑡
− 𝑦

T
(𝑡) 𝑄𝑦 (𝑡) − 2𝑢

T
(𝑡) 𝑄𝑦 (𝑡) − 𝑢

T
(𝑡) 𝑄𝑢 (𝑡)

= 𝑥̇
T
(𝑡) 𝑃𝑥 (𝑡) + 𝑥

T
(𝑡) 𝑃𝑥̇ (𝑡) − 𝑥

T
(𝑡) 𝐶

T
𝑄𝐶𝑥 (𝑡)

− 2𝑥
T
(𝑡) (𝐶

T
𝑆 + 𝐶

T
𝑄𝐷)𝑢 (𝑡) − 𝑢

T
(𝑡) Π𝑢 (𝑡)

= [

[

𝑥̇ (𝑡)

𝑥 (𝑡)

𝑢 (𝑡)

]

]

T

[

[

0 𝑃 0

∗ −𝐶
T
𝑄𝐶 Ω

∗ ∗ −Π

]

]

[

[

𝑥̇ (𝑡)

𝑥 (𝑡)

𝑢 (𝑡)

]

]

≤ 0

(39)

for 𝑡 ∈ R+. Substituting 𝑡 = 1, we obtain

[

[

𝑥̇ (1)

𝑥 (1)

𝑢 (1)

]

]

T

[

[

0 𝑃 0

∗ −𝐶
T
𝑄𝐶 Ω

∗ ∗ −Π

]

]

[

[

𝑥̇ (1)

𝑥 (1)

𝑢 (1)

]

]

≤ 0. (40)

It follows from the claim (ii) of Lemma 2 that 𝑃 is a solution
to the LMIs in (33)-(34).
(2) ⇒ (1).

Suppose that the LMIs (33)-(34) admit a solution𝑃. From
the claim (i) of Lemma 2; we can derive the following:

[

[

𝑥̇ (𝑡)

𝑥 (𝑡)

𝑢 (𝑡)

]

]

T

[

[

0 𝑃 0

∗ −𝐶
T
𝑄𝐶 Ω

∗ ∗ −Π

]

]

[

[

𝑥̇ (𝑡)

𝑥 (𝑡)

𝑢 (𝑡)

]

]

≤ 0 (41)

whenever (𝑥(𝑡), 𝑢(𝑡)) ∈ S. Clearly, this yields

𝑟 (𝑢 (𝑡) , 𝑦 (𝑡)) ≥
𝑑𝑉 (𝑡)

𝑑𝑡
. (42)

By integrating (42) from 𝑡
0
to 𝑡
1
, we obtain the dissipativity

inequality. The proof is completed.

Remark 15. It should be mentioned that Theorem 14 is valid
for descriptor system with impulsive behavior. Furthermore,
those LMIs conditions aim to seek symmetric solutions,
which is different from the typical lower triangular matrix
solutions for dissipativity of descriptor systems without
impulsive behavior as reported in [21].

Remark 16. We can also consider the stability of system (2a)
and (2b) by using our approach. If 𝑢(𝑡) = 0, we can obtain
𝑥̇
2
(𝑡) = 0. In this case, (8) will change to the following:

[
[
[

[

𝑥̇
1
(𝑡)

𝑥̇
2
(𝑡)

𝑥
1
(𝑡)

𝑥
2
(𝑡)

]
]
]

]

=

[
[
[

[

𝐴
1

0

𝐼

0

]
]
]

]

𝑥
1
(𝑡) . (43)

Then, we can choose the Lyapunov function

𝑉 (𝑥 (𝑡)) = 𝑥
T
(𝑡) 𝑃𝑥 (𝑡) , (44)

with

𝑃 = [
𝑃
11

𝑃
12

𝑃
T
12

𝑃
22

] > 0. (45)
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By this way, we can obtain the stability condition of system
(2a) and (2b) as follows:

[
[
[

[

𝐴
1

0

𝐼

0

]
]
]

]

T

[
[
[

[

0 0 𝑃
11

𝑃
12

0 0 𝑃
T
12

𝑃
22

𝑃
11

𝑃
12

0 0

𝑃
T
12

𝑃
22

0 0

]
]
]

]

[
[
[

[

𝐴
1

0

𝐼

0

]
]
]

]

= 𝐴
T
1
𝑃
11
+ 𝑃

T
11
𝐴
1
< 0.

