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Abstract: Geographic information systems (GIS) can be effectively utilized to carry out  

spatio-temporal analysis of spatial accessibility to primary healthcare services. Spatial 

accessibility to primary healthcare services is commonly measured using floating catchment 

area models which are generally defined with three variables; namely, an attractiveness 

component of the service centre, travel time or distance between the locations of the service 

centre and the population, and population demand for healthcare services. The nearest-neighbour 

modified two-step floating catchment area (NN-M2SFCA) model is proposed for computing 

spatial accessibility indices for the entire country. Accessibility values from 2010 to 2013 

for Bhutan were analysed both spatially and temporally by producing accessibility ranking 

maps, plotting Lorenz curves, and conducting spatial clustering analysis. The spatial 

accessibility indices of the 205 sub-districts show great disparities in healthcare accessibility 

in the country. The mean- and median-based classification results indicate that, in 2013, 24 

percent of Bhutan’s population have poor access to primary healthcare services, 66 percent 

of the population have medium-level access, and 10 percent have good access. 
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1. Introduction 

Primary health care (PHC) “...is the first level of contact of individuals, the family and community 

with the national health system bringing health care as close as possible to where people live and work...” 

which has to be “scientifically sound and socially acceptable methods made universally accessible” 

provided by the well-trained health professionals ([1], p.1). Therefore, spatial (potential) accessibility 

that integrates availability of well-trained health care providers, potential demand from population for 

health care services, and geographic accessibility due to distance separation between location of the 

residents and providers is an important component of PHC. Spatial accessibility has widely been used 

to evaluate the equity of spatial access to PHC services [2–7]. 

Generally, a spatial accessibility measurement system is defined by a gravity model or a floating 

catchment area (FCA) model. Recent research on spatial accessibility indicate that the FCA models are 

more widely used than the gravity model because they are intuitively interpretable and use variable-sized 

population catchment areas for each of the service centres instead of using a single catchment area for 

all the service centres, as used in the gravity model [2,6,8]. However, it is important to note that the FCA 

models are a specialized variant of the gravity model [4]. There are three major issues to deal with the 

FCA measurement system. The first issue is with respect to the availability of a number of FCA models, 

such as the 2SFCA (Two-Step Floating Catchment Area) [4], KD2SFCA (Kernel Density Two-Step 

Floating Catchment Area) [9], E2SFCA (Enhanced Two-Step Floating Catchment Area) [3], 3SFCA 

(Three-Step Floating Catchment Area) [6], and M2SFCA (Modified Two-Step Floating Catchment 

Area) [2] models that have been successfully tested for measuring spatial accessibility to primary 

healthcare services. Delamater [2] has carried out an extensive analysis of the aforementioned FCA 

models and proposed the M2SFCA model, which has been formulated based on a sound mathematical 

framework. The second issue of any spatial accessibility model is concerning the selection of a distance 

decay function, which is generally used to derive relative distance weights for the distance impedance 

parameter in the spatial accessibility model. Five different distance decay functions have been reported 

in the literature—inverse power [5], linear [10], exponential [2], Epanechnikov kernel [9], and 

Butterworth filter functions [10]; however, none of those studies has exclusively analysed the effect of 

a distance decay function on spatial accessibility measures. The third issue deals with the method of 

delineation of population catchment areas for each service centre. Past studies have delineated 

population catchment areas by defining concentric circles with certain radii of travel-time values from 

the location of each population cluster [2,3,4,6,9]. This method is termed as the buffer-ring (BR) method 

in order to distinguish it from the proposed nearest-neighbour (NN) method. The NN method delineates 

catchment area by identifying a finite number of nearest service centres for each population cluster 

instead of identifying variable number of service centres falling within a finite-size buffer ring around 

each cluster. All the FCA-based accessibility studies so far, save for Jamtsho and Corner [11], have used 

the BR method of delineating population catchment areas. Wang has noted that the choice of distance 

weighting functions and delineation of population catchment areas can only be resolved by conducting 

actual surveys on health care utilization behaviour [12]. However, it is very expensive to conduct 

individual surveys of the whole country to collect travel diaries, so these uncertainties should be 

practically resolved by developing accessibility models with sound theoretical frameworks. 
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The majority of the spatial accessibility studies were conducted in either urban or rural regions in 

developed countries using travel-time-based computational methods where road access is the main form 

of transportation, and road network data are comprehensive and readily available. Travel-time-based 

methods are ideally suited to regions where travel time can be accurately derived from route network data. 

In the absence of route network data, an alternative approach of measuring spatial accessibility is 

necessary. This paper proposes the NN method of delineating population catchment areas within the 

M2SFCA model, using straight-line distance measures instead of travel-time measures, to compute the 

spatial accessibility indices of population clusters. The novelty of the proposed method is that it uses a 

nearest-neighbour method of defining catchment areas rather than the commonly used buffer-ring method, 

which is founded on a weak theoretical framework. Bhutan has been used as a case study to test the 

proposed computational approach. This country has been chosen as the case study area due to its small 

size and population, which facilitates the computation of spatial accessibility indices for the whole country. 

