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Abstract PPP-RTK is integer ambiguity resolution
enabled precise point positioning. In this contribution

we present the principles of PPP-RTK, together with a

review of different mechanizations that have been pro-

posed in the literature. By application of S-system the-
ory, the estimable parameters of the different methods

are identified and compared. Their interpretation is es-

sential for gaining a proper insight into PPP-RTK in

general, and into the role of the PPP-RTK corrections

in particular.

We show that PPP-RTK is a relative-technique for

which the ‘single-receiver user’ integer ambiguities are

in fact double differenced ambiguities. We determine

the transformational links between the different meth-
ods and their PPP-RTK corrections, thereby showing

how different PPP-RTKmethods can be mixed between

network and users. We also present and discuss four

different estimators of the PPP-RTK corrections. It is

shown how they apply to the different PPP-RTK mod-
els, as well as why some of the proposed estimation

methods cannot be accepted as PPP-RTK proper. We

determine analytical expressions for the variance ma-

trices of the ambiguity-fixed and ambiguity-float PPP-
RTK corrections. This gives important insight into their

precision, as well as allows us to discuss which parts of
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the PPP-RTK correction variance matrix are essential
for the user and which are not.
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1 Introduction

PPP-RTK is integer ambiguity resolution enabled pre-

cise point positioning (PPP) (Wubbena et al, 2005;
Mervart et al, 2008; Teunissen et al, 2010). With PPP,

precise satellite orbits and clocks are provided to enable

single-receiver users to compute their receiver-positions

with a high, decimeter or centimeter, accuracy (Zum-
berge et al, 1997; Kouba and Heroux, 2001; Bisnath

and Gao, 2008). PPP-RTK extends the PPP-concept

by providing single-receiver users, next to the orbits and

clocks, also information about the satellite phase biases.

This information, when properly provided, enables re-
covery of the integerness of the user-ambiguities, thus

enabling single-receiver ambiguity resolution thereby re-

ducing the convergence times as compared to that of

PPP. The goal of this contribution is to present the
principles of PPP-RTK, together with a review of the

different mechanizations that have been proposed in the

literature.

In recent years, several PPP-RTK methods have

been proposed and formulated, see e.g., Wubbena et al
(2005); Laurichesse and Mercier (2007); Mervart et al

(2008); Collins (2008); Ge et al (2008); Bertiger et al

(2010); Teunissen et al (2010); Geng et al (2012); Lannes
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and Prieur (2013). These methods differ in the mod-

els used, in the corrections applied and/or in the es-

timation methods employed. Although some compara-

tive studies between some of these different PPP-RTK

methods already exist, these studies have not been suf-
ficiently conclusive. The method comparisons of Geng

et al (2010) and Shi and Gao (2013), for instance, do

not identify some of the important differences that exist

between the methods. Instead they state that the meth-
ods studied are theoretically equivalent and will provide

equivalent results. This finding is echoed in the publi-

cations of, for instance, Bisnath and Collins (2012, p.

378), Shi (2012, p. 89), Li et al (2013a, p. 4), and Zhang

and Li (2013, p. 580). We will show, however, that there
are differences between the methods, even up to the

point that some cannot be accepted as proper PPP-

RTK methods.

It is the purpose of this contribution to present a
framework describing the intricate elements of PPP-

RTK, which then are used to identify and describe the

differences and similarities of the different methods.

We make a distinction between the model formulation

used and the estimation method employed. We discuss
both the network-component and the user-component.

Furthermore, by a careful application of S-system the-

ory (Teunissen, 1985), we are in the position to give a

clear description of the estimable parameters that are
involved in the various different methods. The inter-

pretation of these estimable parameters is essential for

gaining a proper insight into PPP-RTK in general, and

into the role of the PPP-RTK corrections in particular.

This contribution is organized as follows. After hav-
ing discussed the basic idea of single-receiver integer

ambiguity resolution, three different PPP-RTK models

are presented in section 2, two based on different ver-

sions of the common-clock (CC) model and one based
on the distinct-clock (DC) model. In section 3, we dis-

cuss some of the popular ionosphere-free PPP-RTKmod-

els. They are the Integer Recovery Clock (IRC) model

(Laurichesse and Mercier, 2007; Laurichesse et al, 2009;

Laurichesse, 2011; Loyer et al, 2012), the Decoupled
Satellite Clock (DSC) model (Collins, 2008; Collins et al,

2008), and the Uncalibrated Phase Delay/Fractional

Cycle Bias (UPD/FCB) model (Ge et al, 2008; Geng,

2011). They are compared mutually as well as with the
methods of section 2.

In section 4 we discuss the role of the PPP-RTK

corrections in establishing the link between the user-

parameters and the network-parameters. The correc-

tions are designed to realize integer ambiguities in the
user-equations, thus enabling user integer ambiguity

resolution.We show that PPP-RTK is a relative-positio-

ning method and that these ‘single-receiver user’ inte-

ger ambiguities are straightforward classical double dif-

ferenced (DD) ambiguities and thus not undifferenced

ambiguities as is sometimes stated. We also show how

the different PPP-RTK corrections are related. This has

the important practical implication that it shows how
the different PPP-RTK methods can be mixed between

network and users.

Section 5 deals with the estimation of the PPP-

RTK corrections. Four different estimators of the cor-
rections are discussed. They are the float and fixed

estimators under the geometry-free (GF) model and

the float and fixed estimators under the geometry-based

(GB) model (Teunissen, 1997a). An analytical formula-

tion of their precision is presented, which is then used
to compare the performance of the different estimators.

It is shown how each of these estimators apply to the

different PPP-RTK models. The variance matrices of

the individual PPP-RTK corrections are also used to
determine the variance matrix of the complete user-

corrections. Here we identify which parts of the PPP-

RTK correction variance matrix are essential for the

user and which are not. Finally, in Section 6, our esti-

mation results are compared to the estimation method
as described for FCB. The characteristics of the dif-

ferences between the PPP-RTK estimators is demon-

strated and conclusions on their suitability are drawn.

We make use of the following notation: The ex-
pectation and dispersion operators are denoted as E(.)

and D(.), respectively. In case distributional results are

given, the observables are assumed to follow a (multi-

variate) normal distribution. The identity matrix of or-

der n is denoted as In. ⌊x⌉ denotes the nearest integer
to x. If x is a vector, then ⌊x⌉ is the vector that follows
from component-wise integer rounding. The between-

satellite single-differenced (SD) combinations are sym-

bolized through (.)ps = (.)s − (.)p, with s and p be-
ing the rover and pivot satellites, respectively. A sim-

ilar notation is used for between-receiver differences,

(.)qu = (.)u−(.)q, with u and q being the rover and pivot

receiver, respectively. The squared norm of vector, with

respect to positive-definite matrix Q, is symbolized by
||.||2Q = (.)TQ−1(.).

2 PPP-RTK: From Network to User

2.1 Single-Receiver Integer Ambiguity Resolution

The idea of single-receiver integer ambiguity resolution

(IAR) forms the basis of PPP-RTK. The basic idea of

single-receiver IAR is best described by starting with
the single-receiver user observation equations. Here and

in the following we will be working with between-satellite

single-differenced observation equations, instead of with
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the undifferenced observation equations. This simplifies

our presentation, but does not affect the generality and

results of our analyses.

Consider the user’s antenna u tracking dual-frequency

GNSS data that are transmitted by a rover satellite
s and a chosen pivot satellite p. The corresponding

between-satellite single-difference (SD) observation equa-

tions read then (Hofmann-Wellenhof et al, 2008)

∆φps
u,j = gpsT∆xu − µjι

ps
u − dtps + λj(z

ps
u,j − δps,j )

∆ppsu,j = gpsT∆xu + µjι
ps
u − dtps − dps,j

(1)

where∆φps
u,j and ∆ppsu,j denote the SD ‘observed-minus-

computed’ phase and code observables on the frequency

band fj (j = 1, 2), respectively. Here and in the fol-

lowing, the precise orbital corrections are assumed in-
cluded in the ‘observed-minus-computed’ observables.

The ν-vector ∆xu contains the user’s position incre-

ments and/or the zenith tropospheric delay (ZTD). Pa-

rameter ν can take the values ν = 3 (position-only

model), ν = 1 (ZTD-only model) or ν = 4 (position-
plus-ZTD model). Thus the ν-vector gps contains the

SD receiver-satellite unit vector and/or the SD tropo-

spheric mapping function. The (first-order) SD slant

ionospheric delay, experienced on the first frequency,
is denoted by ιpsu . Thus the frequency-dependent coeffi-

cients are defined as the ratio µj = (f2
1 /f

2
j ). The SD in-

teger ambiguity zpsu,j ∈ Z and the SD satellite phase bias

δps,j , both expressed in cycles, are linked to the phase

observables through the wavelength λj . The SD satel-
lite clocks are denoted by dtps, while the SD satellite

code biases are denoted by dps,j . Apart from zpsu,j and

δps,j , the rest of the quantities are all expressed in units

of range. We assume that m satellites are tracked and
thus p, s = 1, . . . ,m, with p 6= s.

If we make use of the more compact dual-frequency

vector notation∆φps
u = [∆φps

u,1, ∆φps
u,2]

T ,∆ppsu = [∆ppsu,1,-

∆ppsu,2]
T , µ = [µ1, µ2]

T , zpsu = [zpsu,1, z
ps
u,2]

T , δps = [δps,1 , δ
ps
,2 ]

T ,

and dps = [dps,1 , d
ps
,2 ]

T , we may write (1) as

∆φps
u = e∆ρpsu − µ ιpsu − e dtps + Λ(zpsu − δps)

∆ppsu = e∆ρpsu + µ ιpsu − e dtps − dps
(2)

where e = [1, 1]T , Λ = diag(λ1, λ2), and

∆ρpsu = gpsT∆xu (3)

The user observation equations (2) do not contain enough

information to solve for an integer ambiguity resolved

user position. This would become possible though, were
information about the satellite clocks and satellite bi-

ases be given. Using such externally provided informa-

tion to correct the observations as

∆φ′ps
u = ∆φps

u + e dtps + Λ δps

∆p′psu = ∆ppsu + e dtps + dps
(4)

results in user-equations that take the form

∆φ′ps
u = e∆ρpsu − µ ιpsu + Λzpsu

∆p′psu = e∆ρpsu + µ ιpsu

(5)

This system is now in a form that can be used to

solve for the integer ambiguity resolved user parameters
∆xu and ιu. Hence, with externally provided correc-

tions dtps, δps, and dps, the user system of observation

equations (5) can be solved as a mixed-integer system

of equations, thereby profiting from the integerness of

zpsu ∈ Z
2 (Teunissen et al, 2010). This is the basic idea

of single-receiver, IAR-enabled, positioning.

The question is now whether the above needed pa-

rameters dtps, δps, dps can be determined as such. As
we will see, the answer is no. Does this mean that the

above basic idea is flawed. The answer is again, fortu-

nately, no. In the following we will namely show that

although a GNSS-network is not capable of providing

the ‘absolute’ parameters dtps, δps, dps, it is capable of
providing estimable parameters, that – when applied as

corrections – achieve the same goal, namely of enabling

the construction of a user system of observation equa-

tions that is in mixed-integer form.

We apply S-system theory (Baarda, 1973; Teunis-

sen, 1985) to solve for the rank-deficient system of ob-

servation equations and to allow for a proper interpre-

tation of the estimable parameters. Different sets of es-
timable parameters, each with their own interpretation,

exist. Each such set is defined by the chosen S-basis. By
means of the S-transformation, the relation between the

original ‘absolute’ parameters and the estimable param-
eters is established. Examples of the theory’s applicabil-

ity to GNSS can be found in de Jonge (1998) and Odijk

(2002), while examples for PPP-RTK can be found in

Teunissen et al (2010); Zhang et al (2011); Lannes and

Teunissen (2011) and Odijk et al (2012).

2.2 Common Clock (CC-1) Model

The externally provided satellite clock and satellite bi-
ases will be determined by a GNSS-network. We now

show how this network information enables the con-

struction of a user system of observation equations that

has the same structure as (5).

2.2.1 Network model

If we replace the user-index u in (2) by r = 1, . . . , n, the

resulting system may be considered the dual-frequency
n-receiver network system of observation equations. Al-

though in the network case, some or all of the entries

of ∆xr , r = 1, . . . , n, may be known, we consider the
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general case that they are unknown. This difference is

of no consequence for the conclusions of our analysis.

Furthermore, it is also sufficient for the purpose of this

contribution to assume the network to be such that

gsr ≈ gs, r = 1, . . . , n. This assumption allows the in-
clusion of small to regional networks in our discussion

as well.

With m satellites tracked, the network system of

observation equations will have a rank defect of ν +
4(m − 1). Of this defect, ν is due to the linear depen-

dence that exist between the coefficients of ∆xr and

dtps, while 4(m − 1) is due to the linear dependency

among the ionospheric delays, clocks, biases and am-

biguities. This latter defect is best demonstrated if we
use the geometry-free/ionosphere-free decomposition

dps = [µ, e]

[

dpsGF

dpsIF

]

,with [µ, e]−1 =

[

µT
GF

µT
IF

]

(6)

to rewrite (2), with u replaced by r = 1, . . . , n, as

∆φps
r = e∆ρpsr − µ ι̃psr − e dt̄ps + Λ(zpsr − δps −Mdps)

∆ppsr = e∆ρpsr + µ ι̃psr − e dt̄ps
(7)

where ι̃psr = ιpsr − dpsGF , dt̄
ps = dtps + dpsIF and M =

Λ−1(µµT
GF

− eµT
IF
). This shows, since only 2(m − 1)

parameters in the combination zpsu − δps − Mdps are

estimable, that the additional defect is indeed 4(m−1).