(46)

This is a known stability result for descriptor systems as
reported in [29].

Next, we discuss a parametrization form for all possible
solutions of the LMIs (33)-(34).

Theorem 17. If the LMIs (33)-(34) are solvable, all possible
solutions must be given by

𝑃 = [
𝑃
11

0

0 𝑃
22

] , (47)

where 𝑃
11

∈ R𝑛1×𝑛1 and 𝑃
22

∈ R𝑛2×𝑛2 are with the following
requirements.

(1) 𝑃
11
is a solution to the following LMIs:

𝑃
11
= 𝑃

T
11
≥ 0,

[
𝐴

T
1
𝑃
11
+ 𝑃
11
𝐴
1
− 𝐶

T
1
𝑄𝐶
1
𝑃
1
𝐵
1
− Ξ
1

∗ −Ξ
2

] ≤ 0.

(48)

(2) 𝑃
22
is a solution of

𝑃
22
= 𝑃

T
22
≥ 0,

𝑃
22
[
𝑁

𝐵
2

] = [
0

−𝑁
T
𝐶
T
2
𝑆
] .

(49)

Proof. Suppose that the LMIs (33)-(34) admit a solution
𝑃. Let 𝑃 be a symmetric positive semidefinite matrix and
partitioned as

𝑃 = [
𝑃
11

𝑃
12

𝑃
T
12

𝑃
22

] = 𝑃
T
≥ 0. (50)

It can be verified that the following equation holds:

[

[

𝑊

𝑉

𝑈

]

]

T

[

[

0 𝑃 0

∗ −𝐶
T
𝑄𝐶 −𝐶

T
𝑆 − 𝐶

T
𝑄𝐷

∗ ∗ −Π

]

]

[

[

𝑊

𝑉

𝑈

]

]

= [

[

𝑀
11

𝑀
12

𝑀
13

∗ 𝑀
22

𝑀
23

∗ ∗ 𝑀
33

]

]

,

(51)

where

𝑀
11
= 𝐴

T
1
𝑃
11
+ 𝑃

T
11
𝐴
1
− 𝐶

T
1
𝑄𝐶
1
,

𝑀
12
= 𝑃
11
𝐵
1
− 𝐴

T
1
𝑃
12
𝐵
2
+ 𝐶

T
1
𝑄𝐶
2
𝐵
2
− 𝐶

T
1
𝑆 − 𝐶

T
1
𝑄𝐷,

𝑀
13
= 𝑃
12
− 𝐴

T
1
𝑃
12
𝑁 − 𝐶

T
1
𝑄𝐶
2
𝑁𝐵
2
,

𝑀
22
= −𝐵

T
2
𝑃
T
12
𝐵
1
− 𝐵

T
1
𝑃
12
𝐵
2
+ (𝑆

T
+ 𝐷

T
𝑄)𝐶
2
𝐵
2

+ 𝐵
T
2
𝐶
T
2
(𝑆 + 𝑄𝐷) − 𝐵

T
2
𝐶
T
2
𝑄𝐶
2
𝐵
2
+ Π,

𝑀
23
= −𝐵

T
2
𝑃
22
+ 𝐵

T
1
𝑃
12
𝑁 + 𝐵

T
2
𝐶
T
2
𝑄𝐶
2
𝑁

− 𝑆
T
𝐶
2
𝑁 − 𝐷

T
𝑄𝐶
2
𝑁,

𝑀
33
= 𝑁

T
𝑃
22
+ 𝑃
22
𝑁 −𝑁

T
𝐶
T
2
𝑄𝐶
2
𝑁.