The importance of developing spatial accessibility indices for the whole country is that these indices can 

be used to assess the equity of spatial access to health care services for different sub-districts and districts 

in the country, which in turn can be used to conduct evidence-based spatial planning for allocation or  

re-allocation of health resources equitably across the country. It is important to note that there are very few 

accessibility modelling trials conducted for the entire country, such as by McGrail and Humphreys [8], 

where accessibility for the whole of Australia was modelled using travel-time-based variable-sized 

catchment areas using the 2SFCA model. The proposed computational method will be specifically 

significant for developing countries where road access is limited and road network data are scarce. 

This paper has been structured as follows. Section 2 presents the review and evaluation of different 

FCA models. Section 3 describes data sources and outlines the methodology for computing spatial 

potential accessibility indices using the proposed straight line based method. Section 4 presents the 

spatial accessibility results. The spatial and temporal changes in spatial accessibility to primary health 

care services between 2010 and 2013 were assessed using accessibility values of population clusters, 

and composite accessibility indices of sub-districts and districts. Sections 5 and 6 present a discussion 

and conclusions, respectively. 

2. Review of Floating Catchment Area (FCA) Models 

A modification to the original 2SFCA method was proposed by Delamater [2], and named it as the 

M2SFCA method. An adapted version of the M2SFCA model is given by Equation (1), 
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where Ai is the spatial accessibility index of population cluster i, n is the total number of healthcare 

service provider locations associated with population cluster i, Sj is the number of healthcare providers 

available at location j, Wij and Wkj are distance weights computed using a distance decay function, m is 

the total number of population clusters associated to the health facility j, and Pk is the population at the 

population cluster location k. 

FCA-based accessibility indices are usually computed in two-steps due to the two summations 

involved in the model (Equation (1)), thus the prefix “two-step” is used in the nomenclature of FCA 
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models. The variants of the FCA model differ only by their weighting mechanism. If all the weighting 

variables in Equation (1) are excluded, then it represents the 2SFCA model and if only one Wij variable 

is excluded then it represents the E2SFCA and KD2SFCA models. The E2SFCA and KD2SFCA models 

differ only by their use of a different distance decay function, in that the former model uses a step 

function, whereas the latter model employs a continuous decay function [2]. Figure 1 shows two different 

distance decay functions which define the aforementioned FCA methods. The 3SFCA model is the 

original E2SFCA model augmented by incorporating additional weighting function, Dij, on both the 

numerator and denominator components. Dij can be defined using Equation (2), which is a ratio of the 

distance weight of the population cluster location i and associated health facility j and the sum of all the 

distance weights for the population cluster i and its associated health facilities. 





n

j

ij

ij

ij

W

W
D

1

 
(2) 

 

Figure 1. Step (E2SFCA) and continuous (KD2SFCA) decay functions. 

In order to understand the computational framework of different FCA models, following [2],  

a simulated system of service providers and population clusters was designed to evaluate these models. 

Figure 2 shows the design of a simulated system with two service centres and six population clusters. 

The entities A and B represent service providers and p, q, r, x, y, and z represent the locations of 

population clusters. For the sake of computation, the number of service providers in both service centres 

are assumed to be 10 and the number of people in each population clusters is assumed to be 100. The 

result of the computation of spatial accessibility values using three different FCA methods are shown in 

Table 1. The unit of the spatial accessibility value (Ai) is opportunities per person. As expected, Ai values 

of q and y clusters are lower than the values of p, r, x, and z clusters for the E2SFCA and M2SFCA 

models. KD2SFCA model was not tested as its mathematical formulation is similar to that of the 

E2SFCA model. However, Ai values of q and y clusters are larger than the corresponding values of p, r, 

x and z clusters for the 3SFCA model, which is logically incorrect. The results of the 3SFCA model 

obtained in this study agree with the results obtained by Delamater [2], who has conducted an extensive 



ISPRS Int. J. Geo-Inf. 2015, 4 1588 

 

 

comparison between FCA measurement systems using a simple simulated system. Hence, it is evident 

from these computational experiments that the 3SFCA method is mathematically inconsistent and 

inferior to the other FCA measurement systems. 

 

Figure 2. A simulated system. 

Table 1. Accessibility results from simulated system. 