There are many different ways of eliminating the

rank defect of the above network system of equations
(Teunissen, 1985). The ν-defect between ∆xr and dtps

can be eliminated by fixing the parameters of one of the

network stations, say∆x1. Likewise, the 4(m−1)-defect

between ambiguities, code biases and phase biases, can

be eliminated by fixing two out of the three type of
parameters, say the ambiguities of network station 1

and the code biases. With this choice the S-basis is

thus given as

xS
CC−1 =

[

∆xT
1 , d

psT , zpsT1

]T

(8)

The full rank network system of observation equations
(r = 1, . . . , n) follows then as,

∆φps
r = e∆ρ̃psr − µ ι̃psr − e dt̃ps + Λ(z̃psr − δ̃ps)

∆ppsr = e∆ρ̃psr + µ ι̃psr − e dt̃ps
(9)

in which the estimable parameters, denoted using the

tilde˜symbol, have the following interpretation,

∆x̃r = ∆xr −∆x1 , r 6= 1

ι̃psr = ιpsr − µT
GF

dps

dt̃ps = dtps + µT
IF
dps −∆ρps1

δ̃ps = δps +Mdps − zps1

z̃psr = zpsr − zps1 , r 6= 1

(10)

with ∆ρ̃psr in (9) denoting gpsT∆x̃r . The network vec-

tor of estimable parameters of the above model is thus

given for a SD satellite pair ps and a network station r

as

xCC−1 =
[

∆x̃T
r , ι̃

ps
r , dt̃ps, δ̃psT , z̃psTr

]T

(11)

The system (9) is referred to as the common clock (CC-

1) model, since the phase and code equations have the
satellite clock parameter dt̃ps in common. This model

was used in Zhang et al (2011); Odijk et al (2012). An-

other common clock model (CC-2), based on a different

S-basis, will be presented in section 2.4.

It is important to recognize that the estimable pa-
rameters are not the original parameters, but instead

functions of them. The between-satellite estimable slant

ionospheric delay ι̃psr , for instance, is a biased version of

the actual between-satellite slant ionospheric delay ιpsr ,
and the between-satellite estimable integer ambiguity

z̃psr is actually a double-differenced integer ambiguity,

namely zpsr biased by −zps1 . It is furthermore impor-

tant to recognize that the interpretation of these es-

timable parameters depends on the chosen S-basis, i.e.
it will change when a different S-basis is chosen (Teu-

nissen, 1985). In the next sections, some such cases are

described.

2.2.2 User model

With appropriate corrections, one should be able to for-
mulate the user-model in mixed-integer form. In case of

the above CC-model, the parameters for the corrections

are given as

xcorr
CC−1

=
[

dt̃ps, δ̃psT
]T

(12)

These are not the original ‘absolute’ satellite clock and
satellite biases, dtps and δps, but instead the satellite

clock-like and satellite bias-like terms, dt̃ps and δ̃ps, of

(10). Although they are not the original parameters,

they still do the job in ensuring that the user can work

with integer ambiguities. With the CC-corrected obser-
vations

∆φ̃ps
u = ∆φps

u + e dt̃ps + Λδ̃ps

∆p̃psu = ∆ppsu + e dt̃ps
(13)

the user equations take namely the form

∆φ̃ps
u = e∆ρ̃psu − µ ι̃psu + Λz̃psu

∆p̃psu = e∆ρ̃psu + µ ι̃psu

(14)

Note that the structure of these equations is indeed
identical to that of (5) and that the user-ambiguities are

indeed integer z̃psu ∈ Z
2. The interpretation of the pa-

rameters in (14) is however different from those of (5).
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Through the network-based satellite clock corrections

dt̃ps, for instance, the positional link between network

and user is established, thus giving, instead of ∆xu in

(5), the estimable user parameter vector ∆x̃u in (14).

A similar link between network and user is estab-
lished for the ambiguities. Note namely that the inte-

ger ‘user’ ambiguity z̃psu is in fact a double-differenced

ambiguity z̃psu = zpsu − zps1 . In other words, for the am-

biguities, the linkage with the network is established
through the network-based phase-bias correction δ̃ps,

thus enabling the construction of double-differenced in-

teger ambiguities at the user-side. This shows that one

must be very careful by calling the ambiguity resolu-

tion of the user-ambiguities, the fixing of undifferenced
or single-differenced integer ambiguities, see e.g., Lau-

richesse et al (2009, p. 135) or Mervart et al (2013,

p. 1177). The resolution of these ‘user’ ambiguities is

namely again a resolution of double-differenced ambi-
guities.

2.3 Distinct Clocks (DC) Model

Instead of working with the CC-model, one can also

work with distinct clocks (DC) models. Using S-system
theory, de Jonge (1998) introduced various S-systems

for the undifferenced GNSS observation equations. Since
his choices give rise to models with common and/or

different clocks for different observable types, de Jonge

refers to his models as the distinct clocks (DC) models,

see de Jonge (1998, Chapter 4). Distinct clock models

were also used in Odijk (2002) and in Teunissen et al
(2010) for PPP-RTK. The DC-model of de Jonge that

we consider in the present contribution, uses a common

clock for the code observables and two different clocks

for the two phase observables.

The DC-model uses the same S-basis (8), but a
different parametrization. The DC S-basis is thus also

given as

xS
DC

=
[

∆xT
1 , d

psT , zpsT1

]T

(15)

The CC-to-DC reparametrization is rather simple as

it only involves replacing the phase bias by a lumped

version of the common clock and phase bias,
[

dt̃ps

δt̃ps

]

=

[

1 0

e Λ

][

dt̃ps

δ̃ps

]

(16)

Thus instead of the CC-parametrization dt̃ps, δ̃ps, now

the DC-parametrization dt̃ps, δt̃ps is used. Its full rank

network system of observation equations reads therefore

∆φps
r = e∆ρ̃psr − µ ι̃psr − δt̃ps + Λz̃psr

∆ppsr = e∆ρ̃psr + µ ι̃psr − e dt̃ps
(17)

For a SD satellite pair ps and a network station r, the

network vector of estimable parameters is then given

as:

xDC =
[

∆x̃T
r , ι̃

ps
r , dt̃ps, δt̃psT , z̃psTr

]T
(18)

The PPP-RTK corrections of the DC-model are given
as

xcorr
DC =

[

dt̃ps, δt̃psT
]T

(19)

Once these corrections are applied at the user side, the

observation equations of the user will again be given

by (14). Following the terminology of Laurichesse and

Mercier (2007), the correction vector δt̃ps could be called
an integer recovery phase clock vector as it results in in-

teger double-differenced ambiguities at the user side.

2.4 Common Clock (CC-2) Model

Instead of using the ambiguities of a reference station

as part of the S-basis (cf. 8), one may also choose the

phase biases themselves. This will result in real-valued

ambiguities that can be used to form the PPP-RTK
user-corrections.

2.4.1 Network model

In case the phase biases δps replace the ambiguities zps1
of (8), the S-basis becomes

xS
CC−2

=
[

∆xT
1 , d

psT , δpsT
]T

(20)

The full rank network system of observation equations

(r = 1, . . . , n) follows then as,

∆φps
r = e∆ρ̃psr − µ ι̃psr − e dt̃ps + Λ ãpsr

∆ppsr = e∆ρ̃psr + µ ι̃psr − e dt̃ps
(21)

with the estimable parameters,

∆x̃r = ∆xr −∆x1

ι̃psr = ιpsr − µT
GF

dps

dt̃ps = dtps + µT
IF
dps −∆ρps1

ãpsr = zpsr − δps −Mdps

(22)

When we compare (10) with (22), we note that δ̃ps and
z̃psr of (10), and ãpsr of (22), are related as

ãpsr = z̃psr − δ̃ps (23)

We thus see that as a consequence of the change of

S-basis from zps1 to δps (cf. 8, 20), the n − 1 integer

ambiguity vectors z̃psr (recall that z̃psr=1 = 0), together
with the phase bias vector δ̃ps, get replaced by the n

real-valued ambiguity vectors ãpsr of (22). The network

vector of estimable parameters of this model, for a SD

satellite pair ps and a network station r, is thus given

as

xCC−2 =
[

∆x̃T
r , ι̃

ps
r , dt̃ps, ãpsTr

]T
(24)
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2.4.2 User model

It is now the real-valued ambiguity vector ãpsq , that, for
some q ∈ {1, . . . , n}, can take over the role of the phase

bias δ̃ps in forming the corrections for the user,

xcorr
CC−2 =

[

dt̃ps, ãpsTq

]T
(25)

Note that ãpsq = −δ̃ps for q = 1 (cf. 23) and ãpsq =

z̃psq − δ̃ps for q 6= 1. Thus, apart from the sign, the real-

valued ambiguity ãpsq is either equal to the phase bias or
a nonzero integer-shifted version of it. Hence, with the

real-valued ambiguity vector ãpsq one should indeed be

able to recover ambiguity-integerness at the user side.

This is verified when such correction is applied to the
user observations.

With the user observations corrected as

∆˜̃φ
ps

u = ∆φps
u + e dt̃ps − Λãpsq

∆p̃psu = ∆ppsu + e dt̃ps
(26)

the user equations take the form

∆
˜̃
φ
ps

u = e∆ρ̃psu − µ ι̃psu + Λãpsqu

∆p̃psu = e∆ρ̃psu + µ ι̃psu

(27)

with integer ãpsqu = zpsu − zpsq . Thus for q = 1, the

parametrization of (27) is identical to that of (14), while

for q 6= 1, the ambiguities are an integer shifted version
of those of (14). Hence, the ambiguity solution of any

network station q = 1, . . . , n can be taken to form an

admissible user-correction.

3 Ionosphere-Free PPP-AR Models

In this section we discuss some further models pro-

posed in the literature. We discuss the Integer Recov-

ery Clock (IRC) model (Laurichesse and Mercier, 2007;
Laurichesse et al, 2009; Loyer et al, 2012), the De-

coupled Satellite Clock (DSC) model (Collins, 2008;

Collins et al, 2008), and the Uncalibrated Phase De-

lay/Fractional Cycle Bias (UPD/FCB) model (Ge et al,
2008; Geng and Bock, 2013). Since the IRC- and DSC-

model are the same, they are discussed under one head-

ing.

3.1 The IRC/DSC Model

The IRC-model has been introduced in Laurichesse and

Mercier (2007) and the DSC-model in Collins (2008).

The IRC/DSC-model works with ionosphere-free com-
binations. Thus instead of working with the four equa-

tions of (7), the ionosphere is eliminated first, thereby

reducing the four equations to three instead. Although

this elimination step is not essential, we include it in

the below derivation to better appreciate the choice

of parametrization. We show that the IRC/DSC-model

uses the same S-basis as the CC-model (9) or DC-model

(17), but a different parametrization.

3.1.1 Network model

With the wide-lane, narrow-lane and ionosphere-free

combinations defined as

µWL = 1√
µ2−

√
µ1
[
√
µ2,−

√
µ1]

T ,

µNL = 1√
µ2+

√
µ1
[
√
µ2,

√
µ1]

T ,

µIF = 1
µ12

[µ2,−µ1]
T ,

(28)

we have the properties
[

µIF 0 µWL

0 µIF −µNL

]

⊥
[

−µ

µ

]

,

[

µWL

−µNL

]

⊥
[

e

e

]

(29)

with µT
WL

e = 1. The notation v⊥w means vTw = 0.
Hence, if the full-rank 4 × 3 matrix of (29) is used

to form the three ionosphere-free observation combi-

nations φps
r,IF = µT

IFφ
ps
r , ppsr,IF = µT

IF p
ps
r , and φps

r,WN =

µT
WLφ

ps
r − µT

NLp
ps
r , their observation equations follow

from (9) as

∆φps
r,IF = ∆ρ̃psr − dt̃ps + µT

IFΛ(z̃
ps
r − δ̃ps)

∆ppsr,IF = ∆ρ̃psr − dt̃ps

∆φps
r,WN = +µT

WLΛ(z̃
ps
r − δ̃ps)

(30)

These equations are referred to as ‘ionosphere-free’ as
the ionospheric delay parameters are eliminated from

them. These equations are however still in the form of

the original CC-parametrization. With the IRC/DSC-

parametrization






dt̃ps

δt̃psIF

δ̃psW






=









1 0

1 µT
IFΛ

0 1
λW

µT
WLΛ









[

dt̃ps

δ̃ps

]

, (31)

the wide-lane transformation
[

z̃psr,1

z̃psr,W

]

= ZW z̃psr ,with ZW =

[

1 0

1 −1

]

, (32)

thereby recognizing that
[

µT
IF
ΛZW

µT
WL

ΛZW

]

=

[

λN
λ2

µ12

0 λW

]

(33)

we obtain

∆φps
r,IF = ∆ρ̃psr − δt̃psIF + λN z̃psr,1 +

λ2

µ12
z̃psr,W

∆ppsr,IF = ∆ρ̃psr − dt̃ps

∆φps
r,WN = λW (z̃psr,W − δ̃psW )

(34)
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with the narrow-lane and wide-lane wavelengths given

as λN = (λ1λ2)/(λ2 + λ1) and λW = (λ1λ2)/(λ2 − λ1).

Since z̃psr,1 has the narrow-lane wavelength λN as coef-

ficient, it is sometimes referred to as the narrow-lane

ambiguity (Beutler et al, 2007). Formally this is incor-
rect, since z̃psr,1 is an L1 ambiguity, while the narrow-

lane ambiguity is defined as the sum of an L1 and L2

ambiguity (Wubbena, 1989; Allison, 1991).

The estimable IRC/DSC-parameters of (34) have
the following interpretation,

∆x̃r = ∆xr −∆x1

dt̃ps = dtps + µT
IF
dps −∆ρps1

δt̃psIF = dtps + µT
IF
Λ(δps − zps1 )−∆ρps1

δ̃psW = (0, 1)ZW (δps − zps1 )− 1
λW

µT
NL

dps

z̃psr,1

z̃psr,W

}

= ZW (zpsr − zps1 )

(35)

For a SD satellite pair ps and a network station r,
the network vector of IRC/DSC-estimable parameters

is thus given as

xIRC/DSC =
[

∆x̃T
r , dt̃

ps, [δt̃ps,IF , δ̃
ps
,W ], [z̃psr,1, z̃

ps
r,W ]

]T

(36)

3.1.2 User model

The PPP-RTK corrections of the IRC/DSC-model are

given as

xcorr
IRC/DSC =

[

dt̃ps, [δt̃ps,IF , δ̃
ps
,W ]
]T

(37)

The correction δt̃ps,IF is called the integer recovery phase

clock by Laurichesse and Mercier (2007) and the decou-
pled phase clock by Collins (2008). The correction δ̃ps,W
denotes the wide-lane, between-satellite differenced es-

timable phase-bias.

