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Short Note

Simple expressions for normal incidence reflection coefficients
from an interface between fluid-saturated porous materials

Boris Gurevich1, Radim Ciz2, and Arthur I. M. Denneman3

INTRODUCTION

Hydrocarbon reservoirs as well as many other sedimentary
rocks are fluid-saturated porous materials, whose elastic prop-
erties can be described by the theory of poroelasticity (Biot,
1962). This theory predicts the effects of movement of the pore
fluid relative to the solid skeleton on seismic waves propagat-
ing through the rock. This opens potential opportunities to
estimate fluid and rock transport properties by measuring seis-
mic waves. However, these opportunities are somewhat lim-
ited by the fact that, at low frequencies, relative fluid move-
ment becomes negligible and the rock behaves like an elastic
solid with the equivalent elastic moduli given by Gassmann’s
(1951) equations. In particular, the theory of poroelasticity pre-
dicts that elastic wave attenuation and dispersion only become
significant at frequencies comparable to the so-called Biot’s
characteristic frequency ωc= ηφ/κρ f , where φ and κ are the
porosity and permeability of the rock matrix, respectively, and
η and ρ f are steady-state shear viscosity and density of the
pore fluid, respectively. (See Table 1 for a glossary of symbols.)
For commonly encountered natural rocks such as sandstones
or limestones saturated with water, oil or gas, ωc is usually
0.1 MHz or higher. This is much higher than the frequency of
waves of surface seismic exploration (20–70 Hz) and well log-
ging (5–50 kHz). At frequencies lower thanωc, the fluid-related
contribution to (complex) phase velocity of the compressional
wave is proportional to frequency. That is, for frequencies much
smaller thanωc, both attenuation and dispersion are very small.

More recently, it was realised that dynamic poroelastic ef-
fects may be pronounced at lower frequencies when the porous
medium is macroscopically heterogeneous (White, 1983). In
particular, it was shown that heterogeneity of porous materi-
als can produce significant additional attenuation and disper-
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sion of the propagating wave. These phenomena are related to
the fact that when a compressional or shear wave encounters
an interface between two different porous saturated materi-
als, a fluid flow across the interface may occur, which results
in the loss of energy from the propagating wave. For a single
interface, this phenomenon manifests itself in the fact that the
reflection coefficient from an interface between two porous
media is proportional to the square root of frequency. In other
words, unlike the velocity of the elastic wave in an unbounded
porous medium, the reflection coefficient decreases much more
gradually with decreasing frequency (Geertsma and Smit, 1961;
Dutta and Odé, 1983; Gurevich et al., 1994). Thus, fluid effects
on reflection coefficients may be observed at lower frequen-
cies than similar effects in an unbounded medium. This opens
the possibility of using reflection sounding at relatively low fre-
quencies to examine the properties of pore fluids. The success
of such techniques, however, depends on the numerical val-
ues of reflection coefficients for realistic materials. General ex-
pressions for reflection coefficients from an interface between
two porous materials as a function of material properties, fre-
quency, and angle are very complicated (Geertsma and Smit,
1961; Bourbié et al., 1987; Denneman et al., 2002), and their
direct theoretical analysis is still lacking. The former numer-
ical analysis carried out by Gurevich (1996) showed the tiny
difference between the poroelastic and elastic solutions for a
gas-water contact. However, recent numerical calculations of
Denneman et al. (2002) show that, in some cases, the reflection
coefficient exhibits strong deviations from its elastic value at
frequencies much lower than ωc. In particular, numerical cal-
culations have shown this behaviour for an interface between
a gas-saturated porous solid and a free liquid (Figure 1). In
the case of a sealed-pore interface, there is no fluid flow across
the interface. Thus, deformation of this system is equivalent to
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the deformation of an effective elastic medium. This corre-
sponds to the classical elastic modeling using velocities calcu-
lated by the static Gassmann formula. This is the elastic model
used in this study for comparison with derived poroelastic re-
flection coefficients. These indications may form a basis for a
significant advance in the use of low-frequency sounding for
detecting pore-fluid properties.

In order to understand the nature of the substantial dif-
ference between poroelastic and elastic reflection coefficients
at an interface between a free fluid and an air-filled porous

Table 1. Glossary of symbols.