Methods 
Ai Values (Opportunities per Person) 

Estimated Total 

Opportunities  

of a System 

p q r x y z 

E2SFCA 0.03464 0.03073 0.03464 0.03464 0.03073 0.03464 

3SFCA 0.03317 0.03366 0.03317 0.03317 0.03366 0.03317 

M2SFCA 0.02527 0.02274 0.02527 0.02527 0.02274 0.02527 

 Total opportunities for a population unit 

E2SFCA 3.46365 3.07270 3.46365 3.46365 3.07270 3.46365 20 

3SFCA 3.31721 3.36558 3.31721 3.31721 3.36558 3.31721 20 

M2SFCA 2.52676 2.27425 2.52676 2.52676 2.27425 2.52676 14.66 

Both the E2SFCA and M2SFCA produce mathematically-consistent accessibility values. However, 

as pointed out by Delamater [2], the difference between these two models is that the M2SFCA model is 

more accurate when dealing with systems with sub-optimal configuration because it takes into account 

the absolute distance separation between the population and provider locations, unlike the E2SFCA 

model, which only considers the relative distance separation. Theoretically, an optimal configuration 

system is realized when both the population and provider locations are collocated. Any other 

configuration system is defined as sub-optimal. Following [2], for instance, the E2SFCA method 

produces the same accessibility values for all three population clusters, irrespective of the absolute 

distance separation between the population and provider locations in the following two configuration 

systems: first, a system with three population clusters located in different directions at the same distance 

of 2 km from the sole provider, and second, a system with three population clusters located in different 

directions at the same distance of 5 km from the sole provider. This limitation of the E2SFCA model 

can potentially bias the accessibility outcome of the disadvantaged regions by over-estimating their 

accessibility values as illustrated in the aforementioned scenario where three population clusters that are 

located 5 km away from the provider location have the same accessibility values as the population 
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clusters that are located 2 km away. Such bias in the accessibility values is often referred to as the 

problem of over-estimation [2,6]. 

In addition, the M2SFCA model also produces lower accessibility values than the other FCA models. 

A conservative estimate of spatial accessibility values also results in estimating lower total opportunities 

than the actual total opportunities available in the complete system. The total opportunities available to 

a population unit is equal to the product of its spatial accessibility value (opportunities per person) and 

population, and an estimated total opportunity available in a system is equal to the sum of total 

opportunities of all population units within the system. Table 1 also shows that all 20 providers available 

in the simulated system have been distributed relatively between six population units by the E2SFCA 

and 3SFCA computational approach, whereas only 14.66 providers have been distributed by the 

M2SFCA approach. For any distance separation between provider and population locations, the 

E2SFCA and 3SFCA models will compute accessibility values of population units such that the 

estimated total opportunities in the system is always equal to the actual total opportunities available in 

the system. On the contrary, the M2SFCA model will compute spatial accessibility values of population 

units such that the estimated total opportunities available in the system progressively decrease with the 

increase in the absolute distance separation between the provider and population locations. This 

computational characteristic of the M2SFCA model makes more sense because the total opportunities 

available for a population unit must decrease with the increase in distance from the provider location 

because of the distance impedance costs incurred for accessing the services. Therefore, the M2SFCA 

model appears to be the most reliable computational model for measuring spatial accessibility to primary 

health care services, which has been adopted in this study. 

3. Methodology 

In the FCA measurement system, each health centre has a population catchment area and each 

population cluster has a service catchment area, which is generally finite and overlapping with the 

neighbouring catchment areas. The actual delineation of population catchment areas is supposed to be 

performed by modelling the spatial relationships between the service centre and the residents living 

within the vicinity of the service centre [4]. However, it is not practically feasible to accurately model 

the provider-population interaction since this would require extensive and costly surveys throughout the 

country. Therefore, the service and population catchment areas should be defined by developing a sound 

theoretical framework underpinning the spatial accessibility model. One such method can be developed 

on the basis of Tobler’s first law of geography, which states that the nearest entities interact each other 

more than the farther ones [13]. The proposed NN method assumes that people tend to seek healthcare 

services from the nearest facilities rather than from the farther ones. 

The population catchment area of each service centre is defined by the number of population clusters 

associated with each service centre and the service catchment area is defined by the number of service 

centres associated with each population cluster. The existing method of delineation of service and 

population catchment areas are based on a BR method where catchment areas are modelled by 

associating service centres and population units falling within a specified travel-time or distance units. 

For instance, in a travel-time based computation approach, the service catchment area of each population 

cluster is defined by identifying potential service centres falling with a buffer ring of 30 [3], 45 [2], or 
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60 min [6] from the location of the population clusters. Similarly, a population catchment area of each 

service centre is defined by associating all population clusters falling within the specified buffer ring 

from the location of the respective service centres. This method of delineating catchment areas is flawed 

due to both theoretical and practical limitations. First, any real value is theoretically possible to define a 

buffer ring, for instance 5 min, 11 min, or 15.56 min can be used equally. Even the most commonly used 

time measure of 30 min is, at best, arbitrarily defined. The availability of infinite real values creates 

uncertainty in identifying a single accurate measure to define the buffer ring. On the contrary, the NN 

method eliminates or minimizes this real value ambiguity by directly associating each population cluster 

with a whole number of nearest neighbours, service centres. Second, the BR method produces a biased 

accessibility scores between different population clusters because population clusters are associated with 

variable number of service centres ranging from few to hundreds. For instance, McGrail and Humphreys 

have used a maximum of 100 nearest service centres found within a 60 min search radius to compute a 