With the IRC/DSC-corrected observations

∆φ̃ps
u,IF = ∆φps

u,IF + δt̃psIF

∆p̃psu,IF = ∆ppsu,IF + dt̃ps

∆φ̃ps
u,WN = ∆φps

u,WN + λW δ̃psW

(38)

the IRC/DSC user equations take the form

∆φ̃ps
u,IF = ∆ρ̃psu + λN z̃psu,1 +

λ2

µ12
z̃psu,W

∆p̃psu,IF = ∆ρ̃psu

∆φ̃ps
u,WN = λW z̃psu,W

(39)

The equations (34) and (39) are the between-satellite

SD network- and user-equations of the IRC/DSC-model.
The equations of (34) are the same as those introduced

in Collins et al (2008, p. 1316), be it that in that contri-

bution λN z̃psu,1 +
λ2

µ12
z̃psu,W is explictly expressed for the

GPS frequency bands only, namely as

λI(17z̃
ps
u,1 + 60z̃psu,W ), λI =

2cfo
f2
1 − f2

2

(40)

with fo = 10.23 MHz and c being the velocity of

light. Similarly, the equations of (34) are the SD ver-

sion of those given in Eqs. (3) and (5) of Laurichesse

et al (2009, p. 136, 137), see also Eqs. (4), (5) and (6)

of Loyer et al (2012). The only difference lies in further
accounting for the phase center offsets in the first two

IF observation equations. This difference is, however,

neglected once the estimable wide-lane satellite phase

biases are to be determined, see e.g. Eq. (4) in Lau-
richesse et al (2009, p. 136) or Eq. (3) in Loyer et al

(2012, p. 993).

3.1.3 The CC-1, DC, and IRC/DSC Models Compared

We derived the IRC/DSC-model from the full-rank CC-

model (9), by first formulating the ionosphere-free vari-

ant of the CC-model and then applying the one-to-one
CC-to-IRC/DSC parameter transformation.

The S-basis that we used is ∆x1, d
ps, zps1 (cf. 8).

In Collins (2008), it is stated however, that the S-
basis of the DSC-model is given by the ionosphere-

free and narrow-lane code biases, dps,IF = µT
IF
dps and

dps,NL = µT
NL

dps, and the ambiguities zps1,1 and zps1,W .

Hence, one may think that for the DSC-model in Collins
(2008) a different S-basis choice is made than for the

CC- or DC-models, (9) and (17), respectively. This is

not true however. As the transformation between dps

and dps,IF , d
ps
,NL is one-to-one, and also the transforma-

tion between zps1 and zps1,1, z
ps
1,W is one-to-one, the DSC-

choice in Collins (2008) is identical to the S-basis choice
of (9) and (17), respectively, namely ∆x1, d

ps, zps1 .

We have already shown, with (31) and (32), that the

estimable parameters of the IRC/DSC-model stand in

one-to-one correspondence with the estimable parame-

ters of the CC-model (9). Additionally, they also stand
in one-to-one correspondence with their DC-model coun-

terparts. The estimable IRC/DSC-parameters can namely

be expressed in the estimable DC-parameters as

∆x̃r = ∆x̃r

δt̃psIF = µ2

µ12
δt̃ps,1 − µ1

µ12
δt̃ps,2

dt̃ps = dt̃ps

δ̃ps,W = 1
λ1
δt̃ps,1 − 1

λ2
δt̃ps,2 − 1

λW
dt̃ps

z̃psr,1 = z̃psr,1

z̃psr,W = z̃psr,1 − z̃psr,2

(41)

This shows, for instance, that the decoupled phase clock
of the IRC/DSC model, δt̃psIF , is simply the ionosphere-

free version of de Jonge’s distinct phase clock of the

DC-model, δt̃psIF = µT
IF
δt̃ps.

From the comparison of the CC-1, DC and IRC/DSC

models, one can thus conclude that the IRC/DSC-model
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is a reparametrized form of both the DC-model (17) and

the CC-model (9) using ionosphere-free observations.

3.2 The UPD/FCB model

Just like the IRC/DSC-model is obtained as a reparame-

trized version of the CC-model (9) using ionosphere-free
observations, the UPD/FCB-model can be obtained as

a reparametrized version of the CC-model (21) using

ionosphere-free observations. In case of the UPD/FCB-

model, the reparametrization is even simpler as it only
involves the wide-lane transformation.

3.2.1 Network Model

To derive the UPD/FCB network equations, we first

form the ionosphere-free variant of (21) and then apply
the wide-lane parameter transformation.

If we apply the full-rank 4 × 3 matrix of (29) as

transformation to (21) to form its three ionosphere-free
observation equations, we obtain

∆φps
r,IF = ∆ρ̃psr − dt̃ps + µT

IFΛã
ps
r

∆ppsr,IF = ∆ρ̃psr − dt̃ps

∆φps
r,WN = +µT

WLΛã
ps
r

(42)

With the wide-lane parametrization ãpsr = Z−1
W [ãpsr,1, ã

ps
r,W ]T ,

thereby making use of (33), the full-rank network equa-

tions of the UPD/FCB-model follow as

∆φps
r,IF = ∆ρ̃psr − dt̃ps + λN ãpsr,1 +

λ2

µ12
ãpsr,W

∆ppsr,IF = ∆ρ̃psr − dt̃ps

∆φps
r,WN = λW ãpsr,W

(43)

Note, although the structure of these equations resem-

bles that of the corresponding IRC/DSC equations (34),
that the ambiguities in (34) are integer, whereas in (43)

they are not.

For a SD satellite pair ps and a network station r,

the network vector of FCB-estimable parameters is thus

given as

xFCB =
[

(∆x̃r)
T , dt̃ps, [ãpsr,1, ã

ps
r,W ]

]T

(44)

The interpretation of these estimable parameters is as

given earlier for the CC-model (21), be it that the am-

biguities are now in wide-lane form. Hence, in contrast

to the ambiguities of the ionosphere-free IRC/DSC-
model (cf. 34, 39), the ambiguities of the ionosphere-

free UPD/FCB-model are not integer-valued, but real-

valued.

3.2.2 User Model

As in case of the CC-model (21), next to the estimable

satellite clock dt̃ps, the real-valued estimable ambigui-

ties (but now in wide-lane form) of any network station,

say q ∈ {1, . . . , n}, can be taken to form the corrections

for the user,

xcorr
FCB =

[

dt̃ps, [ãpsq,1, ã
ps
q,W ]

]T

(45)

With the user ionosphere-free observations corrected as

∆
˜̃
φ
ps

u,IF = ∆φps
u,IF + dt̃ps − λN ãpsq,1 − λ2

µ12
ãpsq,W

∆˜̃p
ps

u,IF = ∆ppsu,IF + dt̃ps

∆
˜̃
φ
ps

u,WN = ∆φps
u,WN − λW ãpsq,W

(46)

the user equations take the form

∆˜̃φ
ps

u,IF = ∆ρ̃psu + λN ãpsqu,1 +
λ2

µ12
ãpsqu,W

∆˜̃p
ps

u,IF = ∆ρ̃psu

∆
˜̃
φ
ps

u,WN = λW ãpsqu,W

(47)

with the integer double-differenced ambiguities ãpsqu,1 =

zpsu,1 − zpsq,1 and ãpsqu,W = zpsu,W − zpsq,W . Note that these

user-equations are identical to the user-equations of the

IRC/DSC-model (39), be it that their integer double-
differenced ambiguities could differ in their choice of

reference station (q vs 1).

3.2.3 The fractional phase bias (FPB) corrections

Since any integer shift of the real-valued ambiguities

in (45) would only result in an integer shift of the

corresponding ambiguities in the user equations, the
PPP-RTK corrections remain admissible if the real-

valued ambiguities of (45) are replaced by their frac-

tional parts,

xcorr
FPB =

[

dt̃ps, [frac(ãpsq,1), frac(ã
ps
q,W )]

]T

(48)

with the fractional operator defined as frac(x) = x −
⌊x⌉ (Geng, 2011), where ⌊x⌉ denotes rounding to the

nearest integer of x.

Recall from (23) the relation ãpsr = z̃psr − δ̃ps. After

applying the wide-lane transformationZW , this relation
becomes,

ãpsr,1 = z̃psr,1 − δ̃ps,1

ãpsr,W = z̃psr,W − δ̃ps,W
(49)

Since both z̃psr,1 and z̃psr,W are integer, it follows that

frac(ãpsq,1) = −frac(δ̃ps,1 )

frac(ãpsq,W ) = −frac(δ̃ps,W )
(50)

This shows that, apart from their sign, the fractional

parts of the real-valued ambiguities are equal to the
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fractional parts of the phase biases. This is the reason

why the set of network- and user-equations, (43) and

(47), combined with the correction vector (48), is re-

ferred to as the Fractional Cycle Bias (FCB) model (Geng

et al, 2010, p. 569). The non-integer phase bias δ̃ps

is also referred to as the ‘Uncalibrated Phase Delay’

(UPD) by Ge et al (2008, p. 389). The network- and

user-equations, (43) and (47), together with the correc-

tions (45), i.e. without the use of the fractional opera-
tor, is the formulation used by Bertiger et al (2010).

3.2.4 The FCB corrections

The UPD/FCB method (Ge et al, 2008; Geng et al,

2012) uses a somewhat different version of (43). Using

the identity λ2/µ12 = λNλ1/(λ2 − λ1), we may write

λN ãpsr,1 +
λ2

µ12
ãpsr,W = λ2

µ12
⌊ãpsr,W ⌉+ λN ãpsr,c, where

ãpsr,c = ãpsr,1 +
λ1

λ2−λ1
frac(ãpsr,W )

= z̃psr,1 − δ̃ps,c
(51)

with

δ̃ps,c = δ̃ps,1 +
λ1

λ2 − λ1
frac(δ̃ps,W ) (52)

Hence, (43) can alternatively be expressed as

∆φps
r,IF = ∆ρ̃psr − dt̃ps + λ2

µ12
⌊ãpsr,W ⌉+ λN ãpsr,c

∆ppsr,IF = ∆ρ̃psr − dt̃ps

∆φps
r,WN = λW ãpsr,W

(53)

This leads to the use of the following PPP-RTK correc-

tions

xcorr
FCB =

[

dt̃ps, [frac(ãpsq,c), frac(ã
ps
q,W )]

]T

(54)

rather than those given in (48). The user observations

would then be corrected as

∆
˜̃
φ
′ps
u,IF = ∆φps

u,IF + dt̃ps − λN frac(ãpsq,c)

∆˜̃p
′ps
u,IF = ∆ppsu,IF + dt̃ps

∆˜̃φ
′ps
u,WN = ∆φps

u,WN − λW frac(ãpsq,W )

(55)

These equations show a somewhat more symmetric form

than those of (46). Using the definition of the fractional

operator, the user observation equations take then the

form (compare with (47))

∆˜̃φ
′ps
u,IF = ∆ρ̃psu + λNa′psu,1 +

λ2

µ12
a′psu,W

∆˜̃p
′ps
u,IF = ∆ρ̃psu

∆˜̃φ
′ps
u,WN = λW a′psu,W

(56)

with the integer-valued ambiguities

a′psu,1 = ãpsqu,1 + ⌊ãpsq,c⌉
a′psu,W = ãpsqu,W + ⌊ãpsq,W ⌉

(57)

The equations of (53), with (49), are the SD versions

of those given in Eqs. (5) and (14) of Ge et al (2008, p.

391), see also Eqs. (3) and (5) of Geng and Bock (2013,

p. 451). In those contributions however, the following

equivalent expressions are used instead

λN =
λ1f1

f1 + f2
=

c

f1 + f2
;

λ2

µ12
=

λ1f1f2
f2
1 − f2

2

(58)

We already remarked earlier that the ambiguity ãpsr,1 is

sometimes erroneously referred to as the narrow-lane
ambiguity because of its λN -coefficient in the observa-

tion equations (cf. 34). Similarly, it should be under-

stood that the reference to the fractional part of ãpsq,c
in (53) as the narrow-lane FCB (Ge et al, 2008; Geng
et al, 2010, 2012; Geng and Bock, 2013) follows the

same logic.

3.2.5 The Distribution of the Fractional Phase Bias

Although an arbitrary integer shift in the PPP-RTK
corrections ãpsq or δ̃ps is of no concern in sofar that it

maintains the integerness of the user-ambiguities, it is

important to realize that from a probabilistic point of

view the application of the fractional operator to the

estimated ambiguity ˆ̃a
ps

q or to the estimated satellite

phase bias ˆ̃δ
ps

, will change the statistics of the user-

corrected observables. In other words, the probability

distribution of the user-corrected observations (46) will

change from a multivariate normal distribution to a

non-normal distribution if one replaces the estimator

ˆ̃a
ps

q by its fractional part frac(ˆ̃a
ps

q ) = −frac(
ˆ̃
δ
ps

). The

following lemma gives the PDF of the fractional phase
bias.

Lemma 1 (PDF of fractional phase bias) Let fδ̂(x) be

the probability density function of the satellite phase

bias estimator δ̂. Then

ffrac(δ̂)(x) =
∑

z∈Z

fδ̂(x+ z)s0(x) (59)

with P0 the pull-in region and s0(x) its indicator func-
tion (s0(x) = 1 if x ∈ P0, s0(x) = 0 otherwise).

Proof Follows from the GNSS ambiguity residual PDF

of Teunissen (2002, p. 44). ⊓⊔

For a normally distributed estimated satellite phase

bias, the PDF ffrac(δ̂)(x) is determined by the mean and

variance of δ̂. The peakedness of the PDF ffrac(δ̂)(x) is

driven by the variance of δ̂. The larger the variance, the

flatter the PDF, which in the limit becomes a uniform

distribution over the pull-in region P0. The smaller the
variance, the more peaked the PDF becomes, with in-

creasing probability mass becoming concentrated at its

mean.
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Fig. 1 PDF ffrac(δ̂)(x) of fractional phase bias frac(δ̂) for δ̂ ∼ N(E(δ̂), σ2
δ̂
). Left: E(δ̂) ∈ Z, with σ

δ̂
= 0.1 cycle (blue curve) and

σ
δ̂
= 0.3 cycle (green curve); Right: E(δ̂) = 0.4 cycle, with σ

δ̂
= 0.1 cycle (blue curve) and σ

δ̂
= 0.3 cycle (green curve).

Would the mean be integer, as is the case with the

mean of the float solution of a double-differenced ambi-
guity, then the PDF of the fraction would be symmetric

with respect to the origin. In case of a noninteger mean

however, the PDF will be asymmetric with respect to

the origin. This is the case that applies to the satellite
phase bias.