(52)

Suppose that (51) is negative semidefinite; we will have
𝑀
33
≤ 0. Since 𝑁 is nilpotent matrix, 𝑃

22
≥ 0, and −𝑄 ≥ 0,

we can obtain𝑀
33
= 0; that is,𝑁T

𝑃
22
+𝑃
22
𝑁 = 𝑁

T
𝐶
T
2
𝑄𝐶
2
𝑁.

By Lemma 4, we obtain

𝑁
T
𝑃
22
𝑁 = 0, −𝑁

T
𝐶
T
2
𝑄𝐶
2
𝑁 = 0. (53)

With simple manipulations, we can see that 𝑃
22
𝑁 = 0 and

𝑄𝐶
2
𝑁 = 0. Since𝑀

33
= 0, it follows frommatrix theory that

all the elements on the corresponding row and column blocks
must be zero. In other words,

𝑀
13
= 0, 𝑀

23
= 0. (54)

Then, we can derive that

𝑃
12
= 0, 𝐵

T
2
𝑃
22
= −𝑆

T
𝐶
2
𝑁. (55)

Finally, the right-hand side of (51) with combination of
(33)-(34) will give the following conclusion:

[
[
[

[

𝐴
T
1
𝑃
11
+ 𝑃

T
11
𝐴
1
− 𝐶

T
1
𝑄𝐶
1
𝑀
12

0 0

∗ 𝑀
22

0 0

0 0 0 0

0 0 0 0

]
]
]

]

≤ 0. (56)

We can see that 𝑃
11
is a solution to LMIs (48).This completes

the proof.

Remark 18. ByTheorem 17, we can obtain

𝑉 (𝑥) = 𝑥
T
𝑃𝑥 = 𝑥

T
1
𝑃
11
𝑥
1
+ 𝑥

T
1
𝑃
12
𝑥
2
+ 𝑥

T
2
𝑃
T
12
𝑥
1
+ 𝑥

T
2
𝑃
22
𝑥
2

= 𝑥
T
1
𝑃
11
𝑥
1
+ 𝑢

T
𝐵
T
2
𝑃
22
𝐵
2
𝑢.

(57)

So, storage function of system (2a) and (2b) can be
divided into two parts: storage function of slow subsystem
(4a) and storage function of fast subsystems (4b). This
conclusion is in agreement with actual states; that is, the
overall descriptor system is dissipative can be regarded as two
subsystems are dissipative, respectively.
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Since 𝑥
1
(𝑡) and 𝑢(𝑡) are absolutely continuous functions,

𝑉(𝑥) is absolutely continuous function and satisfies

𝑉 (𝑥 (𝑡
1
)) − 𝑉 (𝑥 (𝑡

0
)) = ∫

𝑡
1

𝑡
0

𝑑𝑉 (𝑡)

𝑑𝑡
𝑑𝑡. (58)

This reveals that (42) is Lebesgue integrable. By the above
discussion and Theorem 12, if suitable matrices are chosen
according to these theorems, the impulsive behavior does
not display out the influence in the running process of the
system, and the descriptor system is dissipative. That implies
that the impulses have to be eliminated from (some parts of)
the signals related to the storage function.

One will see that the main result in this paper is quite
different from the existing results.

4. Comparison with Existing Results

In this section, we will compare the obtained results in the
last section with some important existing results.

First, we compare with the results for normal systems. If
𝐸 = 𝐼, one can verify the following equation easily:

𝜔 = im[

[

𝑊

𝑉

𝑈

]

]

= im[

[

𝐴 𝐵

𝐼 0

0 𝐼

]

]

. (59)

This will lead to the following result.