Symbol Meaning

e, ef , ξ Solid frame and fluid dilatation,
fluid content increase

k1, k2 Wave numbers of fast and slow P-wave
u,U,w Solid, fluid, and relative fluid displacement
v1 Fast P-wave velocity
H,C,M, L , N, σ Poroelastic constants
K f , Kg, K Fluid, grain, and solid skeleton bulk moduli
R11, R12, T11, T12 Reflection and transmission coefficients
X, X̃,Y, Ỹ Factors expressing difference between

poroelastic and elastic R/T coefficients
Z Proportionality constant: Y = Z

√
ω/ωc

and X = Z
√
ω/ωc

φ Porosity of a solid skeleton
κ Steady-state permeability of a solid

skeleton
µg, µ Grain and bulk shear moduli
η Steady-state shear viscosity of a pore fluid
ω,ωc Frequency, Biot’s characteristic frequency
ρ f , ρg, ρ Fluid, grain, and bulk density
τ, P Stress tensor and fluid pressure

Figure 1. Reflection at the interface between free fluid and air-
filled porous medium. The numerical computation shows sig-
nificant differences between the open-pore poroelastic model
(dashed line) and the sealed-pore poroelastic model (solid
line), which corresponds to the elastic solution. The magnitude
value represents the absolute value of the reflection coefficient
for a fast P-wave as a function of slowness, which represents
the incidence angle.

medium, and to explore implications for reflections from an in-
terface between two porous media, it is desirable to obtain ana-
lytical expressions for the reflection coefficients. As mentioned
above, they are too complicated for arbitrary incidence angles
(Denneman et al., 2002). However, the problem is greatly sim-
plified for the normal incidence. Since the significant difference
between poroelastic and elastic reflection coefficients at an in-
terface between a free fluid and an air-filled porous medium is
observed already for normal incidence (see Figure 1), closed-
form expressions provide a necessary insight into these obser-
vations. The primary objective of this short note is to analyze
and reveal the physical cause of this phenomenon.

NOTATION FOR POROELASTIC ANALYSIS

According to Biot’s theory of poroelasticity, the intercon-
nected continuum and its fluid filling are treated in the manner
of two interpenetrating elastic continua. The elastic properties
of a rock frame saturated by a compressible fluid are described
by Gassmann’s theory (Gassmann, 1951). We consider a porous
medium with the uniformly distributed porosity φ whose pores
are filled with a viscous fluid. The fluid is characterized by the
bulk modulus K f , density ρ f , and steady-state shear viscosity
η. The grains of the solid are characterized by bulk and shear
moduli Kg and µg, respectively, and density ρg. The drained
solid matrix formed from grains and pore spaces are charac-
terized by bulk and shear moduli and density K , µ, and ρ,
respectively, and steady-state permeability κ .

For long wavelength acoustic pulses propagating through
such a porous medium, we can define average values of local
displacement in the solid u and in the fluid U. A more conve-
nient way of quantifying the fluid displacement introduced by
Biot (1962) is to define relative average displacement of fluid
w relative to the solid frame as

w = φ(U− u), (1)

and we can define the increased fluid content as

ξ = −φ div(U− u) = φ(e− ef ), (2)

where e= div u is the solid frame dilatation and ef = div U is
the fluid dilatation. The components of stress tensor τ for the
saturated porous medium are

τi j = [(H − 2µ)e− Cξ ]δi j + 2µei j , (3)

and fluid pressure P is

P = Mξ − Ce= C

(
ξ

σ
− e

)
, (4)

where the relations among poroelastic constants are defined in
the following way (Biot, 1962):

H = K + 4
3
µ+ σC, (5)

C = σM, (6)

M−1 =
[
σ − φ

Kg
+ φ

K f

]
, (7)

σ = 1− K

Kg
. (8)

Biot’s theory of poroelasticity gives rise to the three types
of waves propagating through a saturated porous medium: the
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fast compressional wave, the shear wave, and the slow compres-
sional wave often called Biot’s slow wave. In a plane wave of
any particular type within a homogenous poroelastic medium,
u and w are coupled. In particular, in the fast P- and S-waves
at very low frequencies, the relative displacement is very small
and can be neglected, i.e., w= 0. The corresponding relation
for the slow P-wave is (Geertsma and Smit, 1961)

w = −
(

H

C

)
u. (9)

