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Abstract—We consider a multiple antenna full-duplex (FD) bi-
directional (point-to-point) communication system with a limited
analog domain self-interference cancellation capability. The effect
of the residual self-interference resulting from independent and
identically distributed (i.i.d.) channel estimation errors and lim-
ited dynamic ranges of the transmitters and receivers is studied
in the digital domain. We design transceiver matrices based
on the minimization of sum mean-squared error (MSE) and
the maximum per-node MSE optimization problems subject to
individual power constraints at each node through an iterative
alternating algorithm, which is proven to converge to at least a
local optimal solution.

Index Terms—Full-duplex, limited dynamic range, MIMO,
MSE, self-interference, transceiver designs.

I. I NTRODUCTION

Full-duplex bi-directional wireless communication systems,
which perform simultaneous transmission and reception at the
same time and frequency has the capability to double the
system spectral efficiency, compared to that of half-duplex
systems, in which the nodes transmit and receive on orthogonal
channels. The potential advantages of full-duplex radios over
half-duplex radios have recently attracted a great deal of
attention and motivated experimental [1]-[5] and theoretical
research activities [6]-[12].

The main challenge to implement full-duplex radios is the
self-interference signal from the transmitter chain into the
receiver chain, which can saturate the front-end of the receiver,
and must be canceled. A full-duplex radio design using signal
inversion and adaptive cancellation was proposed in [1]. In[2],
self-interference is canceled by generating a canceling signal
and adding it at the receive antenna using radio-frequency (RF)
adder in the analog domain. Analog domain cancellation for
a single antenna and multiple antenna full-duplex system was
studied in [3], [4] and [5], respectively.

The increased spatial diversity with the use of multiple-input
multiple-output (MIMO) systems enables transmit beamform-
ing techniques to mitigate the self-interference [6]-[9].Null-
space projection and minimum mean-squared error (MMSE)
techniques are used in [6] to mitigate the self-interference
in the spatial domain, which are possible when there are
enough degrees of freedom (d.o.f.). An effective techique
under insufficient number of d.o.f. is proposed in [7] that
maximize the signal-to-interference ratio at the relay input
and output. In [8], a self-interference cancellation algorithm

based on the optimization of the relay processing vectors over
the continuous domain is proposed, which outperforms the
techniques in [6]. In [9], transmit and receive beamformingand
power allocation techniques for MIMO full-duplex/half-duplex
decode-and-forward/amplify-and-forward relays are discussed.

Most of the works on optimization problems related to full-
duplex systems have studied the maximization of the achiev-
able rate [10]-[12] and to the best of our knowledge, MSE
based transceiver designs have not been studied. MSE is an
important performance measure to approach the information-
theoretic limits of Gaussian channels, and has been widely
considered as an optimization metric in precoding design in
the literature, e.g., [13]-[15]. In this paper, a joint and iterative
transceiver design for the MIMO bi-directional full-duplex
systems is proposed. We assume that the nodes have imperfect
channel state information (CSI) of the MIMO channels, and
we consider the limited dynamic ranges of the transmitters and
receivers. Minimization of both sum-MSE and the maximum
per-node MSE subject to individual power constraints at
each node is studied, and an alternating iterative algorithm
to compute the optimum transmit and receiving matrices is
proposed, which is guaranteed to converge to at least a local
optimal solution.

The notations used in this paper are as follows.(·)T and
(·)H are the transpose and conjugate transpose, respectively.
E {·} denotes the statistical expectation;IN is the N by N

identity matrix; tr(·) and are the trace and determinant of a
matrix; diag(A) is the diagonal matrix with the elements on
the diagonal ofA. vec(·) is a one long column vector obtained
by stacking the elements of a matrix.⊗, ⊥ and‖ · ‖2 denote
Kronecker product, the statistical independence, and Euclidean
norm of a vector, respectively. We will also refer to full-duplex
as FD and half-duplex as HD.