Corollary 19. The continuous normal system is (𝑄, 𝑆, 𝑅)

dissipative if and only if there exists 𝑃 ∈ R𝑛×𝑛 with 𝑃 = 𝑃
T
≥ 0

such that the following LMI is satisfied:

[
𝐴

T
𝑃 + 𝑃𝐴 − 𝐶

T
𝑄𝐶 𝑃𝐵 − Ω

∗ −Π
] ≤ 0. (60)

Proof. When 𝐸 = 𝐼, by usingTheorem 14 and (59), we have

[

[

𝐴 𝐵

𝐼 0

0 𝐼

]

]

T

[

[

0 𝑃 0

∗ −𝐶
T
𝑄𝐶 −Ω

∗ ∗ −Π

]

]

[

[

𝐴 𝐵

𝐼 0

0 𝐼

]

]

= [
𝐴

T
𝑃 + 𝑃𝐴 − 𝐶

T
𝑄𝐶 𝑃𝐵 − Ω

∗ −Π
] ≤ 0.

(61)

Corollary 19 is proved.

Remark 20. If 𝐸 = 𝐼, our theorems become necessary and
sufficient conditions for dissipativity of continuous normal
systems. In fact, Corollary 19 is equivalent to the dissipative
lemma reported in [10].

Next, we compare with some results for descriptor sys-
tems. First, we derive the following results, which are actually
new for descriptor systems.

Corollary 21. System (2a) and (2b) is (𝑄, 𝑆, 𝑅) dissipative if
there exists𝑋 ∈ R𝑛×𝑛 such that the following LMIs are satisfied:

𝐸
T
𝑋 = 𝑋

T
𝐸 ≥ 0,

[
𝐴

T
𝑋 + 𝑋

T
𝐴 − 𝐶

T
𝑄𝐶 𝑋

T
𝐵 − Ω

∗ −Π
] ≤ 0.

(62)

Proof. When system (2a) and (2b) is (𝑄, 𝑆, 𝑅) dissipative, by
taking 𝑃 = 𝐸

T
𝑋 and using EW = AV+BU, we can obtain the

following:

[

[

𝑊

𝑉

𝑈

]

]

T

[

[

0 𝑃 0

∗ −𝐶
T
𝑄𝐶 −Ω

∗ ∗ −Π

]

]

[

[

𝑊

𝑉

𝑈

]

]

= [
𝑉

𝑈
]

T
[

[

𝐴
T
𝑋 + 𝑋

T
𝐴

−𝐶
T
𝑄𝐶

𝑋
T
𝐵 − Ω

∗ −Π

]

]

[
𝑉

𝑈
] ≤ 0.

(63)

From Theorem 14, one can see that Corollary 21 is proved.

Similarly, by taking 𝑃 = 𝐸
T
𝑋𝐸 and EW = AV + BU, we

can obtain the following results.

Corollary 22. System (2a) and (2b) is (𝑄, 𝑆, 𝑅) dissipative if
there exists symmetric matrix𝑋 ∈ R𝑛×𝑛 such that the following
LMIs are satisfied:

𝐸
T
𝑋𝐸 ≥ 0,

[
𝐴

T
𝑋𝐸 + 𝐸

T
𝑋𝐴 − 𝐶

T
𝑄𝐶 𝐸

T
𝑋

T
𝐵 − Ω

∗ −Π
] ≤ 0.

(64)

Though the LMIs (33) and (34) are investigated in general
in the last section, we will give a special case in the next
corollary, which can be used easily in practical computation.

Corollary 23. Suppose that
(1) (𝐸, 𝐴, 𝐵, 𝐶) is (𝑄, 𝑆, 𝑅) dissipative;
(2) (𝐸, 𝐴, 𝐵, 𝐶) is minimal;
(3) (𝐸, 𝐴, 𝐵, 𝐶) is given in the Weierstrass form, and 𝑁 =

[
0 𝐼

0 0
].