2SFCA-based accessibility measure [14]. Obviously, people would not access these many service 

centres, so the majority of those potential service centres are practically redundant, which only contribute 

accessibility bias by largely measuring “choice” in urban areas rather than actual accessibility, as 

correctly pointed by McGrail ([15], p. 6). The accessibility bias due to differences in associated service 

centres between population clusters will be referred as choice bias, henceforth. Recall that accessibility 

score of a given population cluster is computed as an additive component due to all the associated service 

centres (see Equation (1)). On the other hand, the NN method has the potential to completely eliminate 

the aforementioned accessibility bias by associating same number of service centres with each 

population clusters. Even with the use of variable number of nearest neighbours in order to segregate 

between rural and urban regions, for practical purpose, there is no need whatsoever to associate hundreds 

of service centres with any population cluster because it is unrealistic to assume that people would 

associate with such a large number of service centres, especially health centres. Third, the health 

planning and allocation of GP services should be done with an objective to provide few services as close 

as possible to the location of all population clusters. So the evaluation of accessibility should be done by 

comparing the service availability at few closest locations rather than by including redundant number of 

service centres located within 30, 45, or 60 min. 

The NN method was originally developed to accommodate large variation in distances between some 

population clusters from their nearest health facilities while evaluating spatial accessibility of the entire 

nation [11]. For Bhutan, no particular distance cut-off value can be used since it has been observed from 

the health centres and population clusters network data that some of the population clusters (located in 

Lunana sub-district of Gas district) are located 53 kilometres away from their nearest health facilities. If 

this largest distance is chosen as the threshold value then the urban population would be associated with 

the population catchment areas of the health centres located in farther rural regions, and vice versa which, 

in practice, is not true. If a threshold distance smaller than the largest distance is chosen then some 

population clusters in rural regions will have no health facilities assigned to them as all the health 

facilities would fall outside the threshold distance. In order to associate all population clusters to some 

health facilities, each population cluster was associated to their two nearest health centres. It was decided 

to use the two closest health facilities by considering two criteria. Firstly, it was observed from the health 

system network data that most of the urban regions have more than one health facility located in a close 

proximity to another. Even in the rural regions, there are many population clusters that have almost 
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equidistant health facilities located within their vicinity. In such instances, it is quite inaccurate to choose 

just one health facility as the only likely target facility. Secondly, the third-nearest health facility for the 

majority of the population clusters are located relatively much further away as the majority of  

sub-districts have only one or two health facilities. To choose more than two nearest health facilities is 

quite redundant and impractical because it is unlikely that people would travel to the third-nearest health 

facilities if there are two nearer health facilities located within their vicinity. Even in a densely populated 

region, such as Thimphu city, there are only five health centres available. Considering two nearest 

neighbours accommodates about half of the available opportunities. Therefore, the choice of two nearest 

health facilities was considered as optimal to define a realistic configuration of the healthcare delivery 

system for Bhutan. So the value of parameter n in Equation (1) is 2 for all population clusters. However, 

the value 2 is not absolute in the NN method because it can be adapted uniformly or variably in 

accordance with the health network data of a particular region. 

 

Figure 3. Population catchment area of JDWNRH. 

In order to delineate the population catchment areas of every health centre, firstly, each population 

cluster was associated with its two nearest health centres based on distance proximity, and secondly, the 

population catchment area of the health centres were delineated by including all the population clusters 

(both first- and second-nearest clusters) that were associated with the respective health centre. Figure 3 

shows the distribution of the first- and second-nearest population clusters that were associated with 

Jigme Dorji Wangchuck National Referral Hospital (JDWNRH). The population clusters represented by 

circular markers are the clusters for which JDWNRH is the first-nearest facility, and the population 

clusters represented by star markers are those clusters for which JDWNRH is the second-closest health 

facility. Thus, the population catchment area of JDWNRH is formed by combining all first- and second-

nearest population clusters associated to this health centre. 
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4. Data Sources and Modelling 

Bhutan, a developing country located between China and India, with a population of about  

730,000 people, has been chosen as the case study area. The administrative region of this country is 

divided into 20 districts and each district is further divided into sub-districts. There are 205 sub-districts 

in the country. Owing to the small size of the country, it is possible to compute spatial accessibility to 

primary health care services for the entire country, unlike the majority of previous work [3,4,6,7,9,14] 

in which only small region of a country was used. About 60 percent of the population of Bhutan live in 

rural areas where road transportation is sparsely available. The health care system in this country is 

completely owned by the government and provided free to all residents. Primary health care services are 

delivered to far-flung regions of the country through the establishment of subsidiary health centres such 

as Basic Health Units, Outreach Clinics, and Sub-posts. The distribution of various health facilities are 

shown in Figure 4 

 

Figure 4. Distribution of population clusters and health facilities. 