II. SYSTEM MODEL

We consider a FD MIMO system between two nodes
exchanging information simultaneously as seen in Fig. 1. We
assume, without loss of generality, that each node hasN

physical antennas that can transmit and receive simultaneously
at the same carrier frequency [5].

As illustrated in Fig. 1, since the nodes operate in FD mode,
the receiveri ∈ {1, 2} receives signals from both transmitters
over MIMO channels, the entries of which are assumed to i.i.d.
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Fig. 1. Bi-directional Full-Duplex MIMO System

complex Gaussian variables with zero mean and unit variance.
Hii ∈ CN×N is the channel betweenith transmitter-receiver
pair andHij ∈ CN×N , j ∈ {1, 2} andj 6= i is the self-
interference channel from the transmitterj to the receiveri.1

The channel matrices are assumed to be constant during a time
slot, but change randomly at each time slot.

We assume that both nodes estimate the channels, and
because of the channel estimation errors, they have imperfect
CSI. We use the channel estimation model in [6], [7], where
the receiveri ∈ {1, 2} applies the MMSE estimation method to
estimateHij . The MMSE estimation and the estimation error
are denoted as̃Hij and∆Hij = Hij−H̃ij , respectively. Here
H̃ij and∆Hij are uncorrelated, and the entries of∆Hij are
complex Gaussian with zero mean and varianceσ2

e .
The data streams at theith transmitter are denoted asdi ∈

C
N , i = 1, 2, which are assumed to be complex, zero mean,

i.i.d with E
{

did
H
i

}

= IN , andE
{

did
H
j

}

= 0N , i 6= j.
The transmitted signal by theith transmitter of sizeN × 1

is given by
xi = Vidi, i = 1, 2 (1)

where Vi ∈ CN×N is the precoding matrix at theith
transmitter, andxi is assumed to be Gaussian distributed with
zero mean and covariance matrixE

{

xix
H
i

}

= ViV
H
i .

We consider a FD MIMO bi-directional system, where two
nodes transmit simultaneously. Thus, the receiveri receives
the transmission signals from both transmitters. The received
signal at theith receiver of sizeN × 1 is written as

yi =
√
ρiHii (xi + ci) +

√
ηiHij (xj + cj) + ei + ni

=
√
ρiH̃iixi +

√
ρi∆Hiixi +

√
ρiHiici +

√
ηiH̃ijxj

+
√
ηi∆Hijxj +

√
ηiHijcj + ei + ni, i = 1, 2 (2)

wherexj = Vjdj is N × 1 the self-interference signal at the
ith receiver, which is Gaussian distributed with zero mean and
covariance matrixE

{

xjx
H
j

}

= VjV
H
j . Note that, the number

of streams is assumed to be equal to the number of antennas,
N . ni ∈ CN is the additive white Gaussian noise (AWGN)
vector at theith receiver with zero mean and unit covariance
matrix,E

{

nin
H
i

}

= IN and it is uncorrelated to bothxi and

1Before analog domain cancellation, the self-interferencechannel has a
strong Line-Of-Sight (LOS) component, so can be modeled as Ricean distri-
bution with a largeK-factor. After applying an analog domain cancellation,
the strong LOS component is attenuated, resulting in a Ricean distribution
with a smallK-factor or a Rayleigh distribution (under large suppression) [2].

xj . ρi denotes the average power gain of theith transmitter-
receiver link, andηi denotes the average power gain of the
self-interference channel.
ck ∈ CN , k = 1, 2 is the transmitter distortion injected at

each transmitter antenna of thekth transmitter that models the
effect of limited dynamic range (DR) by approximating the
effects of power-amplifier noise, non-linearities in the DAC
and phase noise [10]. The covariance matrix ofck is given
by κ (κ ≪ 1) times the energy of the intended signal at each
transmit antenna. In particularck can be modeled as [10]

ck ∼ CN
(

0, κ diag
(

VkV
H
k

))

, ck ⊥ xk. (3)

ek ∈ CN , k = 1, 2 is the receiver distortion injected
at each receive antenna of thekth receiver that models the
effect of limited receiver DR by approximating the effects of
additive gain-control noise, non-linearities in the ADC and
phase noise [10]. The covariance matrix ofek is given by
β (β ≪ 1) times the energy of the undistorted received signal
at each receive antenna. In particular,ek can be modeled
as [10]

ek ∼ CN (0, βdiag(Φk)) , ek ⊥ uk (4)

whereΦk = Cov{uk} anduk is thekth receiver’s undistorted
received vector, i.e.uk = yk − ek.