Then, the LMIs (33)-(34) are solvable and all the solutions can
be given by

𝑃̂ = [

[

𝑃̂
11

0 0

0 0 0

0 0 𝑃̂
33

]

]

(65)

with the following requirements:

(1) 𝑃̂
11
is a solution to the following LMIs:

𝑃̂
11
= 𝑃̂

T
11
≥ 0,

[
𝐴

T
1
𝑃̂
11
+ 𝑃̂
11
𝐴
1
− 𝐶

T
1
𝑄𝐶
1
𝑃̂
1
𝐵
1
− Ξ̂
1

∗ −Ξ̂
2

] ≤ 0,

(66)

where

Ξ̂
1
= 𝐶

T
1
(𝑆 + 𝑄 (𝐷 − 𝐶

2
𝐵
2
− 𝐶
3
𝐵
3
)) ,

Ξ̂
2
= 𝑅 + (𝐷 − 𝐶

2
𝐵
2
− 𝐶
3
𝐵
3
)
T
𝑄(𝐷 − 𝐶

2
𝐵
2
− 𝐶
3
𝐵
3
)

+ (𝐷 − 𝐶
2
𝐵
2
− 𝐶
3
𝐵
3
)
T
𝑆 + 𝑆

T
(𝐷 − 𝐶

2
𝐵
2
− 𝐶
3
𝐵
3
) ;

(67)
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(2) 𝑃̂
33
is the unique solution of 𝐵T

3
𝑃̂
33
= −𝑆

T
𝐶
2
.

Proof. By (2)-(3), we have

(𝐸, 𝐴, 𝐵, 𝐶)

= ([

[

𝐼 0 0

0 0 𝐼

0 0 0

]

]

,[

[

𝐴
1
0 0

0 𝐼 0

0 0 𝐼

]

]

,[

[

𝐵
1

𝐵
2

𝐵
3

]

]

, [𝐶
1
𝐶
1
𝐶
3
]) .

(68)

Let 𝑃̂ be a symmetric positive semidefinite matrix and
partitioned as

𝑃̂ = [

[

𝑃̂
11

𝑃̂
12

𝑃̂
13

𝑃̂
T
12

𝑃̂
22

𝑃̂
23

𝑃̂
T
13

𝑃̂
T
23

𝑃̂
33

]

]

, (69)

where 𝑃̂
11
∈ R𝑛1×𝑛1 , 𝑃̂

22
∈ R𝑙2×𝑙2 , 𝑃̂

33
∈ R𝑙3×𝑙3 , and 𝑙

2
+ 𝑙
3
= 𝑛
2
.

By Theorem 14, we have

𝑃
11
= 𝑃̂
11
,

𝑃
12
= [𝑃̂
12

𝑃̂
13
] = 0,

𝑃
22
𝑁 = [

𝑃̂
22

𝑃̂
23

𝑃̂
T
23

𝑃̂
33

] [
0 𝐼

0 0
] = 0,

𝐵
T
2
𝑃
22
= [

𝐵
2

𝐵
3

]

T

[
𝑃̂
22

𝑃̂
23

𝑃̂
T
23

𝑃̂
33

]

= 𝑆
T
𝐶
2
𝑁 = 𝑆

T
[𝐶
2
𝐶
3
] [
0 𝐼

0 0
] = 0.

(70)

Then, straightforward calculations yield

𝑃̂
13
= 0, 𝑃̂

13
= 0, 𝑃̂

23
= 0, 𝑃̂

22
= 0, 𝐵

T
3
𝑃̂
33
= −𝑆

T
𝐶
2
.

(71)

Due to minimality, 𝐵
3
must be full row rank. Hence, 𝑃̂

33

is the unique solution of 𝐵T
3
𝑃̂
33
= −𝑆

T
𝐶
2
.

Remark 24. By particularly choosing𝑄 = 0, 𝑆 = 𝐼, and𝑅 = 0,
we can obtain corresponding results for Corollaries 21–23 and
they are in fact the Theorems 6.4(1), 6.4(2), and 5.4 in [18].