Figure 1 shows some examples for the scalar case.
In the scalar case, P0 is the origin-centred interval of

length 1. Figure 1 shows the fractional phase bias PDF

ffrac(δ̂)(x) for δ̂ ∼ N(E(δ̂), σ2
δ̂
). The PDF is shown for

two different precision levels of the estimated phase

bias, σδ̂ = 0.1 cycle (blue curve) and σδ̂ = 0.3 cycle
(green curve). The left panel of the figure shows then

the corresponding PDFs for the case the mean of the

estimated phase bias would be integer, E(δ̂) ∈ Z, while

in the right panel the two PDFs are shown for a non-
integer mean, E(δ̂) = 0.4 cycle.

The above shows that when use is made of the frac-
tional operator, one has to be very careful when eval-

uating the statistics and quality of the user-corrected

observables. As the user-corrected observables will then

in principle fail to be normally distributed, it will af-

fect quality control procedures that are applied at the
user side. Only in case sufficient probability mass of the

normal distribution of δ̂ is located in the pull-in region

P0, can one hope to be able to approximate the PDF

of frac(δ̂) by that of δ̂. Whether or not this is the case
cannot be judged on only the variance σ2

δ̂
, but requires

information about the unknown mean E(δ̂) as well.

3.2.6 The CC-2, IRC/DSC and UPD/FCB Models

Compared

We derived the UPD/FCB-model from the full-rank
CC-model (21), by first formulating the ionosphere-free

variant of the CC-model and then applying the one-to-

one widelane transformation.

The S-basis that we used is ∆x1, d
ps, δps (cf. 20).

In Geng (2011), it is stated however, that the S-basis
of the UPD/FCB-model is given by the ionosphere-free

and narrow-lane code biases, dps,IF = µT
IF
dps and dps,NL =

µT
NL

dps, and the phase biases δps,1 , δ
ps
1,W . Hence, one may

think that for the UPD/FCB-model in Ge et al (2008)

a different S-basis choice is made. This is not true how-
ever, as the transformation between dps and dps,IF , d

ps
,NL

is one-to-one, and also the wide-lane transformation be-

tween δps and δps,1 , δ
ps
1,W is one-to-one. Hence, the S-

basis choice is the same, namely ∆x1, d
ps, δps.

We already noted that the IRC/DSC user equations

(39) are identical to those of UPD/FCB (47) if q = 1.

Their network equations are quite different however,

compare (34) for IRC/DSC with (43) for UPD/FCB.
How is this possible? The reason lies in their PPP-RTK

corrections. Although some of the individual parame-

ters that make up their corrections differ, namely

[

δt̃ps,IF , δ̃
ps
,W

]

IRC/DSC
vs
[

frac(ãpsq,1), frac(ã
ps
q,W )

]

FCB
(60)

the actual corrections that the user observations un-

dergo have the same effect. The user observation correc-
tions for the IRC/DSC-model (cf. 38) and the UPD/FCB-

model (cf. 46), satisfy namely

δt̃psIF = dt̃ps − λN ãpsq,1 − λ2

µ12
ãpsq,W for q = 1

dt̃ps = dt̃ps

δ̃psW = −ãpsq,W for q = 1

(61)

while for q 6= 1, the corrections only make the user-

ambiguities of the two models differ by an integer shift.

From the comparison of the CC, IRC/DSC, and

UPD/FCBmodels, one can thus conclude that the UPD-

/FCB-model is a reparametrized form of the ionosphere-

free version of the CC-model (21), while the IRC/DSC-
model is that of the CC-model (9). An overview of the

transformational links between the various models is

given in Figure 2.
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Eq. (9)

Yes

CC-to-DC          

reparametrization 

Eq. (16)

Ionosphere      

free?

Wide-lane             

parametrization     

Eq. (32)

Yes

Ionosphere-free 

combinations   by 

Eq. (29)

UPD/FCB model                 

Eq. (43) 
Distinct clocks model                         

Eq. (17) 

Ionosphere      

free?

IRC/DSC           

reparametrization 

Eqs. (31) and (32)

Yes

IRC/DSC model       

Eq. (34) 

Ionosphere-free 

combinations         

Eq. (30)

Common clock model 2                      

Eq. (21)

Fig. 2 Diagram illustrating the transformational links between
the original rank-deficient model and the PPP-RTK full-rank
variants: CC-1 (cf. 9), DC (cf. 17), CC-2 (cf. 21), IRC/DSC (cf.
34), and UPD/FCB (cf. 43).

4 Role of the PPP-RTK corrections

In the previous section different formulations of the

network- and user models were compared. As they could

all be derived from the same model, without any change
in underlying model assumptions, all the presented for-

mulations are intrinsically the same. Their differences

were shown to lie only in (a) the choice of S-basis, (b)
in the choice of parameterization, and (c) in the choice
of whether or not to eliminate the ionospheric delays.

Since the different formulations are intrinsically the

same, their individual set of PPP-RTK corrections are

closely linked. In this section we will have a closer look

at these corrections and show how they can be inter-
preted and transformed.

4.1 The Same Corrected User Observations

When we compare the different user-equations, we note

that they are essentially the same. This is true for the
IRC/DSC and UPD/FCB ionosphere-free user-equations,

(39), (47) and (56), since they only differ in a possible

integer-shift of their ambiguities. The same holds true

for the two sets of CC user-equations, (14) and (27).

The sameness of the user-equations implies, that

the corrected user-observations themselves are, apart

from the presence of integer shifts, also the same. Thus

for the two different CC-corrected user observations we

have

∆φ̃ps
u

(13,26)
= ∆˜̃φ

ps

u ± Λ z, z ∈ Z
2

∆p̃psu
(13,26)
= ∆˜̃p

ps

u

(62)

while for the ionosphere-free, IRC/DSC and UPD/FCB,

corrected user-observations we have

∆φ̃ps
u,IF

(38,55)
= ∆˜̃φ

′ps
u,IF ± λN (z1 +

λ1

λ2−λ1
zW ), z1, zW ∈ Z

∆p̃psu,IF
(38,55)
= ∆˜̃p

′ps
u,IF

∆φ̃ps
u,WN

(38,55)
= ∆

˜̃
φ
′ps
u,WN ± λW zW

(63)

Since BLUE-estimation, i.e. properly weighted least-

squares estimation, is intrinsically invariant for differ-

ences in choice of (a) S-basis, (b) parameterization, and
(c) whether or not some parameters, like ionospheric de-

lays, are eliminated, the application of a rigorous net-

work adjustment, using any one of the different PPP-

RTK methods, must give the same positioning results

for the user. Any differences that show up between the
results of the different PPP-RTK methods, must then

be attributed to the usage of a different nonrigorous es-

timation procedure. We will revisit this remark in sec-

tion 6.2.

4.2 Transformation between PPP-RTK Corrections

As the user-equations of the user-corrected observations

are essentially the same, the different PPP-RTK correc-
tions must contain the same information and hence be

related through one-to-one transformations. We have

summarized these transformations in Table 1.

For example, if one would like to transform from the
IRC/DSC corrections to the CC-1 corrections, then the

following transformation applies:








dt̃ps

δ̃ps,1

δ̃ps,2









CC−1

=









1 0 0

− 1
λN

1
λN

− λ1

λ2−λ1

− 1
λN

1
λN

− λ2

λ2−λ1

















dt̃ps

δt̃ps,IF

δ̃ps,W









IRC/DSC

(64)

These transformations can now be used to opera-

tionally link the different PPP-RTK methods and to

mix them between network and users. It allows a user
to transform the network received corrections to the

format that suits his/her user software, or alternatively,

as a service to the users, it allows a network server to

transform the network corrections to any one of the
other formats and thus make any of the different PPP-

RTK parametrizations available to the users.

4.3 Interpretation of the PPP-RTK corrections

The PPP-RTK corrections establish a link between the

user-parameters and the network-parameters. The cor-

rections are designed to realize integer ambiguities in
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Table 1 PPP-RTK user-corrections in different models

CC 1 CC 2 DC IRC/DSC UPD/FCB








dt̃ps

δ̃ps,1

δ̃ps,2









=







1 0 0

0 −1 0

0 0 −1













dt̃ps

˜̃a
ps
q,1

˜̃a
ps
q,2







+







0

z1

z2







=









1 0 0

−
1
λ1

1
λ1

0

−
1
λ2

0 1
λ2

















dt̃ps

δt̃ps,1

δt̃ps,2









=









1 0 0

−
1

λN

1
λN

−
λ1

λ2−λ1

−
1

λN

1
λN

−
λ2

λ2−λ1

















dt̃ps

δt̃ps,IF

δ̃ps,W









=









1 0 0

0 −1 λ1
λ2−λ1

0 −1 λ2
λ2−λ1















dt̃ps,

frac(˜̃a
ps
q,c)

frac(˜̃a
ps
q,W )







+







0

zc

zW







The integers z1, z2, zc, zW may take any integer values

the user-equations, thus enabling user integer ambigu-

ity resolution. As remarked earlier, the interpretation of

these ‘user’ integer ambiguities is that they are straight-
forward double differenced (DD) ambiguities.

The presence of zps1 in the phase bias correction vec-

tor of CC-1,

δ̃ps = δps +Mdps − zps1 (65)

or, in the real-valued ambiguity correction vector of CC-
2,

ãps1 = zps1 − δps −Mdps (66)

or, in the integer recovery clock and wide-lane phase

bias corrections of IRC/DSC,

δt̃psIF = dtps + µT
IF
Λ(δps − zps1 )−∆ρps1

δ̃psW = (0, 1)ZW (δps − zps1 )− 1
λW

µT
NL

dps
(67)

make that the user-ambiguities in all these cases be-

come DD ambiguities between user station u and net-

work station 1.
Next to establishing an ambiguity link between net-

work and user, the PPP-RTK corrections also establish

a positional link between network and user. The pres-

ence of ∆ρps1 in the satellite clock correction

dt̃ps = dtps + µT
IF
dps −∆ρps1 (68)

and in the integer recovery clock correction δt̃psIF in

case of the IRC/DSC method, makes that the user-

positioning parameters in essence become relative posi-

tioning parameters between user station u and network

station 1. The PPP-RTK method is thus a relative po-
sitioning method and not one of absolute positioning.

To demonstrate the relative positioning feature of

PPP-RTK, consider the special case that the network

consists of only one single station, i.e. n = 1. It then
follows from (9), since ∆ρ̃ps1 = 0 (∆x̃1 = 0) and z̃1 = 0,

that

∆φps
1 = −µ ι̃ps1 − e dt̃ps − Λ δ̃ps

∆pps1 = +µ ι̃ps1 − e dt̃ps, s = 1, . . . ,m
(69)

This is an invertible system of 4(m − 1) equations in
4(m− 1) unknowns. After inversion, we get

ι̃ps1 = +µT
GF

∆pps1

dt̃ps = −µT
IF
∆pps1

δ̃ps = −Λ−1[∆φps
1 + (µµT

GF
− eµµT

IF
)∆pps1 ]

(70)

Substitution of these expressions for dt̃ps and δ̃ps into

(13) gives the user observation equations as

∆φ̃ps
u = ∆φps

1u − µµT
GF

∆pps1 = e∆ρ̃psu − µ ι̃psu + Λz̃psu

∆p̃psu = ∆pps1u + µµT
GF

∆pps1 = e∆ρ̃psu + µ ι̃psu

(71)

in which we recognize the DD phase and code oberva-

tions, ∆φps
1u = ∆φps

u −∆φps
1 and ∆pps1u = ∆ppsu −∆pps1 ,

respectively.

This demonstrates that the PPP-RTK corrected ob-

servations are actually DD observations biased with an

additional iono-term ‘µµT
GF

∆pps1 ’. This bias term is of

no consequence, since it gets fully absorbed in the iono-
spheric term ι̃psu . It does therefore not affect the solution

for ∆x̃u (or ∆ρ̃psu ) and z̃psu . Hence, the PPP-RTK gen-

erated solution of the above user model (71) is indeed

a relative positioning solution, and one, that will be
identical to a standard DD single baseline solution.

In fact, in its ionosphere-free formulation, the bias

‘µµT
GF

∆pps1 ’ is eliminated and the observables will con-

sist solely of DD combinations,

∆φ̃ps
u,IF = ∆φps

1u,IF

∆p̃psu,IF = ∆pps1u,IF

∆φ̃ps
u,WN = ∆φps

1u,WN

(72)

Thus the only difference between the above PPP-RTK

solution and a standard DD single baseline solution is

that with (71) a between-satellite SD ionospheric delay
ι̃psu is estimated, while in the DD single baseline case,

with the absence of ‘µµT
GF

∆pps1 ’, this would be the DD

ionospheric delay ι̃ps1u = ι̃psu − ι̃ps1 .

As to the number of correction parameters required,

we note that the PPP-RTK method only requires the
3(m− 1) corrections dt̃ps and δ̃ps, while a standard DD

approach requires all original 4(m− 1) phase and code

data ∆φps
1 and ∆pps1 .

4.4 On the Ionosphere-free Formulation

One may wonder what the benefits are of using an

ionosphere-free formulation? Surely this is not an im-
proved quality of its solution, since, when rigorously

solved, the ionosphere-free model formulations of Sec-

tion 3 give exactly the same solution as when using
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the original model formulations of Section 2. An appar-

ent benefit of this traditional ionosphere-free formula-

tion is that less parameters need to be solved for as

all ionospheric delays have been eliminated. But still, if

one is not interested in these ionosphere delays, then
it is really not needed to have them a priori elimi-

nated from the model. If one wants them eliminated,

one can simply reduce the normal equations for these

ionospheric delays. This has the advantage that one can
still work with the original, usually uncorrelated, obser-

vations and their equations, instead of with the corre-

lated ionosphere-free observations.

We find that the ionosphere-free formulation, in-

stead of having clear benefits, has the drawback of lack-
ing flexibility for further model strengthening, see e.g.

Teunissen and de Bakker (2012) or Mervart et al (2013).

The inclusion of a dynamic state transition model to

capture the temporal smoothness of the ionosphere, for
instance, will be problematic with the ionosphere-free

model. A similar difficulty exists when one wants to

incorporate an ionospheric model to capture both the

temporal and spatial characteristics of the ionosphere.