Since the receiveri ∈ {1, 2} has the knowledge of the self-
interference signalxj from transmitterj ∈ {1, 2}, j 6= i, the
self-interference term

√
η
i
H̃ijxj can be canceled [10], and the

resulting received signal can be written as

ỹi = yi −
√
ηiH̃ijxj (5)

=
√
ρiH̃iixi + vi

wherevi is the total noise after the self-interference cancel-
lation due to channel estimation errors and limited DR of the
transmitters/receivers, and is given by

vi =
√
ρi∆Hiixi +

√
ρiHiici +

√
ηi∆Hijxj

+
√
ηiHijcj + ei + ni. (6)

Similar to the analysis in [10], underκ ≪ 1 andβ ≪ 1,
the covariance matrix ofvi can be approximated as

Σ̃i ≈ ρiκH̃iidiag
(

ViV
H
i

)

H̃H
ii + ρiσ

2
e tr

{

ViV
H
i

}

IN (7)

+ ηiκH̃ijdiag
(

VjV
H
j

)

H̃H
ij + ηiσ

2
e tr

{

VjV
H
j

}

IN

+ βρidiag
(

H̃iiViV
H
i H̃H

ii

)

+ IN

+ βηidiag
(

H̃ijVjV
H
j H̃H

ij

)

, i, j ∈ {1, 2} andj 6= i.

To estimate the data streams, nodei applies the linear
receiverRi, i = 1, 2.

d̂i = Riỹi (8)

=
√
ρiRiH̃iiVidi +Rivi.



Using (8), the MSE matrix at theith receiver can be
expressed as

MSEi = E

{

(

d̂i − di

)(

d̂i − di

)H
}

=
(√

ρiRiH̃iiVi − IN

)(√
ρiRiH̃iiVi − IN

)H

+RiΣ̃iR
H
i . (9)

III. SUM-MSE MINIMIZATION

Sum-MSE optimization problem can formulated as

min
Vi, Ri

2
∑

i=1

tr{MSEi} (10)

s.t tr
{

ViV
H
i

}

≤ Pi, i = 1, 2 (11)

wherePi is the individual power constraint at theith trans-
mitter.

Note that the sum-MSE optimization problem (10)-(11) is
not jointly convex over transmit precoding matricesVi and re-
ceiving filter matricesRi, so the standard convex optimization
methods can not be applied. But since sum-MSE optimization
problem (10)-(11) is component-wise convex overVi and
Ri, an iterative alternating algorithm that finds the efficient
solution ofVi, Ri, i = 1, 2 based on the necessary conditions
of the optimization problem (10)-(11) is carried out.

The Lagrange function of the sum-MSE problem (10)-(11)
is written as:

L(Vi, Ri, λi) =

2
∑

i=1

tr{MSEi}+
2

∑

i=1

λi

(

tr
{

ViV
H
i

}

− Pi

)

where λi is the Lagrange multiplier associated with the
individual power constraint at the transmitteri. The Karush-
Kuhn-Tucker (KKT) conditions can be written as

tr
{

ViV
H
i

}

− Pi ≤ 0, i = 1, 2 (12)

λi ≥ 0, i = 1, 2 (13)

λi

(

tr
{

ViV
H
i

}

− Pi

)

= 0, i = 1, 2 (14)
∂L
∂V∗

i

= 0,
∂L

∂R∗

i

= 0, i = 1, 2. (15)

Taking the partial derivative of the Lagrangian functionL with
respect to the matrixVi andRi, we can obtain