Two primary spatial datasets required for computing spatial accessibility are population cluster data 

at the village level and the location of each health facility with its attractiveness attribute, such as the 

number of health care providers in each health centre. Two different primary health care providers, 

namely, doctors (general practitioners) and health assistants (HA), were used to define the attractiveness 

variable. Due to the acute shortage of doctors in the country, the health assistants are specially trained 

to provide primary level diagnostic services. Most of the health data was obtained from the Ministry of 

Health with only the location of some of the health centres being derived using rural cadastral data from 

the National Land Commission (NLC), the national mapping agency of Bhutan. Population cluster data 

at the village level are not available so it was necessary to model this data using aggregated population 

data. Housing data and aggregated population data were obtained from the National Statistical Bureau, 

the custodian of the Population and Housing Census of Bhutan (PHCB) 2005 database. PHCB 2005 is the 

first nationwide population and housing census ever undertaken in Bhutan. Locations of villages 
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throughout the whole country were obtained from the NLC, and these locations have been used to define 

population cluster points. 

The population data of Bhutan is published for sub-districts and town enumeration blocks, at a level 

that is too aggregated to be used reliably for the computation of spatial accessibility due to the modifiable 

areal unit problem (MAUP). MAUP introduces a statistical bias because of the use of actual point data 

as aggregated data [16]. For instance, it influences statistical results when point-based surveyed 

population data are represented at the aggregated sub-district or district level. There are a number of 

different statistical and non-statistical methods available to disaggregate population census data to 

smaller areal units. One commonly used method is the dasymetric mapping technique which uses some 

ancillary data to distribute a population from source areal unit to target units [17–19]. 

A simple model of dasymetric mapping technique using housing data to distribute a population  

of source units to target units is proposed in this study. It is a grid-based population distribution method 

where relative population distribution weights of the target cells were computed using the variation in 

density of the housing features located within each target cells. The proposed method was tested using 

the population and housing census data of Bhutan and compared with the results obtained from the 

traditional dasymetric method [18], which uses land use data to aid the interpolation process. The internal 

accuracy of these two dasymetric methods was evaluated by comparing population estimates of sixty-six 

town enumeration blocks. The truth value is the actual population of each disaggregated block obtained 

from a population survey. In order to crudely find out the accuracy of the dasymetric models, the 

population estimation was done at the higher aggregation level (aggregated town block in Figure 5). 

Then, the population estimates for each disaggregated block (disaggregated town block in Figure 5) was 

obtained by adding up the individual population estimates falling within its boundary. This estimate was 

compared with the truth value. 

 

Figure 5. Test area (Thimphu urban area). 

Table 2 shows the error statistics of the proposed and traditional dasymetric methods. The mean 

absolute percent error (MAPE) and root mean squared error (RMSE) statistics are commonly used to 

assess the accuracy of dasymetric techniques [17,18]. MAPE is the percentage error computed using the 

absolute differences between the actual and estimated population values. The lower MAPE and RMSE 

values of the proposed dasymetric method than the traditional dasymetric method indicates that the 
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proposed method is more accurate than the traditional method. The traditional model is only 34  

(100–66) percent accurate, whereas the proposed dasymetric model is about 55 (100−45) percent accurate. 

Table 2. Error statistics. 

Statistics Traditional Dasymetric Method Proposed Method 

MAPE 66.10% 44.84% 

RMSE 852 618 

Population point features were generated at the individual grid locations bearing the population 

estimates, which were obtained from the dasymetric mapping process. Each of the population point 

features were associated to a nearby village-level population cluster point, which serve as an anchor 

point to collect the population estimates within that vicinity. The population value of each of the cluster 

points is equal to the sum of the values of its associated population point features. Figure 4 also shows 

the distribution of the population cluster data across the country. 

5. Processing Steps 

The general processing steps for the computation of spatial accessibility to primary healthcare service 

in Bhutan are shown in Figure 6. In Step 1, the origin-destination distances for all possible combinations 

between the health facilities and the population clusters within the national boundary were computed 

and then first- and second-nearest health centres of each population clusters were identified. Step 2 deals 

with the computation of spatial accessibility indices of the population clusters using the NN-M2SFCA 

model. In this study the continuous distance decay function defined with an exponential function was 

used to compute the distance weighting values. Firstly, the population catchment area of each health 

facility was determined by including all the first- and second-nearest population clusters associated with 

the given health facility, and then the denominator component of Equation (1) was computed. Secondly, 

the spatial accessibility indices of the given population cluster were computed as an additive components 

due to its associated health centres. Step 3 deals with the computation of sub-district accessibility index 

(Sk) and its relative accessibility index (RAk) using Equations (3) and (4), respectively, 
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where Ai is the spatial accessibility of the population cluster at location i, p is the number of population 

clusters within the sub-district k, and q is the number of sub-districts within the country. The sub-district 

accessibility index is simply computed by averaging the accessibility indices of all the population 

clusters falling within that sub-district. The relative accessibility index is computed using the minimum 

and maximum values of all the sub-district accessibility indices to rescale the given accessibility value 

to be within 0 and 1, where 1 refers to the highest accessibility and 0 refers to the lowest accessibility 

within the country. The accessibility ranking of the sub-districts can be obtained by re-arranging the 
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relative accessibility values in ascending order. Using similar computational methods to Step 3, districts’ 

accessibility indices and their relative accessibility indices were computed in the final step (Step 4). 