It is well-known that the ionosphere-free or ionosph-
ere-float models are relatively weak in the sense of their

ambiguity resolution capabilities. Relatively long obser-

vation time spans are then needed to achieve successful

integer ambiguity resolution (Hernandez-Pajares et al,
2000; Jonkman et al, 2000; Odijk, 2002; Odijk et al,

2014a). The lack of any ionospheric information is, in

fact, the bottleneck for fast ambiguity resolution. Suc-

cessful ambiguity resolution is achieved much faster when

such ionospheric information can be provided to the
model. But if such information would be available, it

would be cumbersome to include in the ionosphere-free

model. Doing so, would also defy the whole purpose of

an ionosphere-free formulation. This is straightforward,
however, with our original model formulations, like (9)

or (21), on the network side, and (14) or (27), on the

user side. On the network side, for instance, the inclu-

sion of an ionospheric model would result in a strength-

ening of the model through the parametrization of the
slant delays ι̃psr into fewer parameters. And on the user-

side, the model would be strengthened through the pro-

vision of a priori information on the ionospheric delays

of the user, as was already demonstrated in the PPP-
RTK concept of Teunissen et al (2010) and Odijk et al

(2012, 2014b).

In order for the PPP-RTK concept to be better ap-

plicable to a wider range of network and user station

separations (i.e., from close to distant), the corrections
will have to include ionospheric information. Consider,

for instance, the case where BLUP (i.e., least-squares

interpolation) is used to predict the ionospheric user de-

lay, say ι̃ps, from the network delays ι̃psr , r = 1, . . . , n.

Then, next to applying dt̃ps and δ̃ps, an application of

the ionosphere correction gives for the user equations,

∆φps
u + µι̃ps + e dt̃ps + Λ δ̃ps = eρ̃psu − µ(ι̃psu − ι̃ps) + Λz̃psu

∆ppsu − µι̃ps + e dt̃ps = eρ̃psu + µ(ι̃psu − ι̃ps)
(73)

Hence, at the user-side the biased ionospheric slant de-

lay ι̃psu is now replaced with its difference to ι̃ps. This is
a flexible formulation as it allows one to a priori weigh

the difference ι̃psu − ι̃ps in accordance to the ionospheric

prediction error. The smaller the prediction error, the

stronger the model and the larger the ambiguity suc-

cess rate. In the limit one would have ι̃ps = ι̃psu , thus
providing a strength that is equivalent to that of an

ionosphere-fixed, short baseline model.

5 Estimation of the PPP-RTK corrections

In this section we discuss 4 different least-squares es-

timators of the PPP-RTK corrections: the float and

fixed estimators under the geometry-free (GF) model
and the float and fixed estimators under the geometry-

based (GB) model. The different characteristics of these

estimators will also facilitate our discussion of some of

the estimation approaches described in the literature.

As the previous sections have shown, there are dif-
ferent forms of network equations one can start from.

Hence, the four mentioned estimators can be deter-

mined for any of these network equations. The CC-

model (9) would have our preference, as its observation
equations are already parameterized in integer ambi-

guities. However, to make an easier link with some of

the other approaches, as well as to show how integer

ambiguity resolution can be incorporated when the es-

timated ambiguities are non-integer, we start here from
the network equations of the CC-model (21). With this

CC-2 model we discuss the four different estimators for

dt̃ps and ãpsq . The corresponding estimators of any of

the other forms of corrections can then easily be ob-
tained through the transformations given in Table 1

5.1 Geometry-free Estimation

If we define φr = [φT
r,1, φ

T
r,2]

T ∈ R
2m, φr,j = [∆φ1

r,j , . . . ,-

∆φm
r,j ]

T , j = 1, 2, with a likewise definition for pr, we

can obtain from (21), in vector-matrix form, a uniquely

solvable set of equations for station r,

E

[

(I2 ⊗DT
m)φr

(I2 ⊗DT
m)pr

]

=

[

(−µ,−e, Λ)⊗ Im−1

(+µ,−e, 0)⊗ Im−1

]







ι̃r

dt̃r

ãr






(74)
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where ⊗ denotes the Kronecker product (Rao, 1973),

DT
m denotes an (m − 1) × m between-satellite differ-

encing matrix, and ι̃r , dt̃r, and ãr denote the vectors

of (m− 1) between-satellite differenced estimable iono-

spheric delays, satellite clocks and ambiguities of sta-
tion r, respectively. Note that dt̃ps and ∆ρ̃psr in (21)

have been lumped to dt̃psr = dt̃ps −∆ρ̃psr in (74)(dt̃ps1 =

dt̃ps). The system (74) is referred to as geometry-free

since its design matrix is independent of the receiver-
satellite geometry (Teunissen, 1997a).

The variance matrix of the observables of (74) is

assumed given as

D

[

(I2 ⊗DT
m)φr

(I2 ⊗DT
m)pr

]

= c2r

[

Cφ 0

0 Cp

]

⊗ Cs (75)

in which Cs = DT
mCSDm, with CS the co-factor ma-

trix that captures the satellite elevation dependency.

The scalar c2r (r = 1, . . . , n) is a receiver-dependent co-
factor. In this contribution we assume all receivers of

the same quality and thus c2r = 1 for all r. The 2 × 2

positive-definite matrices Cφ and Cp are the co-factor

matrices of the phase and code observable types, re-
spectively.

As the design matrix of (74) is square and invertible,

the float solution of dt̃r and ãr is easily obtained.

Lemma 2 (GF float corrections) The geometry-free float

solutions dˆ̃tr,GF and ˆ̃ar,GF of (74), and their (co)variance

matrices are given as

dˆ̃tr,GF = −[µT
IF

⊗DT
m]pr

ˆ̃ar,GF = +[Λ−1 ⊗DT
m][φr − (L⊗ Im−1)pr]

(76)

and

QGF

dˆ̃trd
ˆ̃tr

= c2ρ̂ ⊗ Cs

QGF

dˆ̃tr ˆ̃ar

= c2ρ̂e
T
µΛ

−1 ⊗ Cs

QGF

ˆ̃ar
ˆ̃ar

= Λ−1(Cφ + c2ι̂|ρµµ
T + c2ρ̂eµe

T
µ )Λ

−1 ⊗ Cs

(77)

with L = I2−2µµT
GF

= −[µ, e][µ,−e]−1, c2ρ̂ = µT
IF
CpµIF ,

c2ι̂|ρ = (µTC−1
p µ)−1, eµ = e−(cρ̂ι̂/c

2
ρ̂)µ, cρ̂ι̂ = µT

IF
CpµGF .

Proof See Appendix. ⊓⊔

The variance matrix QGF

ˆ̃ar
ˆ̃ar

has the typical structure of

a geometry-free ambiguity variance matrix (Teunissen,

1997c). It has been decomposed such as to clearly show

the contribution of the phase and code precision. As
shown in the next section, the range-related component

that depends on c2ρ̂ is the part that will be improved

when one switches from the geometry-free model to the

geometry-based model.
The GF float solution can be obtained on a station-

by-station basis. This is not the case for the ambiguity-

fixed solution. To the fixed solutions dˇ̃tr and ˇ̃ar, the

data of all network stations contribute. This is a conse-

quence of the fact (cf. 23) that not the station ambigui-

ties ãr, but the between-station ambiguities ãr−ã1 = z̃r
are integer. Hence, it is these double differences that are

estimated as integers and not the between-satellite dif-
ferenced station ambiguities ãr. The precision of these

estimated station ambiguities, as well as that of the

satellite clocks, will benefit however from such integer

ambiguity resolution.
The GF ambiguity-fixed solution of the satellite clock

dt̃r and of the real-valued ambiguity vector ãr is given

in the following lemma.

Lemma 3 (GF fixed corrections) The geometry-free fixed

solutions dˇ̃tr,GF and ˇ̃ar,GF of (74), and their (co)variance

matrices are given as

dˇ̃tr,GF = dˆ̃tr,GF −QGF

dˆ̃tr ˆ̃ar

QGF−1

ˆ̃ar
ˆ̃ar

[ˆ̃ar,GF − ˇ̃ar,GF ]

ˇ̃ar,GF = ˇ̃zr +
1
n

n
∑

j=1

[ˆ̃aj,GF − ˇ̃zj ]
(78)

and

QGF

dˇ̃trd
ˇ̃tr

= QGF

dˆ̃trd
ˆ̃tr

− n−1
n (c2ρ̂ − c2ρ̌)⊗ Cs ≈ 1

nQ
GF

dˆ̃trd
ˆ̃tr

QGF

dˇ̃tr ˇ̃ar

= 1
nQ

GF

dˆ̃tr ˆ̃ar

QGF

ˇ̃ar
ˇ̃ar

= 1
nQ

GF

ˆ̃ar
ˆ̃ar

(79)

in which ˇ̃zi (i = 1, . . . , n), with ˇ̃z1 = 0, are the geometry-

free integer resolved DD ambiguities of the network. The

cofactor c2ρ̌ is given as c2ρ̌ = µT
IF
(C−1

φ +LTC−1
p L)−1µIF .

Proof See Appendix. ⊓⊔

Note that the difference of the fixed and float solution

of dt̃r only depends on the ambiguity residual of the

station r itself. This is due to the fact that dˆ̃tr,GF and
ˆ̃aq,GF are uncorrelated for q 6= r.

Also note, since ãr = z̃r−δ̃ (cf. 23), that the average

in the second equation of (78) is the GF fixed solution

of the negative phase bias −δ̃. Thus

ˇ̃δGF = − 1

n

n
∑

j=1

[ˆ̃aj,GF − ˇ̃zj ] (80)

with variance matrix

QGF

ˇ̃
δ
ˇ̃
δ
= QGF

ˇ̃ar
ˇ̃ar

=
1

n
QGF

ˆ̃ar
ˆ̃ar

(81)

where we assumed the ambiguity success-rate large eno-
ugh to neglect the uncertainty in the integer solution
ˇ̃zr.

We return to these equations later when the FCB

approach of estimation is discussed. We remark that
the average in (80) will generalize to a weighted-average

when the station-dependent factors c2r of (75) would be

chosen different from 1. This would be the case, for
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Table 2 GF and GB multi-epoch redundancy table

Redundancy float fixed

GF 2(m − 1)(k − 1)n 2(m − 1)(kn− 1)

GB GF + [k(m− 1)− ν](n− 1) GF + [k(m− 1) − ν](n− 1)

instance, when receivers of different quality would par-
ticipate in the network.

Lemma 3 shows the GF precision improvement that

one can expect to achieve in the clock and ambiguity

estimators as a result of successful integer ambiguity

resolution. It shows that the gain in precision (approxi-
mately) follows the 1/

√
n rule. For the ambiguities this

is due to the network averaging that takes place in com-

puting ˇ̃ar,GF (cf. 78) and for the satellite clock dˇ̃tr,GF

it follows from using the approximation cρ̌/cρ̂ ≈ 0 (cf.
79).

This 1/
√
n improvement, although significant, is not

as spectacular as the two orders of magnitude improve-

ment that one achieves in baseline precision when ap-

plying instantaneous ambiguity resolution (Teunissen,
1997a). The explanation for this difference lies in the

type of parameters considered. As ambiguity resolved

single-differenced parameters still require code data for

their estimation, the relatively poor code precision pro-
hibits the gain to reach the two orders of magnitude

level.

The above results are based on single-epoch solu-

tions. A corresponding multi-epoch solution, based on

the time-invariance of ãr, can subsequently be obtained.
We combine these results with our discussion of the

geometry-based model in the next section.

5.2 Geometry-based Estimation

Let us first consider the redundancies when comparing

the GF-model with the GB-model, see Table 2. The
single-epoch GF-model has no redundancy. In the k-

epoch case, however, the time-invariance of the 2(m−1)

ambiguites of each of the n stations, makes the multi-

repoch GF-redundancy equal to 2(m−1)(k−1)n. Would
all ambiguities be known, the redundancy would in-

crease further with 2(m−1)n. However, since ambiguity

resolution only affects the integer DD ambiguities, not

all, but only 2(m − 1)(n − 1) ambiguities can be con-

sidered known. With this increase of redundancy, the
ambiguity-fixed, multi-epoch GF-redundancy is equal

to 2(m− 1)(nk − 1).

Let us now consider the geometry-basedmodel. With

the GB-model, the (m − 1)-vector ∆ρ̃r of dt̃r = dt̃ −
∆ρ̃r, r = 2, . . . , n, is parametrized in the ν-vector ∆x̃r .

Hence, for the k-epoch case, the k(m−1)n clock param-

eters of dt̃r get replaced by the k(m−1) parameters of dt̃

and the ν(n−1) parameters of∆x̃r . The multi-epoch re-

dundancy, for both the ambiguity-float and ambiguity-

fixed case, increases therefore by [k(m − 1)− ν][n − 1]

when switching from the GF-model to the GB-model

(cf. Table 2).

This increase in model strength will show up in the

improved precision of the estimated PPP-RTK correc-

tions. To show this clearly, we have determined the
variance matrices of their least-squares GB- and GF-

estimators under some simplifying assumptions. We fol-

lowed Teunissen (1997a) and used a time-averaged rece-

iver-satellite geometry matrix G of order m × ν, in

G̃ = [G, em], to capture the geometry for the GB-
model (em is the m-vector of ones). The results are

given in Tables 3, 4 and 5, respectively. The proofs of

these results can be found in the Appendix.

Table 3 presents the variance matrices of the ambigu-
ity-float GB/GF least-squares PPP-RTK corrections.

It shows that all (co)variance matrices, except those of

the satellite clocks, follow the 1-over-k rule. For not too

large k, however, the same rule applies approximately to
the variance matrices of the satellite clocks as well, i.e.

QGB

dˆ̃tdˆ̃t
[k] ≈ 1

kQ
GB

dˆ̃tdˆ̃t
and QGF

dˆ̃tdˆ̃t
[k] ≈ 1

kQ
GF

dˆ̃tdˆ̃t
, since c2ρ̌ ≈ 0.

In the absence of satellite redundancy, we have m =

ν+1 and therefore C̃s = DT
mP⊥

G̃
CsDm = 0. In that case

the ambiguity variance matrix and the ambiguity-clock

covariance matrix of the two models are the same. For
the variance matrix of the clocks there is then still a

slight difference between the GB- and GF-model, one

that can be explained by the assumed time-invariance

of∆x̃r. Thus in the absence of satellite redundancy, the

GF-model has approximately the same performance as
the GB-model.