∂L
∂V∗

i

= λiVi −
√
ρiH̃

H
iiR

H
i +XiVi (16)

∂L
∂R∗

i

= −√
ρiV

H
i H̃H

ii + ρiRiH̃iiViV
H
i H̃H

ii +RiΣ̃i (17)

whereXi in (16) is given by

Xi = ρiH̃
H
iiR

H
i RiH̃ii + ρiκdiag

(

H̃H
iiR

H
i RiH̃ii

)

+ ρiσ
2
e tr

{

RiR
H
i

}

IN + ρiβH̃
H
ii diag

(

RH
i Ri

)

H̃ii

+ ηjκdiag
(

H̃H
jiR

H
j RjH̃ji

)

+ ηj σ2
e tr

{

RjR
H
j

}

IN

+ ηjβH̃
H
jidiag

(

RH
j Rj

)

H̃ji, i = 1, 2. (18)

From (16)–(17), the optimalVi andRi, i = 1, 2 can be
expressed as

Vi =
√
ρi (λiIN +Xi)

−1
H̃H

iiR
H
i (19)

Ri =
√
ρiV

H
i H̃H

ii

(

ρiH̃iiViV
H
i H̃H

ii + Σ̃i

)

−1

. (20)

As it is seen from (19)–(20) that the optimal transmit
precoding matrixVi is dependent on the receiving filter
matrices of two nodes,Ri, i = {1, 2} and the optimal
receiving matrixRi, which is a linear MMSE receiver, is
dependent on the optimal transmit precoding matrices of two
nodes,Vi, i = {1, 2}. Therefore, we obtain the transmit
precoding and receive filtering matrices using an iterative
alternating technique. Particularly, we compute and update
the optimal transmit matricesVi from (19) when the receive
filters Ri, i = {1, 2} are fixed, and then using the transmit
matricesVi obtained at the previous step, we compute and
update the receiver filter matricesRi from (20). The iterations
are repeated until convergence or a pre-defined number of
iterations is reached.

The values of the Lagrange multipliersλi, i = 1, 2 are
calculated by taking the singular value decomposition of

X
[n+1]
i = U

[n+1]
i ∆

[n+1]
i

(

U
[n+1]
i

)H

and writing the update

asV[λ̃i]
i =

√
ρi

(

λ̃iIN +X
[n+1]
i

)

−1

H̃H
ii

(

R
[n+1]
i

)H

at each

iteration. By pluggingV[λ̃i]
i into the power constraint in (11)

and after simple steps, (11) can be written as

tr

{

V
[λ̃i]
i

(

V
[λ̃i]
i

)H
}

= ρi

N
∑

k=1

g
[n+1]
ik

(

λ̃i +∆
[n+1]
ik

)2 = Pi (21)

where g
[n+1]
ik denotes thekth element of

(

U
[n+1]
i

)H

H̃H
ii

(

R
[n+1]
i

)H

R
[n+1]
i H̃iiU

[n+1]
i and ∆

[n+1]
ik denotes thekth

element of the matrix∆[n+1]
i . We can computẽλi, i = 1, 2

from (21) numerically using Bisection search. The values of
the Lagrange multipliersλi, i = 1, 2 are equal toλ̃i, i = 1, 2
if λ̃i, i = 1, 2 is non-negative. Otherwise, the Lagrange
multipliersλi, i = 1, 2 are assigned as zeros.

Since the proposed iterative alternating algorithm decreases
the sum-MSE monotonically at each iteration, and the fact
that MSE is bounded below (at least by zero), it is easily seen
that the proposed algorithm is convergent and guaranteed to
converge to at least a local optimal solution.