Before we conclude this section, we discuss how to
effectively solve the nonstrict LMIs (33)-(34). We can see that
they are given with an image space and not the conventional
strict LMIs. By (34), we know that

󰜚
T [

[

0 𝑃 0

∗ −𝐶
T
𝑄𝐶 −𝐶

T
𝑆 − 𝐶

T
𝑄𝐷

∗ ∗ −Π

]

]

󰜚 ≤ 0 (72)

for all 󰜚 ∈ 𝜔 = im [
𝑊

𝑉

𝑈

]. This implies that LMI (34) is
equivalent to

[

[

𝑊

𝑉

𝑈

]

]

T

[

[

0 𝑃 0

∗ −𝐶
T
𝑄𝐶 −𝐶

T
𝑆 − 𝐶

T
𝑄𝐷

∗ ∗ −Π

]

]

[

[

𝑊

𝑉

𝑈

]

]

≤ 0. (73)

According to the discussion above, LMIs (33) and (73)
are also not the standard LMIs which can be solved by the
LMI toolbox in MATLAB directly. Luckily, LMIs in (33) and
(73) problem are still a semidefinite programming (SDP)
problem. So, we can use MATLAB toolbox YALMIP [33]
which was initially developed to model SDP and solved by
interfacing external solver-SeDuMi [34]. YALMIP toolbox
solves optimization problems in general and can be used
for control oriented SDP problems. Next, we will give an
algorithm for solving the nonstrict LMIs (33) and (73) in
detail.

Step 1. Find two invertible matrices 𝑀 and 𝑇, and change
system (2a) and (2b) into Weierstrass canonical forms.

Step 2. Compute the matrices𝑊, 𝑉, 𝑈, and 𝑌 = [
𝑊

𝑉

𝑈

].

Step 3. Solve LMIs (33) and (73) as follows. Define decision
variable and constraints

𝑃 = sdpvar (𝑛, 𝑛) , 𝐹 = set (𝑃 ≥ 0) . (74)

And let

𝐹 = 𝐹 + 𝑌
T [

[

0 𝑃 0

∗ −𝐶
T
𝑄𝐶 −𝐶

T
𝑆 − 𝐶

T
𝑄𝐷

∗ ∗ −Π

]

]

𝑌 ≥ 0. (75)

Then, solve problem solvesdp(𝐹) and 𝑃 = double(𝑃).

5. Illustrative Examples

In this section, we will present two examples to demonstrate
the effectiveness and the merits of the proposed results.

Example 1 (see [30]). Consider a mechanical system shown
in Figure 1. This system consists of two one-mass oscillators
connected by a dashpot element, which is described by

𝑀𝑧̈ + 𝐷𝑧̇ + 𝐾𝑧 = 𝐿𝑓 + 𝐽𝜇,

𝐺𝑧̇ + 𝐻𝑧 = 0,

(76)

where 𝑧 ∈ 𝑅
𝑛 is the displacement vector, 𝑓 ∈ 𝑅

𝑛 is the
vector of known input forces, 𝜇 ∈ 𝑅

𝑞 is the vector of
Lagrangian multipliers, 𝑀 is the inertial matrix, which is
usually symmetric and positive definite,𝐷 is the damping and
gyroscopic matrix, 𝐾 is the stiffness and circulator matrix,
𝐿 is the force distribution matrix, 𝐽 is the Jacobian of the
constraint equation, and𝐺 and𝐻 are the coefficient matrices
of the constraint equation. All matrices in (76) are known and
constant with appropriate dimensions.

Assume that a linear combination of displacements and
velocities is measurable; that is, the output equation is of the
form

𝑦 = 𝐶
𝑝
𝑧 + 𝐶V𝑧̇. (77)
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Rigid connection

Figure 1: Two connected one-mass oscillators.

By further choosing the state vector and the input vector
as

𝑥 = (

𝑧

𝑧̇

𝜇

) , 𝑢 = 𝑓, (78)

respectively, we can rewrite the above (76)-(77) in the
following descriptor system form. Let𝑚

1
= 1,𝑚

2
= 1, 𝑑 = 1,

𝑘
1
= 2, and 𝑘

2
= 1. Thus, we obtain a descriptor system with

the following parameters:

𝐸𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(79)

where

𝐸 =

[
[
[
[
[

[

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

]
]
]
]
]

]

, 𝐴 =

[
[
[
[
[

[

0 0 1 0 0

0 0 0 1 0

−2 0 −1 −1 1

0 −1 −1 −1 1

1 1 0 0 0

]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[

[

0

0

−1

1

0

]
]
]
]
]

]

, 𝐶 = [1 1 0 0 0] .