Table 4 is the ambiguity-fixed counterpart of Table

3. Again it shows that all (co)variance matrices, except
those of the satellite clocks, follow the 1-over-k rule.

For not too large k, however, the same rule applies ap-

proximately to the ambiguity-fixed variance matrices of

the satellite clocks as well, i.e. QGB

dˇ̃tdˇ̃t
[k] ≈ 1

kQ
GB

dˇ̃tdˇ̃t
and

QGF

dˇ̃tdˇ̃t
[k] ≈ 1

kQ
GF

dˇ̃tdˇ̃t
, since c2ρ̌ ≈ 0. Importantly, we note

that

QGB

ˇ̃ar
ˇ̃ar
[k] = QGF

ˇ̃ar
ˇ̃ar
[k] and QGB

dˇ̃tˇ̃ar

[k] = QGF

dˇ̃tˇ̃ar

[k] (82)

with

QGB

dˇ̃tdˇ̃t
[k] ≈ QGF

dˇ̃tdˇ̃t
[k] (83)

for not too large k. Thus after successful integer ambi-

guity resolution, the GF-based corrections have a qual-

ity that is close to their GB-counterparts.

Let us now consider the impact of integer ambiguity
resolution per model. In Table 5 the ambiguity-fixed

variance matrices of both models are expressed in their

ambiguity-float counterparts. The results show that the
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Table 3 Variance matrices of the k-epoch ambiguity-float GB/GF least-squares PPP-RTK corrections expressed in their single-epoch
counterparts.

Multi-epoch GB Single-epoch GB Multi-epoch GF

QGB

dˆ̃tdˆ̃t
[k] = 1

k
QGB

dˆ̃tdˆ̃t
[1] + k−1

k
1
n
c2ρ̌Cs = QGF

dˆ̃tdˆ̃t
[k]− 1

k
n−1
n

c2ρ̂C̃s −
k−1
k

n−1
n

c2ρ̌Cs

QGB

dˆ̃tˆ̃a1

[k] = 1
k
QGB

dˆ̃tˆ̃a1

[1] = QGF

dˆ̃tˆ̃a1

[k]− 1
k

n−1
n

c2ρ̂e
T
µΛ−1 ⊗ C̃s

QGB
ˆ̃ar

ˆ̃ar
[k] = 1

k
QGB

ˆ̃ar
ˆ̃ar

[1] = QGF
ˆ̃ar

ˆ̃ar
[k]− 1

k
n−1
n

c2
ρ̂
Λ−1eµeTµΛ−1 ⊗ C̃s

QGF

dˆ̃tdˆ̃t
[k] = (1/k)QGF

dˆ̃tdˆ̃t
[1] + [(k − 1)/k]c2ρ̌Cs; QGF

dˆ̃tˆ̃a1

[k] = (1/k)QGF

dˆ̃tˆ̃a1

[1]; QGF
ˆ̃ar

ˆ̃ar
[k] = (1/k)QGF

ˆ̃ar
ˆ̃ar

[1]

Table 4 Variance matrices of the k-epoch ambiguity-fixed GB/GF least-squares PPP-RTK corrections expressed in their single-epoch
counterparts.

Multi-epoch GB Single-epoch GB Multi-epoch GF

QGB

dˇ̃tdˇ̃t
[k] = 1

k
QGB

dˇ̃tdˇ̃t
[1] + k−1

k
1
n
c2ρ̌Cs = QGF

dˇ̃tdˇ̃t
[k]− 1

k
n−1
n

c2ρ̌C̃s −
k−1
k

n−1
n

c2ρ̌Cs

QGB

dˇ̃tˇ̃a1

[k] = 1
k
QGB

dˇ̃tˇ̃a1

[1] = QGF

dˇ̃tˇ̃a1

[k]

QGB
ˇ̃ar

ˇ̃ar
[k] = 1

k
QGB

ˇ̃ar
ˇ̃ar

[1] = QGF
ˇ̃ar

ˇ̃ar
[k]

QGF

dˇ̃tdˇ̃t
[k] = (1/k)QGF

dˇ̃tdˇ̃t
[1] + [(k − 1)/k]c2ρ̌Cs; QGF

dˇ̃tˇ̃a1
[k] = (1/k)QGF

dˇ̃tˇ̃a1
[1]; QGF

ˇ̃ar
ˇ̃ar

[k] = (1/k)QGF
ˇ̃ar

ˇ̃ar
[1]

GF (co)variance matrices, except those of the satellite

clocks, follow the 1-over-n rule. For not too large n,
however, the same rule applies approximately to the

GF variance matrix of the satellite clocks as well, i.e.

QGF

dˇ̃tdˇ̃t
[k] ≈ 1

nQ
GF

dˆ̃tdˆ̃t
[k], since c2ρ̌ ≈ 0.

In case of the GB-model, the impact of ambigu-
ity resolution differs from that of the GF-model. Here

the impact largely depends on the strength of the GB-

model. The weaker the model, the larger the impact

of ambiguity resolution is. The model is weakest when
there is no satellite redundancy. Then m = ν + 1 and

C̃s = 0. At the other extreme we have the geometry-

fixed case (i.e., ∆x̃r = 0 for all r). Then C̃s = Cs and

no improvement, apart from QGB

ˇ̃ar
ˇ̃ar
[k], can be realized.

In this case, we have with (82) and (83),

QGB

ˇ̃ar
ˇ̃ar
[k] = QGB

ˆ̃ar
ˆ̃ar
[k]−Q = QGF

ˇ̃ar
ˇ̃ar
[k]

QGB

dˇ̃tˇ̃ar

[k] = QGB

dˆ̃tˆ̃ar

[k] = QGF

dˇ̃tˇ̃ar

[k]

QGB

dˇ̃tdˇ̃t
[k] = QGB

dˆ̃tdˆ̃t
[k] ≈ QGF

dˇ̃tdˇ̃t
[k]

(84)

with Q = n−1
kn Λ−1(Cφ + c2ι̂|ρµµ

T )Λ−1 ⊗ C̃s.
Hence, the ambiguity-float GB clock solution would

then already be as good as that of the ambiguity-fixed

solutions of either the GB- or GF-model.

5.3 Precision of User-Corrected Observations

Having the variance matrices of the individual PPP-

RTK corrections available, one can now also determine

the variance matrix of the complete user-corrections.
In (Odijk et al, 2014b) such example is given for the

single-frequency PPP-RTK case. Here we consider as

example the dual-frequency GF-model determined cor-

rections. The float corrections that are applied to the

user observations are then given as

[

ĉφ

ĉp

]

=

[[

e −Λ

e 0

]

⊗ Im−1

][

dˆ̃tr,GF

ˆ̃ar,GF

]

(85)

with a likewise definition in case integer ambiguity re-

solved corrections dˇ̃tr,GF and ˇ̃ar,GF are used. The fol-
lowing Lemma gives the variance matrix of these user-

corrections for both the ambiguity-float and ambiguity-

fixed case.

Lemma 4 (Precision GF User-Corrections) The vari-

ance matrices of the ambiguity-fixed and ambiguity-float

PPP-RTK user-corrections are given for a single-epoch

as

D

[

čφ

čp

]

= 1
nD

[

ĉφ

ĉp

]

+ n−1
n c2ρ̌

[

e

e

][

e

e

]T

⊗ Cs (86)
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Table 5 Impact of integer ambiguity resolution: variance matrices of the ambiguity-fixed GB/GF least-squares PPP-RTK corrections
expressed in their ambiguity-float counterparts.

Geometry-based Geometry-free

QGB

dˇ̃tdˇ̃t
[k] = QGB

dˆ̃tdˆ̃t
[k]− 1

k
n−1
n

(c2ρ̂ − c2ρ̌)(Cs − C̃s) QGF

dˇ̃trd
ˇ̃tr
[k] = 1

n
QGF

dˆ̃trd
ˆ̃tr
[k] + n−1

n
c2ρ̌Cs

QGB

dˇ̃tˇ̃a1
[k] = QGB

dˆ̃tˆ̃a1

[k]− 1
k

n−1
n

c2ρ̂e
T
µΛ−1 ⊗ (Cs − C̃s) QGF

dˇ̃tr ˇ̃ar

[k] = 1
n
QGF

dˆ̃tr ˆ̃ar

[k]

QGB
ˇ̃ar

ˇ̃ar
[k] = QGB

ˆ̃ar
ˆ̃ar

[k]− 1
k

n−1
n

c2ρ̂Λ
−1eµeTµΛ−1

⊗ (Cs − C̃s)−
1
k

n−1
n

Λ−1(Cφ + c2
ι̂|ρ

µµT )Λ−1
⊗ C̃s QGF

ˇ̃ar
ˇ̃ar

[k] = 1
n
QGF

ˆ̃ar
ˆ̃ar

[k]

and

D

[

ĉφ

ĉp

]

=





[

Cφ 0

0 Cp

]

+ c2ι̂

[

−µ

µ

][

−µ

µ

]T

+

−
[

−µ

µ

][

0

CpµGF

]T

−
[

0

CpµGF

] [

−µ

µ

]T


⊗ Cs

(87)

with c2ι̂ = µT
GF

CpµGF .

Proof Follows from using the relevant entries of Tables

3 and 4 in the application of the variance propagation

law to (85). ⊓⊔

Two important remarks can now be made about these

variance matrices. First, since these variance matrices
describe the precision of the user-corrections, all their

entries are needed when one wants to perform a statis-

tical validation of the user-corrections themselves (ei-

ther ambiguity-fixed or ambiguity-float based). For the

user-processing however, not all entries are needed. To
understand this, consider the sum-structure of the vari-

ance matrices (86) and (87). In them one will recog-

nize rank-one matrices with components that lie in the

range-space of the design matrix of the user-system of
observation equations. These are the rank-one matri-

ces with components [eT , eT ]T or [−µT , µT ]T (three in

87 and four in 86). Since they lie in the range-space of

the user’s design matrix, this part of the variance ma-

trix of the user-corrections will not contribute to the
estimation of the user parameters. Hence, for the user-

processing only the following components are of rele-

vance,

1

n

[

Cφ 0

0 Cp

]

⊗ Cs or

[

Cφ 0

0 Cp

]

⊗ Cs (88)

depending on whether the ambiguity-fixed or ambiguity-
float corrections are used. Note that this result is con-

sistent with our earlier relative positioning conclusion

of PPP-RTK (cf. section 4.3). It thus implies that the

[eT , eT ]T and [−µT , µT ]T induced correlation present in

(86) and (87) can be neglected.

In the first matrix of (88) we see the contribution

of the number of network stations, which is analogous

to the contribution in the array-aided PPP concept of

Teunissen (2012). An increasing number of stations will
thus in particular help to reduce the noise contribution

of the code measurements.

5.4 Integer Ambiguity Resolution

5.4.1 ILS, IB and IR

The ambiguity resolved estimators of the previous sub-

sections can only be obtained once integer ambiguity

resolution has been performed. We now show how the
integer estimators of z̃i, i = 2, . . . , n, (cf. 78) can be

obtained.

Defining the ambiguity matrices A = [ã1, . . . , ãn],

Z = [z̃2, . . . , z̃n], and using the property ãr = z̃r − δ̃,
with z̃r ∈ Z

2(m−1) (cf. 23), we can write

Z = ADn ∈ Z
2(m−1)×(n−1) (89)

with Dn = [−en−1, In−1]
T the between-station differ-

encing matrix. The Integer Least-Squares (ILS) esti-

mator of Z can then be computed as

Ž = arg min
Z∈Z2(m−1)×(n−1)

||vec(ÂDn−Z)||2
D(vec(ÂDn))

(90)

with D(vec(ÂDn)) the variance matrix of the float solu-

tion vec(ÂDn), obtained from either the GF or the GB
model. The single-epoch version of this variance matrix

is given as

D(vec(ÂDn)) = DT
nDn ⊗ Caa ⊗DT

mCSDm (91)

with

Caa =

{

CGFi
aa = Λ−1(Cφ + c2ι̂|ρµµ

T )Λ−1

CGF
aa = CGFi

aa + Λ−1(c2ρ̂eµe
T
µ )Λ

−1
(92)

in which CGFi
aa and CGF

aa denote the geometry-fixed and
geometry-free ambiguity cofactor matrices, respectively.

The geometry-fixed and geometry-free cases are con-

sidered, since they represent the two extreme cases of

model strength.
The ILS estimator (90) is optimal in the sense that

it has the largest possible success-rate of all integer

estimators (Teunissen, 1999). Popular alternatives to
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ILS are integer bootstrapping (IB) and integer round-

ing (IR). They are easier to compute than ILS and

when the model has sufficient strength their perfor-

mance can be close to optimal once the decorrelating

Z-transformation is applied (Teunissen, 1995, 1998).

One can also approximate the ILS solution (90) by

approximating the variance matrix. The objective func-
tion of (90) decouples, for instance, and becomes easier

to minimize, if one neglects the correlation due to differ-

encing. Would one neglect the correlation all together

and replace D(vec(ÂDn)) in (90) by a diagonal matrix,
then the solution would reduce to ordinary component-

wise integer rounding,

ˇ̃zi =
⌊

ˆ̃ai − ˆ̃a1

⌉

, i = 2, . . . , n (93)

If the underlying model is too weak to achieve high

enough success-rates for full ambiguity resolution, one

can also opt for partial ambiguity resolution. Resolv-

ing only wide-lane ambiguities, for instance, is a special
case of partial ambiguity resolution (Teunissen, 1997d).

5.4.2 Ambiguity Dilution of Precision

To get an indication of the ambiguity resolution strength

of the models, we use the Ambiguity Dilution of Preci-
sion (ADOP). This is an easy-to-apply diagnostic mea-

sure that was introduced by Teunissen (1997b). The

ADOP is defined as the square-root of the ambiguity

variance matrix’ determinant taken to the power one
over the matrix’ order. Thus in case of full-ambiguity

resolution, with m satellites, n stations and 2 frequen-

cies, it is defined as

ADOP = |D(vec(ÂDn))|
1

4(m−1)(n−1) (cycle) (94)

Since the ADOP is a measure for the average ambiguity
precision, the ADOP can also be linked to the probabil-

ity of correct integer estimation, the ambiguity success-

rate. As a rule of thumb, ADOP-values smaller than

about 0.10 cycle, correspond to ADOP-based success-
rates larger than 0.999 (Odijk and Teunissen, 2008).

If the ADOP-values for full ambiguity resolution are

too large, one may also consider partial ambiguity reso-
lution. If we denote the wide-lane-only ambiguity dilu-

tion of precision as ADOPWL, then it follows from the

definition of the ambiguity dilution of precision that for

the dual-frequency case,

ADOP2 = ADOPL1|WL ×ADOPWL (cycle2) (95)

with ADOPL1|WL denoting the wide-lane conditioned

L1-only ambiguity dilution of precision. Thus if two of

the entries in (95) are given, the third follows.