IV. M IN-MAX MSE MINIMIZATION

In the sum-MSE transceiver design problem discussed in
Section III, each node can have different MSEs, which may
not be fair. On the other hand, the Min-Max per-node MSE
transceiver design problem ensures that each receiver has the
same MSE so that it introduces fairness among the two FD
nodes. The Min-Max MSE optimization problem is formulated
as:

min
Vi, Ri

max
i=1,2

tr{MSEi} (22)

s.t tr
{

ViV
H
i

}

≤ Pi, i = 1, 2. (23)



Similar to the sum-MSE optimization problem (10)-(11),
the Min-Max MSE optimization problem is not jointly convex
over transmit precoding matricesVi and receive filtering
matricesRi. Therefore we again apply the iterative alternating
algorithm to compute the optimalVi or Ri while keeping
the other one fixed. For fixed receiver filtering matrices
Ri, i = 1, 2, the Min-Max optimization problem to compute
the optimal transmit precoding matrix can be written as:

min
Vi

max
i=1,2

tr{MSEi} (24)

s.t tr
{

ViV
H
i

}

≤ Pi, i = 1, 2. (25)

By introducing an auxiliary variablel, which is an upper bound
on the square root of tr{MSEi} (i.e.,

√

tr{MSEi} ≤ l), the
optimization problem (24)–(25) can be rewritten as

min
Vi, l

l (26)

s.t
√

tr{MSEi} ≤ l i = 1, 2 (27)

tr
{

ViV
H
i

}

≤ Pi, i = 1, 2. (28)

To solve the optimization problem in (26)-(28), we need
to write tr{MSEi} in vector form. As shown in Appendix,
tr{MSEi} can be written as

tr{MSEi}

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

[

IN ⊗
(√

ρiRiH̃ii

)]

vec (Vi)− vec (IN )

√
ρiκ

[

IN ⊗
(

(

diag
(

H̃H
iiR

H
i RiH̃ii

))1/2
)]

vec (Vi)

√

ρiσ2
e

√

tr
{

RiR
H
i

}

vec (Vi)
√
βρi

[

IN ⊗
(

(

diag
(

RH
i Ri

))1/2
H̃ii

)]

vec (Vi)

√
ηiκ

[

IN ⊗
(

(

diag
(

H̃H
ijR

H
i RiH̃ij

))1/2
)]

vec (Vj)

√

ηiσ2
e

√

tr
{

RiR
H
i

}

vec (Vj)
√
βηi

[

IN ⊗
(

(

diag
(

RH
i Ri

))1/2
H̃ij

)]

vec (Vj)
√

tr
{

RiR
H
i

}

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

2

, ‖µi‖22. (29)

After obtaining the vector form of tr{MSEi}, the Min-
Max optimization problem to compute the transmit precoding
matrices (26)-(28) can be written as

min
Vi, l

l (30)

s.t ‖µi‖2 ≤ l, i = 1, 2 (31)

‖vec (Vi)‖2 ≤
√

Pi, i = 1, 2. (32)

Since the objective function (30) is linear and the con-
straints (31)–(32) are second-order cones, we can conclude
that (30)–(32) is a second-order cone programming (SOCP)
problem [16] and can be efficiently solved by standard SOCP
solvers.

Under the fixed transmit precoding matricesVi, it is shown
in (20) that the optimalRi, i = 1, 2 is linear MMSE receiver.
So overall, the iterative alternating Min-Max MSE algorithm

applies linear MMSE receiver, under fixedVi to obtain the
optimal receive filtering matricesRi, and solves (30)–(32),
under fixed Ri to obtain the optimal transmit precoding
matricesVi. Similar to the discussion on the convergence of
the sum-MSE algorithm in Section III, we can also argue that
Min-Max MSE algorithm is guaranteed to converge to at least
a local optimal solution.