Within the low-frequency approximation of Biot theory (i.e.,
for frequencies below the Biot’s characteristic frequency
ωc= ηφ/κρ f ), the wavenumbers of fast and slow P-waves are
given by the following relations:

k1 = ω

v1
, (10)

k2 =
√

iωη

κN
, (11)

where the index 1 denotes fast P-wave and index 2 denotes
slow P-wave. The velocity of the fast wave is v1=

√
H/ρ and

the parameter N is

N = C

σ
− C2

H
= M L

H
, (12)

where L = K + (4/3)µ. The above overview of Biot’s theory
provides the basis for the derivation of reflection coefficients
on the plane surface between two saturated porous media.

REFLECTION COEFFICIENTS FOR
THE INTERFACE BETWEEN TWO

FLUID-SATURATED POROELASTIC MEDIA

Let us assume that the parameters of the medium depend
on the z-coordinate only. Consider the harmonic plane P-wave
with unit amplitude and time dependence of the form e−iωt

normally incident from the media denoted by b. The model is
an interface between two elastic porous half-spaces as shown
in Figure 2.

The incident P-wave generates two reflected compressional
waves (fast and slow) in the medium b and two transmitted
P-waves in the poroelastic solid half-space: a fast P-wave and
Biot’s slow P-wave. The displacement vectors in those porous

Figure 2. Reflection and transmission coefficients from an in-
terface between two porous media.

media, using relations 9–12, may be expressed as

ua = T11e−ik1az+ T12e−ik2az, (13)

ub = e−ik1bz+ R11eik1bz+ R12eik2bz, (14)

wa = −T12
Ha

Ca
e−ik2az, (15)

wb = −R12
Hb

Cb
eik2bz, (16)

where amplitudes R11, R12, T11, and T12 represent the unknown
values of the reflection and transmission coefficients. These
amplitudes must satisfy the following boundary conditions on
the interface for the porous-medium a and porous medium
b (Deresiewicz and Skalak, 1963; Gurevich and Schoenberg,
1999):

ua = ub, (17)

wa = wb, (18)

τ a
zz= τ b

zz, (19)

Pa = Pb. (20)

The constitutive relations for the 1D case are

τzz= Hezz− Cξ, ezz= ∂u

∂z
,

P = C

(
ξ

σ
− ezz

)
, ξ = −∂w

∂z
. (21)

Substituting equations 13–16 into boundary conditions 17–20
and solving the linear system of equations gives the reflection
and transmission coefficients R11 and T11 for the fast P-wave:

R11 = Hbk1b − (1− X)Hak1a

Hbk1b + (1+ X)Hak1a
= ρbv1b − (1− X)ρav1a

ρbv1b + (1+ X)ρav1a
,

(22)

T11 = 2Hbk1b

Hbk1b + (1+ X)Hak1a
= 2ρbv1b

ρbv1b + (1+ X)ρav1a
,

(23)

where ρv1= k1 H/ω, and the term X is given by

X =
Hbk1b

(
Ca

Ha
− Cb

Hb

)2

k2aNa + k2bNb
. (24)

The coefficients R12, T12 for reflected and transmitted slow
P-waves are expressed as

R12 = 2X̃bρav1a

ρbv1b + (1+ X)ρav1a
, (25)

T12 = 2X̃aρav1a

ρbv1b + (1+ X)ρav1a
, (26)

where the parameters X̃a and X̃b are

X̃a = X
Ha

Ca

(
Ca

Ha
− Cb

Hb

) , (27)

X̃b = X
Hb

Cb

(
Ca

Ha
− Cb

Hb

) . (28)
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REFLECTION COEFFICIENTS FOR THE
INTERFACE BETWEEN A FREE FLUID AND A
FLUID-SATURATED POROELASTIC MEDIUM

If the poroelastic half-space b in Figure 1 is a free fluid with
density ρb and bulk modulus Kb, we can derive the expres-
sions for the reflection and transmission coefficients from an
interface between a free fluid and a porous medium. Briefly,
following the procedure above, we assume the incident com-
pressional wave coming from half-space b filled with fluid. The
displacement vectors are