The following lemma gives analytical expressions for

the geometry-fixed and geometry-free ADOPs in case of

full ambiguity resolution and wide-lane-only ambiguity

resolution.

Lemma 5 (Geometry-fixed and Geometry-free ADOPs)

Assuming Cφ = σ2
φI2 and Cp = σ2

pI2 (cf. 75), the sin-
gle epoch, geometry-fixed (GFi) and geometry-free (GF)

ADOPs of full-ambiguity resolution and wide-lane-only

ambiguity resolution are given as

ADOPGFi = co

(

σφσp

λ1λ2

)
1
2

(1 + ǫ)
1
4

ADOPGF = ADOPGFi
(

1+ǫ
ǫ + 4(µ1+µ2)

2

(1+ǫ)(µ2−µ1)2

)
1
4

(96)

and

ADOPGFi
WL

= co

((

σ2
φ

λ2
1
+

σ2
φ

λ2
2

)

+
σ2
p

λ2
W

µ2

µ2
1+µ2

2

)

1
2

ADOPGF
WL

= ADOPGFi
WL

(1 + γ)
1
2

(97)

with ǫ = σ2
φ/σ

2
p and

co = n
1

2(n−1)

(

m
∑

s=1

c−2
s /

m
∏

s=1

c−2
s

)
1

2(m−1)

(98)

where c2s are the diagonal entries of the elevation-weighting

matrix CS. The scalar γ is approximated as γ ≈ (f3
1 −

f3
2 )

2/(f2
1 f

2
2 (f1 + f2)

2).

Proof Follows from an application of the results of Odijk

and Teunissen (2008). The exact value of γ is given in
Appendix. ⊓⊔
The Lemma shows that for full ambiguity resolution,

the geometry-free ADOP (cf. 96) is about a factor (1+ǫ
ǫ )

1
4 ≈

10 (ǫ ≈ 10−4) larger than the corresponding geometry-

fixed ADOP. The Lemma also shows that while the

geometry-fixed wide-lane-only ADOP is governed by

σp/λW (cf. 97), its full-ambiguity resolution counter-
part is governed by (σφσp/λ1λ2)

1
2 . Hence, for the geome-

try-fixed case it does not pay off to do wide-lane-only

ambiguity resolution. This changes if one considers the

geometry-free model. In that case, wide-lane-only ambi-

guity resolution has a better success-rate performance,
since the full-ambiguity resolution geometry-free ADOP

is about a factor 6 larger than its wide-lane-only coun-

terpart, while the wide-lane-only geometry-free ADOP

does not differ too much from its geometry-fixed coun-
terpart.

Numerical values for the ADOPs are given in Table

6. They show that full ambiguity resolution requires

many epochs in case of the geometry-free model, but

only in the order of about ten for the geometry-fixed
model. In contrast to full ambiguity resolution, the ta-

ble also shows that wide-lane-only ambiguity resolution

is possible with the geometry-free model. And once the

wide-lane ambiguities are known, the geometry-fixed
model allows for a reasonable quick resolution of the

L1 ambiguities. This is in contrast to the geometry-free

model.
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Table 6 Single-epoch, zenith-referenced ADOP-values for the
geometry-fixed and geometry-free scenarios (GPS dual-frequency
L1/L2). ADOP refers to full ambiguity resolution; ADOPWL to

wide-lane-only ambiguity resolution, while ADOPL1|WL refers
to L1 ambiguity resolution assuming the wide-lane ambiguities
known.

ADOP [cycle] Geometry-fixed Geometry-free

ADOP 0.278 2.787

ADOPWL 0.465 0.497

ADOPL1|WL 0.166 15.620

m = 2;n = 2; σφ = 3 [mm];σp = 30 [cm]

6 The UPD/FCB method revisited

The estimation methods and results presented in the

previous sections apply to all the discussed PPP-RTK

models. As all the PPP-RTK models considered above
are shown to be intrinsically equivalent, a rigorous ap-

plication of these estimation methods to the different

models will therefore result in identical positioning re-

sults. This is also true for the model underlying the

UPD/FCB method. However, as the UPD/FCB esti-
mation method itself differs from the methods of esti-

mation of the previous sections, see e.g. (Ge et al, 2008;

Geng et al, 2010, 2011, 2012; Geng and Bock, 2013), it

is of interest to identify and understand what those dif-
ferences are.

6.1 The UPD/FCB estimation method

Here we follow (Ge et al, 2008, p. 392-393) and (Geng

et al, 2012, p. 580-582). In the UPD/FCB estimation

method, the sequence of estimating the corrections dt̃ps,

frac(ãpsr,c) and frac(ãpsr,W ) (cf. 54) is as follows. First, a
geometry-free approach is used to obtain an estimate

of the fractional part of the wide-lane ambiguity ãpsr,W .

Then, a geometry-based approach is used to obtain

a float estimate of the satellite clock dt̃ps. Finally, a

geometry-free approach is used again to obtain an esti-
mate of the fractional part of ãpsr,c. More specifically the

three steps can be described as follows:

Step 1: The computation of the fractional wide-lane

estimate is based on the third equation of the FCB

network-model (43 or 53):

∆φps
r,WN = λW ãpsr,W , r = 1, . . . , n (99)

This system is solved on a station-by-station basis, the

solutions of which are time-averaged to give the esti-

mates ˆ̃a
ps

r,W , r = 1, . . . , n. The fractional parts of them

are then station averaged to give (Geng and Bock, 2013,

p. 451, Eq. (4)),

frac(−δ̃ps,W ) =
1

n

n
∑

r=1

frac(ˆ̃a
ps

r,W ) (100)

Step 2: The computation of the estimate for dt̃ps is
based on the first two equations of (53),

∆φps
r,IF − λ2

µ12
⌊ãpsr,W ⌉ = ∆ρ̃psr − dt̃ps + λN ãpsr,c

∆ppsr,IF = ∆ρ̃psr − dt̃ps , r = 1, . . . , n
(101)

For ⌊ãpsr,W ⌉ the integer ⌊ˆ̃apsr,W ⌉ based on ˆ̃a
ps

r,W of the pre-

vious step is used. The system is solved to obtain ∆ˆ̃ρr,

dˆ̃t
ps

and ˆ̃a
ps

r,c (Geng et al, 2010, p. 582). Note that this

step is not necessary if we have a precise satellite clock

product.

Step 3: In this last step the fractional parts of the

‘narrow-lane’ ambiguity solutions ˆ̃a
ps

r,c, r = 1, . . . , n, of

the previous step are taken to compute the station av-

eraged estimate (Ge et al, 2008; Geng et al, 2012, p.
582, Eq. (11))

frac(−δ̃ps,c ) =
1

n

n
∑

r=1

frac(ˆ̃a
ps

r,c) (102)

Hence, as a result of the above three steps, the PPP-

RTK corrections provided are the clocks estimate dˆ̃t
ps

and the two FCB estimates frac(−δ̃ps,c ) and frac(−δ̃ps,W ),

respectively. In the improved narrow-lane FCB method
of Geng et al (2012, Sect. 2.3), the computation (102) is

replaced by its ambiguity resolved counterpart, through

which an improvement in the results, over the method

proposed by Ge et al (2008), was reported.

The above estimators (100) and (102) relate to betw-

een-satellite phase biases. Would one work with un-

differenced observations, similar estimators can be for-

mulated for the fractional part of the between-receiver
phase biases, see e.g., (Li et al, 2013b, 2014).

6.2 Comparison of Estimators

We now compare the FCB-estimators (100) and (102)

with their corresponding ambiguity resolved satellite

phase bias estimator. We start with the wide-lane ver-

sion (100). Since ãpsr = z̃psr − δ̃ps (cf. 23) and thus
ãpsr,W = z̃psr,W − δ̃ps,W , we have, since z̃psr,W ∈ Z, that

frac(ãpsr,W ) = frac(−δ̃ps,W ) for r = 1, . . . , n, and there-

fore

frac(−δ̃ps,W ) =
1

n

n
∑

r=1

frac(ãpsr,W ) (103)



20

Having station-estimators ˆ̃a
ps

r,W of ãpsr,W available (r =

1, . . . , n), it is then perhaps ‘natural’, as is done in the

FCB estimation method, to take as estimator of the

fraction frac(−δ̃ps,W ), the station-average (100),

frac(−δ̃ps,W ) =
1

n

n
∑

r=1

frac(ˆ̃a
ps

r,W ) (104)

We now compare this ‘natural’ estimator with the best

estimator of the wide-lane phase-bias δ̃ps,W , i.e. the am-

biguity resolved estimator ˇ̃δ
ps

,W . Recall that the inte-

ger estimate ˇ̃z
ps
j in (80) follows from applying integer

ambiguity resolution to the GF float solution ˆ̃zj =
ˆ̃aj,GF − ˆ̃a1,GF . Hence, if integer rounding is used on

its wide-lane component to obtain the integer estimate
ˇ̃z
ps
j,W = ⌊ˆ̃zpsj,W ⌉ = ⌊ˆ̃apsj,W − ˆ̃a

ps

1,W ⌉, it follows from (80)
that

ˇ̃δ
ps

,W = − 1
n

n
∑

j=1

(

ˆ̃a
ps

j,W − ⌊ˆ̃apsj,W − ˆ̃a
ps

1,W ⌉
)

= − 1
n

n
∑

j=1

(

(ˆ̃a
ps

j,W − ˆ̃a
ps

1,W )− ⌊ˆ̃apsj,W − ˆ̃a
ps

1,W ⌉
)

− ˆ̃a
ps

1,W

= − 1
n

n
∑

j=1

frac(ˆ̃a
ps

j,W − ˆ̃a
ps

1,W )− ˆ̃a
ps

1,W

= − 1
n

n
∑

j=1

frac(ˆ̃z
ps

j,W )− ˆ̃a
ps

1,W

(105)

and therefore

−ˇ̃δ
ps

,W =
1

n

n
∑

j=1

frac(ˆ̃z
ps

j,W ) + ˆ̃a
ps

1,W (106)

This ambiguity resolved estimator of the wide-lane phase-

bias is made up of two different terms. A station-average

of the fractions of double-differenced float wide-lane am-

biguities and the single-differenced float wide-lane am-

biguity of the reference station 1. Thus although this
estimator is also made up from a station average, its

fraction is quite different from the FCB-estimator (104).

We therefore have the following result.

Lemma 6 (FCB-estimator) The station-averaged FCB

estimator 1
n

∑n
r=1 frac(

ˆ̃a
ps

r,W ) (cf. 100) is not optimal,

since

frac(δ̃ps,W ) 6= frac(
ˇ̃
δ
ps

,W ) for n > 1 (107)

Thus only in case of a single station, n = 1, do we

have frac(
ˇ̃
δ
ps

,W ) = frac(δ̃ps,W ), since then −ˇ̃
δ
ps

,W = ˆ̃a
ps

1,W ,

because ˆ̃z
ps

1,W = 0 by definition. A similar result as (107)

also holds true for the estimator (102). Note that in
Ge et al. (2008) the estimators frac(δ̃ps,W ) and frac(δ̃ps,c )

are used, while in Geng et al. (2012) the estimators

frac(δ̃ps,W ) and improved narrow-lane FCBs are used.

6.3 Unbiasedness

Although the FCB-estimator (100) is not optimal, it

could still be a useful estimator if it does what it is

supposed to do, namely to guarantee that the user-

ambiguities become integer when the estimator is ap-

plied as a PPP-RTK correction. Unfortunately, this is
not the case either.

This can be understood, if one considers (104) as

estimator of (103). Clearly, if ˆ̃a
ps

r,W is an unbiased es-

timator of ãpsr,W , then frac(−δ̃ps,W ) is not an unbiased

estimator of frac(−δ̃ps,W ), not even of an integer-shifted

version of it. Since the frac-operator is nonlinear, the ex-
pectation operator and frac-operator do not commute.

We therefore have the following result.

Lemma 7 (FCB-estimator as PPP-RTK correction) The

station-averaged PPP-RTK correction 1
n

∑n
r=1 frac(

ˆ̃a
ps

r,W )

(cf. 100) of the FCB estimation method fails to recover
the integerness of the user-ambiguities, since

E

(

frac(δ̃ps,W )
)

6= frac(δ̃ps,W ) + z for some z ∈ Z (108)

Using the station-average 1
n

∑n
r=1 frac(

ˆ̃a
ps

r,W ) as estima-

tor for the PPP-RTK correction frac(ãpsq,W ) = −frac(δ̃ps,W )

in (48) or (54), will thus bias the user-ambiguities into

noninteger values, and thereby undermine the whole

purpose of PPP-RTK.Would one use this FCB-estimat-
ion method and resolve the user-ambiguities as if they

are integer, one would in fact propagate their non-integer-

ness as bias into the estimators of the remaining param-

eters. The following simple example makes this clear.

Example: Consider the model of two observation equa-
tions with two unknowns,

E

[

φ+ ai

p

]

=

[

1 1

1 0

][

ρ

zi

]

(109)

with real-valued parameter ρ and integer-valued param-

eter zi. For simplicity, we assume the variance matrix

of the observables to be a scaled unit-matrix. The ILS
solution of ρ follows then as

ρ̌i =
1
2 (φ+ ai + p− ⌊φ+ ai − p⌉)

= 1
2 (φ+ frac(ai) + p− ⌊φ+ frac(ai)− p⌉)

(110)

The second equation follows from the first, since integer

rounding is integer equivariant, i.e. ⌊x+z⌉ = ⌊x⌉+z for
z ∈ Z and thus frac(x+ z) = frac(x). Hence, the result

(110) shows that the ILS solution ρ̌i remains unchanged

when ai in (109) is replaced by frac(ai).

Let us now assume that i = 1, . . . , n and that we
replace ai in the first equation of (110) by the average
1
n

∑n
i=1 frac(ai). The resulting estimator reads then

ρ̌′ =

1
2

(

φ+ 1
n

n
∑

i=1

frac(ai) + p−
⌊

φ+ 1
n

n
∑

i=1

frac(ai)− p

⌉)

(111)
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This estimator, however, is a biased estimator of ρ. This

can be understood as follows. Since the ILS estimators

ρ̌i, i = 1, . . . , n, are unbiased estimators of ρ (Teunissen,

1999), their average

ρ̌ = 1
n

n
∑

i=1

ρ̌i

= 1
2

(

1
n

n
∑

i=1

(φ+ frac(ai) + p− ⌊φ+ frac(ai)− p⌉)
) (112)

is also unbiased, i.e. E(ρ̌) = ρ. Hence, the bias in ρ̌′ is
given by the expectation of the difference between (111)

and (112) as,

E(ρ̌′ − ρ̌) =

1
2E

(

1
n

n
∑

i=1

⌊φ− p+ frac(ai)⌉ − ⌊φ− p+ 1
n

n
∑

i=1

frac(ai)⌉
)

(113)

This bias is nonzero in general. It is zero for n = 1 and

it is zero for the case that all ai’s can be treated as
being equal to an integer shifted version of the same

constant, say −δ. Thus ai = zi − δ must hold, instead

of E(ai) = zi − δ.