 

Figure 6. Flowchart showing steps for computing spatial accessibility. 

6. Results and Analysis 

6.1. Analysis of Doctors’ Services 

The population clusters’ accessibility values can be used to compare the spatial accessibility of 

different regions. Figure 7 shows the spatial accessibility of doctors’ services for all the population 

clusters of the four districts in 2013. This plot clearly indicates the variation of spatial accessibility 

between four districts, with Thimphu district having better accessibility for doctors’ services than the 

other three districts. This is to be expected as Thimphu is the capital of the country. 
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Figure 7. Accessibility values for doctors’ services of the four districts. 

 

Figure 8. Districts and sub-districts accessibility ranking map for doctors’ services. 

The relative accessibility values of sub-districts and districts can be used to produce choropleth 

accessibility ranking maps. Figure 8 shows the regional ranking map for doctors’ services in 2013. Bold 

face figures refer to the district’s rank, while the non-bold face figures represent the ranking of the  

sub-districts. Chang and Soe sub-districts of the Thimphu district are the highest (Rank 1) and lowest 

(Rank 205) ranking sub-districts, respectively. The spatial health accessibility of Chang sub-district is 

about 135 times better than the Soe sub-district, even though the population of the former sub-district is 

six times more than the latter sub-district. In this case, the two computational parameters, namely, 

distance and the number of healthcare providers, have subdued the negative impact of the population 

parameter on the computation of the spatial accessibility indices. In terms of provider-to-population 

ratio, the spatial accessibility of Chang and Soe sub-districts can be interpreted as having one doctor for 

every 1497 and 200,000 people, respectively. Thimphu district has the highest accessibility for doctors’ 

services while Wangdiphodrang has the lowest accessibility because of the presence of poorly-ranked 

sub-districts in the latter district. 
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The spatial accessibility indices of population clusters can also be used to assess the evenness of 

distribution of primary healthcare services within a region by computing the Gini coefficient (Gc). 

Generally, the Gini coefficient is calculated by plotting a Lorenz curve, which is a plot of two variables 

represented in cumulative percentages. Mathematically, Gc is defined as the ratio between the areas: the 

numerator component represents the area between the Lorenz curve and the Line of Equality, and the 

denominator component represents the area under the Line of Equality [20]. For the spatial accessibility 

case, a Lorenz curve can be obtained by plotting the cumulative percentage of spatial units (population 

clusters or sub-districts) against the cumulative percentage of spatial accessibility values of the 

corresponding spatial unit. The Gini coefficients of the twenty districts indicates that the Pemagatshel 

district has the best equality in the distribution of health resources with a Gini coefficient of 0.09, and 

Zhemgang district with a value of 0.46 has the worst inequality of distribution of the health resources 

for doctors’ services in 2013. Figure 9 shows the Lorenz curves and Gini coefficients of five selected 

districts of Bhutan for doctors’ services. 

 

Figure 9. Lorenz curves of five districts for doctors’ services. 

6.2. Hot Spot Analysis 

One of the important aspects of spatial data analysis is the ability to determine the existence of  

spatial patterns by using either location or both the location and attribute information of the incident data 

points [21]. In this study, the Getis-Ord Gi* local statistic was used to identify hot spots (high value 

clusters) and cold spots (low value clusters) using the spatial accessibility indices of the population clusters. 

Figure 10 shows spatial clusters for doctors’ services in 2013. At the 95 percent confidence level, the 

clusters with z-score values greater than +1.96 with low p-values are categorised as hot spots and clusters 

with z-score values less than −1.96 with low p-values are categorised as cold spots. A spatial accessibility 

hot spot refers to a statistically significant feature with high accessibility values which are surrounded 

by other features with high accessibility values whereas a cold spot refers to statistically significant 

feature with low accessibility values surrounded by other features with low accessibility values. In 

general, the outcome from spatial pattern analysis can be used to investigate the underlying hidden 
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spatial processes that have caused the rejection of the null hypothesis. In this study, the hot spots and 

cold spots can be used to identify the under-served or over-served regions in order to allocate or 

reallocate the limited healthcare resources towards achieving an equitable healthcare delivery system in 

the country. 

 

Figure 10. Hot spot map for doctors’ services. 