(80)

One can verify that deg(det(𝑠𝐸 − 𝐴)) = 2 ̸= 4 = rank𝐸,
so this descriptor system is not impulse-free. If we choose
𝑄 = −1, 𝑆 = 1, and 𝑅 = 5 in the energy supply function,
one solution to the LMIs of Theorem 14 is as follows:

𝑃 =

[
[
[
[
[

[

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0.0001 0.0149

0 0 0 0.0149 8.2588

]
]
]
]
]

]

. (81)

Therefore, this system is dissipative although it is not impulse-
free.

Remark 25. In the above example, we know that this descrip-
tor system consists of the physical equations

𝑧̈
1
+ 𝑧̇
1
+ 𝑧̇
2
+ 2𝑧
1
= −𝑓 + 𝜇,

𝑧̈
2
+ 𝑧̇
1
+ 𝑧̇
2
+ 𝑧
2
= 𝑓 + 𝜇

(82)

with a constraint equation 𝑧
1
+ 𝑧
2
= 0. After substituting

the constraint equation into the physical equations while
ignoring its initial conditions, we can obtain the following
system:

𝑧̈
1
+ 2𝑧
1
= −𝑓 + 𝜇,

𝑧̈
2
+ 𝑧
2
= 𝑓 + 𝜇.

(83)

This becomes a normal system. According to [2], we know
that this normal system is dissipative with energy function
𝑉(𝑧, 𝑧̇) = (1/2)𝑚𝑧̇

2

+ (1/2)𝐾𝑧
2 since

𝑉 [𝑧 (𝑡
1
) , 𝑧̇ (𝑡

1
)] ≤ 𝑉 [𝑧 (𝑡

0
) , 𝑧̇ (𝑡

0
)] + ∫

𝑡
1

𝑡
0

𝐹 (𝑡) 𝜐 (𝑡) 𝑑𝑡,

(84)

where the force 𝐹(𝑡) = 𝐿𝑓 + 𝐽𝜇 and the velocity 𝜐(𝑡) = 𝑧̇(𝑡).
Therefore, the original descriptor system is dissipative.This is
consistent withTheorem 14.

The above example shows that a dynamic system can
be modeled with different models/equations with different
simplification requirements. The results obtained in this
paper can be used to investigate the dissipativity problem
for descriptor system in (76)-(77), while the existing results
cannot be used due to the impulsive behavior. When we
use the model (76)-(77), in fact we ignored the impulsive
behavior due to the inconsistent initial conditions.

Next, we will demonstrate how to appropriately choose
(𝑄, 𝑆, 𝑅) to ensure that the supply function 𝑟(𝑦(𝑡), 𝑢(𝑡)) is
integrable.

Example 2. Consider a descriptor system

𝑁𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(85)
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where

𝑁 = [

[

0 1 0

0 0 1

0 0 0

]

]

, 𝐴 = [

[

1 0 0

0 1 0

0 0 1

]

]

,

𝐵 = [

[

−1

−1

−1

]

]

, 𝐶 = [
1 0 0

0 0 1
] .

(86)

According to (3), its solution is given by

𝑥 (𝑡) = −

2

∑

𝑖=0

𝑁
𝑖
𝐵𝑢
(𝑖)

(𝑡) (87)

which gives

𝑥
1
(𝑡) = 𝑢 (𝑡) + 𝑢̇ (𝑡) + 𝑢̈ (𝑡) ,

𝑥
2
(𝑡) = 𝑢 (𝑡) + 𝑢̇ (𝑡) ,

𝑥
3
(𝑡) = 𝑢 (𝑡) .