7 Conclusions and Summary

In this contribution six different dual-frequency PPP-

RTK models were reviewed and compared: two common

clock (CC) models, the distinct clocks (DC) model, the
integer recover clock (IRC) model, the decoupled satel-

lite clock (DSC) model and the uncalibrated phase de-

lay/fractional cycle bias (UPD/FCB) model. We dis-

cussed both their network-component and user-compo-
nent. Furthermore, by application of S-system theory,

we identified the estimable parameters involved in each

of the different methods. The interpretation of these

estimable parameters is essential for gaining a proper

insight into the principles of PPP-RTK in general, and
into the role of the PPP-RTK corrections in particular.

We made a distinction between the model formu-

lation used and the estimation method employed. As

to the model formulation, we considered the S-basis
choice, the chosen parameterization and the ionospheric
delays. From the analyses followed that the CC-1, DC

and IRC/DSC models all use the same S-basis, namely

(∆x1, d
ps, zps1 )T , and that the IRC/DSC model is a

reparametrized form of both the DC model and the
CC-1 model, using ionosphere-free observations. The

IRC/DSC integer recovery or decoupled satellite clock

was shown to be the ionosphere-free version of the DC’s

distinct clock.

All the four models, CC-1, DC and IRC/DSC, have
integer ambiguities in their network system of obser-

vation equations because of the chosen S-basis. This
is not the case with the other two models, the CC-2

model and the (UPD/FCB) model. These two models

use (∆x1, d
ps, δps)T as S-basis, whereby the (UPD/FCB)

model was shown to be a reparametrized form of the

ionosphere-free version of the CC-2 model. As we con-

sider the lack of ionospheric information the bottleneck
for fast ambiguity resolution, the advantage of working

with the original undifferenced formulations over the

ionosphere-free formulations was also pointed out.

In the construction of its PPP-RTK corrections, the

(UPD/FCB) model makes use of a fractional operator.

Although it is not essential, the use of this single op-

erator is permitted as it maintains the integerness of
the user-ambiguities. However, as it was pointed out,

one has to be aware that, from a probabilistic point of

view, an application of the fractional operator changes

the statistics of the user-corrected observables. Hence,
one has to take this into account when evaluating the

statistics and quality of the user-corrected observables.

This aspect does not yet seem to be fully developed in

the applications that make use of the FCB model.

Although the six models provide for different PPP-

RTK corrections, an estimability analysis showed their

information content to be the same. This implies that

they are related through one-to-one transformations.
These transformations were given in Table 1. They have

the practical implication of showing how the different

PPP-RTK methods can be mixed between network and

users.

Our estimability analysis also revealed the intrin-

sic role that is played by the PPP-RTK corrections

in establishing the link between user-parameters and
network-parameters. It was shown that the single-receiv-

er ‘user’ integer ambiguities are straightforward double-

differenced ambiguities and not undifferenced ambigui-

ties as is sometimes stated. Hence, the integer ambigu-

ity resolution at the PPP-RTK user-side is always that
of double-differenced ambiguities (or Z-transformed func-

tions thereof).

Similarly, it was shown that the PPP-RTK correc-

tions, next to establishing an ambiguity link, also estab-

lish a positional link between network and user. Through

the corrections, the user-positioning parameters become

in essence relative-positioning parameters between user
and network. PPP-RTK is thus a relative positioning

method and not one of absolute positioning. This was

further demonstrated by showing that one recovers the

single-baseline model if one considers the extreme case
of a PPP-RTK network consisting of a single station

only.

As an extension to the review, we presented four
different least-squares PPP-RTK estimators. They are

the float and fixed estimators under the geometry-free

(GF) model and the float and fixed estimators under
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the geometry-based (GB) model. As these estimators

are generally applicable, they apply to any of the PPP-

RTK methods discussed. In order to understand the

precision with which the corrections can be estimated,

analytical expressions for their variance matrices were
derived. This was done for the CC-2 model, having real-

valued ambiguities. With the transformations of Table

1, the corresponding variance matrices of the PPP-RTK

corrections for the other models are easily obtained.

Using the analytical expressions of the variance ma-

trices, it was shown that the precision of the ambiguity-

fixed corrections did not differ too much between the
GF- and the GB-model. Thus once ambiguity resolu-

tion has been successfully applied, either the GF-based

or GB-based corrections can be used.

In the impact of ambiguity resolution on their pre-

cision, the GF-based and GB-based corrections do dif-

fer however. In case of the GF-model, the variance-

improvement due to ambiguity resolution follows the
1-over-n rule (n being the number of network stations).

In case of the GB-model however, this improvement

depends on its model-strength. It is larger, the weaker

the model is, and it becomes minimum in the geometry-

fixed case. In this latter case, the ambiguity-float GB
clock solution is already as good as that of the ambiguity-

fixed solution.

In providing the analytical expressions for the vari-
ance matrices of the individual PPP-RTK corrections,

we also determined the variance matrix of the complete

user-corrections. Here it was shown that in dependence

of its use, not all of its entries need to be known. Al-
though the complete matrix is needed for the statisti-

cal validation of the corrections themselves, such is not

needed for the actual user-processing. For this latter

case, it suffices to neglect the variance-covariance com-

ponents that are related to geometry and ionosphere.

We also analysed the ambiguity resolution strength

of the models by means of analytical expressions of their
ADOPs. It clearly showed the difference in strength

(about a factor of 10) between the geometry-fixed and

geometry-free cases. Moreover it showed that in con-

trast to the geometry-free model, wide-lane-only ambi-

guity resolution does not really pay off for the geometry-
fixed model.

Our analyses of the ambiguity-float and ambiguity-

fixed least-squares PPP-RTK estimators, also facilitated
a comparison with the UPD/FCB-estimation method.

Although the UPD/FCB model is as valid as the other

models discussed, it was shown that the UPD/FCB es-

timation method cannot be accepted as a proper PPP-
RTK estimation method, since it does not do what it

is supposed to do, namely to guarantee that the expec-

tation of the user-ambiguity float solution is integer.

The reason lies in the fact that the used frac-operator

(cf. 100) is not a proper frac-operator. Only in two spe-

cial cases will this operator reduce to that of a proper

frac-operator. These two cases are when only a single

station is used (n = 1) or when the ambiguity-fixed so-
lution ˇ̃a

ps
r is used instead of the ambiguity-float solution

ˆ̃a
ps

r (cf. 78).
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Appendix

Proof of Lemma 2 As the phase observations in (74) are reserved
for the ambiguities ãr , the float solutions of dt̃r and ι̃r are, re-
spectively, determined as the IF and GF combinations of the code
observations only, that is

dˆ̃tr,GF = −[µT
IF ⊗DT

m]pr,

ˆ̃ιr,GF = +[µT
GF ⊗DT

m]pr
(114)

which gives the first expression of (76). The second expression
(76) follows by substituting the preceding equations into

ˆ̃ar,GF = [Λ−1 ⊗DT
m]

[

φr + [e⊗ Im−1]d
ˆ̃tr,GF + [µ⊗ Im−1 ]̂ι̃r,GF

]

,(115)

together with the identity eµT
IF = I2 − µµT

GF .

An application of the (co)variance propagation law to (76)
gives (77). ⊓⊔

Proof of Lemma 3 Upon resolving the DD ambiguities ˇ̃zr (r =

1, . . . , n), with ˇ̃z1 = 0, 2(m − 1)(n − 1) redundant model’s mis-
closures contribute to the estimation procedure, namely

tz̃r = ˆ̃zr − ˇ̃zr, r = 2, . . . , n (116)

According to the least-squares conditional adjustment, the unbi-

ased estimators ˆ̃ar,GF and dˆ̃tr,GF are corrected by the above mis-
closures to provide the best linear unbiased estimators (BLUEs)
ˇ̃ar,GF and dˇ̃tr,GF (Teunissen, 2000). Adding the corrections, the
BLUEs must remain unbiased and get uncorrelated with the un-
derlying misclosures, see Teunissen and Khodabandeh (2013, p.
463). The unique corrections must therefore fulfill two conditions:
1) they must be zero-mean and 2) their covariances with the mis-
closures must be identical to those between the float estimators
and the misclosures with a negative sign. Proposing the following
corrections

ǫãr
= ˇ̃zr − ˆ̃ar,GF + 1

n

∑n
j=1(

ˆ̃aj,GF − ˇ̃zj)

ǫdt̃r = −QGF

dˆ̃tr ˆ̃ar

QGF−1
ˆ̃ar

ˆ̃ar
(ˆ̃ar,GF − ˇ̃ar,GF )

(117)

their zero-mean property follows, respectively, from

E(ˆ̃aj,GF ) = ˇ̃zj − δ̃, j = 1, . . . , n

E(ˆ̃ar,GF ) = E(ˇ̃ar,GF ),
(118)



23

while the second-property follows, respectively, from

QGF
ǫãr

,tz̃r
= −QGF

ˆ̃ar ,tz̃r

QGF
ǫ
dt̃r

,tz̃r
= −QGF

dˆ̃tr,tz̃r

(119)

Accordingly, the fixed solutions are obtained as

ˇ̃ar,GF = ˆ̃ar,GF + ǫãr

dˇ̃tr = dˆ̃tr + ǫdt̃r

(120)

which proves (78). Applying the (co)variance propagation law to

(78) gives (79). ⊓⊔

Proof of Table 3 We first prove the geometry-free results where
again use is made of the GNSS misclosure concept (Khodabandeh
and Teunissen, 2014). In the k-epoch case, as the ambiguities
are assumed constant in time, any (co)variance matrix QGF

x̂ŷ is
corrected according to the least-squares conditional adjustment
as

QGF
x̂ŷ [k] = QGF

x̂ŷ − [
k − 1

k
]QGF

x̂ˆ̃ar
QGF−1

ˆ̃ar
ˆ̃ar

QGF
ˆ̃ar ŷ

(121)

Setting ŷ = ˆ̃ar, the above equation is specialized to

QGF

x̂ˆ̃ar
[k] =

1

k
QGF

x̂ˆ̃ar
(122)

This gives the expressions of QGF
ˆ̃ar

ˆ̃ar
[k] and QGF

dˆ̃tr ˆ̃ar

[k] by set-

ting x̂ = ˆ̃ar,GF and x̂ = dˆ̃tr,GF , respectively. The expression

of QGF

dˆ̃trd
ˆ̃tr
[k] follows by setting x̂ = ŷ = dˆ̃tr in (121), together

with the identity

QGF

dˆ̃tr ˆ̃ar

QGF−1
ˆ̃ar

ˆ̃ar
QGF

ˆ̃ard
ˆ̃tr

= QGF

dˆ̃trd
ˆ̃tr

− c2ρ̌Cs (123)

We now prove the geometry-based results. To do so, we first
formulate the [k(m−1)−ν](n−1) redundant misclosures brought
by the geometry-based model (cf. Table 2). The geometry parame-
trization ∆x̃r gives (m− 1− ν)(n − 1) misclosures as

tĝr = (DT
mG)⊥T [ 1

k

k
∑

i=1

(dˆ̃tr,GF (i)− dˆ̃t1,GF (i))], r = 2, . . . , n(124)

while the time-invariance assumption on ∆x̃r gives (k − 1)(m −

1)(n − 1) misclosures as

ti,r = [dˆ̃tr,GF (i) − dˆ̃t1,GF (i)]− [dˆ̃tr,GF (1) − dˆ̃t1,GF (1)] (125)

for r = 2, . . . , n and i = 2, . . . , k.
Since the two misclosure vectors tĝ = [tTĝ2 , . . . , t

T
ĝn

]T and

t = [tT2,2, . . . , t
T
2,n, . . . , t

T
k,n]

T are uncorrelated, any (co)variance

matrix QGF
x̂ŷ [k] is corrected to QGB

x̂ŷ [k] as

QGB
x̂ŷ [k] = QGF

x̂ŷ [k]−QGF
x̂tĝ

[k]Q−1
tĝtĝ

QGF
tĝ ŷ

[k]

−QGF
x̂t [k]Q−1

tt QGF
tŷ [k]

(126)

Accordingly, the expressions of QGB
ˆ̃ar

ˆ̃ar
[k], QGB

dˆ̃tˆ̃a1

[k] and QGB

dˆ̃tˆ̃a1

[k]

follow through the identities

QGF
ˆ̃artĝ

[k]Q−1
tĝtĝ

QGF

tĝ
ˆ̃ar

[k] = 1
k

n−1
n

c2ρ̂Λ
−1eµeTµΛ−1

⊗ C̃s

QGF

dˆ̃ttĝ
[k]Q−1

tĝtĝ
QGF

tĝ
ˆ̃a1

[k] = 1
k

n−1
n

c2ρ̂e
T
µΛ−1

⊗ C̃s

QGF

dˆ̃ttĝ
[k]Q−1

tĝtĝ
QGF

tĝd
ˆ̃t
[k] = 1

k
n−1
n

c2ρ̂ ⊗ C̃s

(127)

as well as

QGF

dˆ̃tt
[k]Q−1

tt QGF

tdˆ̃t
[k] = k−1

k
n−1
n

c2ρ̌ ⊗ Cs (128)

with QGF
ˆ̃art

[k] = 0. ⊓⊔

Proof of Tables 4 and 5

The proof goes along the same lines as the proof of Table 3,
so will not be presented here. ⊓⊔

The exact of value of γ The exact value of γ, introduced in
Lemma 5, can be stated as

γ =
(f3

1 − f3
2 )

2

f2
1 f

2
2 (f1 + f2)2 + ǫ η

(129)

with

η =

[

f1 + f2

f1 − f2

]2

(f2
1 + f2

2 )(f
4
1 + f4

2 ) (130)

The approximation, given in Lemma 5, follows by neglecting ǫ η,
compared to the first term in the denominator of (129). ⊓⊔
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