V. SIMULATION RESULTS

We simulate the sum-MSE (denoted as “Total”) and Min-
Max MSE (denoted as “MinMax”) transceiver design prob-
lems for MIMO FD bi-directional system as a function of
channel estimation errorsσ2

e and dynamic range parameters
κ andβ. For simplicity, we assumed a symmetrical scenario
with ρ1 = ρ2 = ρ and η1 = η2 = η, and the same transmit
power constraint at each transmitter, i.e.,Pi = N, i = 1, 2.
Thus, the signal-to-noise ratio (SNR) for the desired chan-
nels is defined asSNRi = SNR = ρN, i = 1, 2 and
the interference-to-noise ratio (INR) for the self-interference
channelsINRi = INR = ηN, i = 1, 2. The stopping criteria
(the difference between MSE values of the two iterations) and
the maximum number of iterations of the proposed iterative
alternating algorithm is set to be10−4 and1000, respectively.
The results are averaged over1000 independent channel re-
alizations. As mentioned before, the sum-MSE and Min-Max
MSE optimization problems are non-convex, so initialization
point is important to achieve a suboptimal solution with a good
performance. In [15], several choices for initial point such as
right singular matrices and random matrices initialization have
been discussed. In this paper, we use right singular matrices
initialization.

In our first example, the effect of channel estimation errors
on the MSE of Total and MinMax algorithms is examined. It
can be seen from Fig. 2 that as the channel estimation errors
increases, the MSE of both Total and MinMax algorithms
increases. Also note that channel estimation error produces an
irreducible error floor, i.e., MSE can not be further reduced
by increasingSNR, since the noise dominates the channel
estimation error at lowSNR, but at highSNR, the channel
estimation error dominates the noise, and the performance is
governed by channel estimation error, not noise [17].

In our second example, the MSE of the Total and MinMax
algorithms under limited transmitter and receiver DR is com-
pared. It can be seen from Fig. 3 that asκ andβ decrease, the
MSE value also decreases and exhibits an error floor. Also,
the MSE curves almost overlap at lowκ andβ values.

The last example computes the MSE values for each node
in the system for the Total and MinMax schemes out of one
channel realization. We can see in Fig. 4 that the Total scheme
achieves the minimum sum MSE over two nodes and the
MinMax scheme introduces fairness, by ensuring that the two
nodes have almost the same MSE.

VI. CONCLUSION

In this work, the effects of residual self-interference, due
to the imperfect CSI and limited DR at the transmitters and
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receivers, on the sum-MSE and Min-Max MSE transceiver
design problems for FD MIMO bi-directional system is stud-
ied. Since the transceiver design problems are non-convex,
an iterative alternating algorithm is proposed that compute
the transmit precoding or receive filtering matrices in an
alternating fashion while keeping the other one fixed. It is
shown through numerical simulations that MSE at each node
increases as the channel estimation error and the power of
the transmitter/receiver impairments increases. Moreover, in
Min-Max MSE transceiver design the nodes achieve the same
MSE, which is fair, and sum-MSE transceiver design achieves
the minimum total MSE over two FD nodes.

APPENDIX

After taking the trace of (9) and using‖vec (A) ‖22=
tr
{

AAH
}

, theMSEi = tr{MSEi} in (27) can be rewritten

as

MSEi =
∥

∥

∥
vec

(√
ρiRiH̃iiVi

)

− vec(IN )
∥

∥

∥

2

2

+ ρiκ

∥

∥

∥

∥

vec

(

(

diag
(

H̃H
iiR

H
i RiH̃ii

))1/2

Vi

)∥

∥

∥

∥

2

2

+ ρiσ
2
e tr

{

RiR
H
i

}

‖vec (Vi)‖22
+ ρiβ

∥

∥

∥
vec

(

(

diag
(

RH
i Ri

))1/2
H̃iiVi

)∥

∥

∥

2

2

+ ηiκ

∥

∥

∥

∥

vec

(

(

diag
(

H̃H
ijR

H
i RiH̃ij

))1/2

Vj

)
∥

∥

∥

∥

2

2

+ ηiσ
2
e tr

{

RiR
H
i

}

‖vec (Vj)‖22 + tr
{

RiR
H
i

}

+ ηiβ
∥

∥

∥
vec

(

(

diag
(

RH
i Ri

))1/2
H̃ijVj

)
∥

∥

∥

2

2
. (33)

Using the identityvec(ABC) =
(

CT ⊗A
)

vec (B), (33) can
be written as (29).
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