(88)

In this system, impulsive behavior may also appear in
the state response, although the input function is continuous.
And such behavior appears due to the discontinuous property
in input derivatives. If we choose

𝑄 = [
0 0

0 −1
] ≤ 0, 𝑆 = [

0

1
] , 𝑅 = 1 (89)

which satisfy the condition ofTheorem 12, thenwe can obtain

𝑟 (𝑢 (𝑡) , 𝑦 (𝑡)) = 𝑦
T
(𝑡) 𝑄𝑦 (𝑡) + 2𝑢(𝑡)

T
𝑆𝑦 (𝑡) + 𝑢

T
(𝑡) 𝑅𝑢 (𝑡)

= −𝑥
T
(𝑡) 𝐶

T
𝑄𝐶𝑥 (𝑡) + 2𝑥

T
(𝑡) 𝐶

T
𝑆𝑢 (𝑡)

+ 𝑢
T
(𝑡) 𝑅𝑢 (𝑡)

= −𝑥
T
3
(𝑡) 𝑥
3
(𝑡) + 𝑥

T
3
(𝑡) 𝑢 (𝑡) + 𝑢

T
(𝑡) 𝑢 (𝑡)

= −𝑢
T
(𝑡) 𝑢 (𝑡) + 𝑢

T
(𝑡) 𝑢 (𝑡) + 𝑢

T
(𝑡) 𝑢 (𝑡)

= 𝑢
T
(𝑡) 𝑢 (𝑡) .

(90)

Because 𝑢(𝑡) is a continuous function, 𝑟(𝑢(𝑡), 𝑦(𝑡)) is
Lebesgue integrable. However, if we choose

𝑄 = [
−1 0

0 0
] ≤ 0, 𝑆 = [

0

1
] , 𝑅 = 1, (91)

they will not satisfy conditions inTheorem 12. In this case, we
can verify that

𝑟 (𝑢 (𝑡) , 𝑦 (𝑡)) = 𝑦
T
(𝑡) 𝑄𝑦 (𝑡) + 2𝑢(𝑡)

T
𝑆𝑦 (𝑡) + 𝑢

T
(𝑡) 𝑅𝑢 (𝑡)

= −𝑥
T
(𝑡) 𝐶

T
𝑄𝐶𝑥 (𝑡) + 2𝑥

T
(𝑡) 𝐶

T
𝑆𝑢 (𝑡)

+ 𝑢
T
(𝑡) 𝑅𝑢 (𝑡)

= −𝑥
T
1
(𝑡) 𝑥
1
(𝑡) + 2𝑥

T
3
(𝑡) 𝑢 (𝑡) + 𝑢

T
(𝑡) 𝑢 (𝑡)

= −𝑥
T
1
(𝑡) 𝑥
1
(𝑡) + 3𝑢

T
(𝑡) 𝑢 (𝑡)

(92)

is not Lebesgue integrable as it will contain 𝛿(𝑡 − 𝛽)𝛿(𝑡 − 𝛽)

which is not integrable.
Example 2 verifies the validity of Theorem 12. When a

descriptor systemhas impulsive behavior, the supply function
unlike impulse-free system is not always Lebesgue integrable.
In this case, we need to choose the parameters (𝑄, 𝑆, 𝑅)

carefully in order to guarantee dissipativity.

6. Conclusions

In this paper, we investigate the dissipativity problem for
continuous descriptor systems. A new image space is used
to characterize the state responses of descriptor systems
with impulsive behavior. Following it, we give a dissipativity
theorem for descriptor systems in general. This result is valid
regardless of the impulsive behavior, which is different from
the existing results.The integrability of a supply function and
the parametrization form of all solutions for the proposed
LMIs are discussed. Meanwhile, our results include some
previous ones as special cases. Finally, some examples are
given to show validity of the results obtained in this paper.

The results in this paper are mainly based on analysis.
It should be pointed out that the image space approach
can also be used to solve control/synthesis problems for
descriptor systems. Some related problems are under our
current investigation.

Another significant issue in this paper is the choice of
delta function using the limit of a series of normal functions.
It is our task in the future to fill this gap by using the
generalized function theory though we believe all the results
derived in Lemma 8 andTheorem 12 are true in general.
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