6.3. Combined Analysis of HA’s and Doctors’ Services 

Sub-districts were classified into good, medium, and poor accessibility categories based on 

accessibility values of both the health care providers according to the classification method described by 

Unal et al. [5]. Median and average values of sub-districts’ accessibility indices for both the healthcare 

providers (doctors and HAs) were used to classify sub-districts into three classification categories. A 

poor status indicates that Gk value of a sub-district is lower than the national median value for both of 

the providers. A good status indicates that the Gk value of a sub-district is greater than the national 

average value for both the providers. All other Gk values are classified into the medium accessibility 

group. Figure 11 shows the classification of 205 sub-districts of Bhutan into three accessibility 

categories. There are 53 sub-districts with poor accessibility to both types of service providers, 121 sub-

districts that have a medium level of accessibility, and 31 sub-districts with good accessibility to both 

types of providers. About 24 percent of the Bhutan’s predicted population in 2013 falls under the poor 

access category, 66 percent falls under the medium access category, and 10 percent under the good 

access category. 

6.4. Temporal Analysis 

The spatial accessibility indices at different levels were computed from 2010 to 2013 for both types 

of healthcare providers. Figure 12 shows the temporal variation in the districts spatial accessibility 

indices for doctors’ services from 2010 to 2013. For example, the accessibility to doctors’ services  

in Thimphu district decreased by 7 percent in 2011 and then increased by 8 and 0.3 percent in 2012 and 

2013 respectively, which portrays a very similar trend to that observed for the districts’ population 

clusters’ accessibility indices shown in Figure 13. 
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Figure 11. Classification of sub-districts using Gk values of both the providers. 

 

Figure 12. Districts’ accessibility for doctors’ services from 2010 to 2013. 

 

Figure 13. Population clusters’ accessibility indices of Thimphu district from 2010 to 2013. 
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Thimphu district’s accessibility trend can be plausibly explained as follows. The computation of the 

spatial accessibility index for the population cluster depends on the distance, number of service 

providers, and population parameters. The average distance value for three years are the same, which 

indicates that the distances between the population clusters and the health facilities remained unaltered 

between 2010 and 2013; therefore, the distance parameter has not caused the variation of the Thimphu 

district’s accessibility indices within the study period. The population of the Thimphu district has 

gradually increased from 2010 to 2013 so the population parameter would decrease the accessibility 

values in the same order since this parameter is being used to normalize the accessibility index. On the 

other hand, the number of doctors available in these four years follow a similar trend in the order of their 

districts’ accessibility indices, which indicates that the number of providers parameter have impacted 

heavily for this district in the computation of its spatial accessibility indices. 

7. Discussion 

There are a number of uncertainties involved in the FCA-based accessibility model which would 

affect the accessibility outcome. These uncertainties are caused by the aggregation level of population 

cluster data because of the modifiable areal unit problem, travel distance or time measure because of the 

use of different metric measure, computational method because of the differences in weighting schemes, 

decay functions because of the differences in decaying patterns, and delineation of service and 

population catchment areas because of the differences in associating service centres to each population 

cluster. Despite there existing a number of uncertainties in the computation of spatial accessibility 

values, most or all of the variants of the FCA computational models are differentiated, based on their 

differences in the use of weighting scheme as described in Section 2. 

In a theoretical sense, the actual potential accessibility can only be obtained by using the modified 

gravity model, as all the service centres are associated with each population cluster while defining the 

catchment areas. The modified gravity model has the same mathematical form as the E2SFCA model 

except that it uses only one catchment area to compute accessibility indices at all locations of population 

clusters. Such a model can certainly be employed for a small region where all service centres are 

accessible to all population units. However the modified gravity model cannot be reliably used for large 

study regions because it unrealistically considers only one service and population catchment area within 

a study region. In the real world, not all service centres are accessible to all population units [3]. That is 

why the development of the variable-sized buffer ring method using various FCA models has dominated 

the accessibility trials [2,3,6,7,8,14]. One of the important consequences to note about the buffer ring 

method is that the number of service centres associated to each population cluster varies from one cluster 

to the other. This consequence of the buffer ring method introduces accessibility differences between 

different population clusters because the spatial accessibility index of a population cluster is computed 

as the sum of accessibility components due to all service centres associated with the given cluster. If the 

variation in the number of associated service centres between population clusters is large then the 

difference in the accessibility outcome between respective clusters will also varied considerably due to 

the choice bias. 

This study proposes a new variant of the FCA computational model based on the NN method of 

delineating the service and population catchment areas. In the NN method, the delineation of catchment 
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areas are done by associating fixed or variable number of neighbouring service centres to each population 

cluster, unlike in the buffer ring method where number of service centres associated with population 

clusters vary from one cluster to the other. Since it uses the same number of nearest neighbours, or the 

range of variable number of nearest neighbours will be considerably smaller than the BR method, the 

choice bias in the NN method will be considerably less than the BR method. Therefore the accessibility 

scores from the NN method is expected to be less than the BR method. The actual comparison of 

accessibility scores between the two methods is unlikely to produce any sensible outcome because there 

are an infinite range of values of buffer-sizes and quite a lot of whole numbers of nearest neighbours to 

be compared. These two methods can be, at best, effectively resolved by assessing theoretical and 

practical aspects of their methodology. From our perspectives, the NN method is more theoretically 

sound than the BR method. In the real world, people generally tend to associate with few service centres 

which are closer to their location rather than unknown number of centres falling within certain travel-

time or distance. A person can linguistically describe neighbouring spatial objects such as places “by 

less than 3000 miles” [22]. However, it is quite impracticable for people to spatially relate to the 

unknown number of similar places or service centres available within a specified distance, as computed 

by the buffer ring method. On the other hand, it is very much practicable to spatially relate to few closest 

service centres available within the vicinity, as computed by the NN method. Therefore, the NN method 

is practically more realistic in delineating the population catchment areas than the buffer ring method. 

However, there is one major uncertainty involved in the proposed method. It deals with the ambiguity 

in the selection of an optimal number of nearest health centres for each population cluster. Nonetheless, 

even the range of this whole number ambiguity is smaller compared to the buffer ring method where 

selection range is theoretically defined by an infinite number of real values. For Bhutan, two nearest 

neighbours were found optimal based on the general availability of only few health centres in each sub-

district. Two neighbours are not the absolute number of associations to be used for all countries because 

the decision to choose any finite number of neighbours depend on the local density of service centres 

within the study region. 

There is no exact solution to all of the uncertainties involved in the computation of spatial accessibility 

indices. The accommodation of these uncertainties in the spatial accessibility model depends on the 

nature of the data availability and the method of defining population catchment areas. In the context of 

Bhutan, the proposed NN-M2SFCA spatial accessibility model was developed to minimize the burden 

of these uncertainties by using an exponential decay function, where a variable-sized population 

catchment area of each service centre was defined by assigning the first- and second-nearest health 

facilities to each population cluster. The absolute accuracy of the accessibility values may not be known 

because of the unavailability of the perfect accessibility model as the aforementioned uncertainties 

cannot be completely eliminated through modelling. Nonetheless, these uncertainties would fully or 

partially cancel out when accessibility values are relatively compared with each other. As long as the 

spatial accessibility model is consistently defined with same parameters and the same variable catchment 

areas, then such models can be effectively utilized for assessing the spatio-temporal changes of spatial 

accessibility to PHC in different regions across the country. 
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8. Conclusions 

This study proposes the NN-M2SFCA computational method for computing indices of spatial 

accessibility to primary health care services. The proposed computational method uses the M2SFCA 

model with the distance weighting parameter defined by an exponential distance decay function and the 

population catchment areas of each health centres defined by associating first- and second-nearest health 

centres to each population cluster. The salient feature of this method is that it uses a fixed number of 

health service centres as target facilities for each population cluster in defining the service and population 

catchment areas, which has not been used in past studies for computing spatial accessibility indices. 

Furthermore, the proposed method was trialled on a small country, Bhutan, where accessibility values 

of population clusters, sub-districts, and districts were computed from 2010 to 2013. 

This study has also demonstrated that spatial accessibility indices can be used for identifying 

medically under-served and over-served regions, for measuring the equality of distribution of health 

resources across the regions and for studying spatial and temporal changes in the distribution of the 

health resources in the country. The spatial accessibility results of Bhutan for 2013 show that there is a 

huge disparity in the distribution of the health resources in this country with the best-ranked Lingzhi 

sub-district of Thimphu district having 35 times better accessibility to health assistants’ services than the 

lowest-ranked Bara sub-district of Samtse district, and Chang sub-district having 135 times better 

accessibility to doctor’ services than the Soe sub-district of the Thimphu district. The Gini coefficients 

of the twenty districts indicates that the Pemagatshel and Zhemgang districts havd the best and worst 

equality of distribution of doctors’ services, respectively, in 2013. 

The proposed NN method may be theoretically sound than the BR method, however, the efficacy of this 

model cannot be ascertained in this study because of the lack of absolute accessibility scores. It is also 

unreliable to compare the accessibility outcome between the NN and BR methods, unlike the comparative 

study done between different FCA models, where parameters remain the same except for the weighting 

parameter, because the parameters involved in both these methods can be ambiguously defined with a range 

of values. For instance, the NN method can be defined with a range of nearest neighbours (1, 2, 3, …) whereas 

the BR method can be defined with a range of radial values of buffer rings (5, 10, 15, 30, 60 min, …). 

Therefore, it is quite unrealistic to compare between one value of the NN method with another value of the 

BR method, as such comparative study cannot absolutely ascertain their differences in accessibility 

outcome. However, there is a scope to conduct a comparative study between these methods by including 

a number of values for both the methods, which will be pursued in future research. In addition, the 

Bhutanese health system does not have a systematic approach to conducting spatial planning for 

distribution of health resources in the country, which has possibly affected the decision-making process, 

as evidenced from this study where there are huge disparities in the equity of spatial access to primary 

health care services in the country. The proposed spatial accessibility measurement system can be used to 

develop a spatial decision support system to facilitate evidence-based spatial planning for equitable 

distribution of health resources across the country. 
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