Ub = e−ik1bz+ R11eik1bz, (29)

ua = T11e−ik1az+ T12e−ik2az, (30)

wa = −T12
Ha

Ca
e−ik2az, (31)

and amplitudes R11, T11, and T12 must satisfy following three
boundary conditions, which are valid on the open pore
interface:

wa = Ub − ua, (32)

τ a
zz= −Pb, (33)

Pa = Pb, (34)

where the relation for the pressure in the free fluid for the
z-component only is expressed as

Pb = −Kb
∂Ub

∂z
. (35)

Introducing the expressions 29–31 into boundary conditions
32–34 and solving the system, we obtain the following closed
form expressions for R/T coefficients from an interface be-
tween a free fluid and a porous medium:

R11 = ρbv1b − (1− Y)ρav1a

ρbv1b + (1+ Y)ρav1a
, (36)

T11 = 2ρbv1b

ρbv1b + (1+ Y)ρav1a
, (37)

T12 = 2Ỹρav1a

ρbv1b + (1+ Y)ρav1a
, (38)

where the parameters Y and Ỹ are

Y =
(

Ca

Ha
− 1

)2
√
− iωκa

ηaNa
ρbv1b, (39)

Ỹ = Y

1− Ha

Ca

= Ca

Ha

(
Ca

Ha
− 1

)√
− iωκa

ηaNa
ρbv1b. (40)

The R/T coefficients given by expressions (36–38) are a special
case of expressions 22, 23, and 26, respectively. The expressions
for X and X̃a in expressions 24 and 27 tend to the ones for Y
and Ỹ in expressions 39 and 40, respectively, if one substitutes
the porous half-space b with a free fluid (i.e., Hb=Cb= Kb) and
at the same time assuming “permeability” of free water to be
infinite.

DISCUSSION

The central result of this paper is the expression for the re-
flection coefficient R11 for the fast P-wave. Equations 22 and 36
show that the expression for the reflection coefficient is the
same as the familiar expression for two elastic media (e.g.,
Brekhovskikh and Godin, 1990),

R11 = ρbv1b − ρav1a

ρbv1b + ρav1a
, (41)

except for the factors X and Y, respectively. As previously
shown (e.g., Bourbié et al., 1987), these factors are propor-
tional to the square root of frequency. The difference between
poroelastic and elastic reflection coefficients is given mainly by
the difference in ratios of poroelastic parameters Ca/Ha and
Cb/Hb between the two poroelastic materials, given by the fac-
tor X in equation 24. The effect of the fluid flow is significant
when this difference is high.

Since there is a significant difference between normal inci-
dence poroelastic and elastic reflection coefficients at an in-
terface between a free fluid and an air-filled porous medium
(Figure 1), closed-from expressions 36 and 39 would provide
a necessary insight into these observations. To understand this
effect, in Figure 3 we plot the reflection coefficient as given
by equation 36 versus frequency for an interface between

Table 2. Mechanical properties of the porous rock
(Denneman et al., 2002).

Kg K µ κ ρg

(GPa) (GPa) (GPa) φ (darcy) (kg · m−3)

Sand 40 5.8 3.4 0.26 0.95 2760

Table 3. Mechanical properties of the sample pore fluid
(Denneman et al., 2002).

K f (GPa) ρ f (kg · m−3) η (Pa s)

Water 2.22 1000 0.001
Air 0.0001 1.2 1.82 × 10−5

Figure 3. Reflection coefficient at an interface between a free
fluid (water) and an air-saturated porous medium. Circles de-
note the exploration frequency range 10 Hz–10 kHz.
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water and an air-saturated porous sandstone. The parame-
ters of both porous rock and two pore fluids are given in the
Tables 2 and 3. Several key observations may be drawn from
this plot and analytical expressions 36 and 39:

1) The results at 10 Hz and at 10 kHz are in agreement with
the results of Denneman et al. (2002, Figure 8, p. 289) for
normal incidence, and indeed is very different from the elas-
tic reflection coefficient at frequencies as low as 10 Hz, as
indicated by the circles in Figure 3.

2) Nevertheless, this is not the result for the low-frequency
limit. Indeed, in the low-frequency limit, the poroelastic
reflection coefficient reverts to the elastic value. However,
this only occurs at frequencies as low as 10−3 Hz.

3) Thus, 10 Hz is not “in the low frequency limit” for equa-
tion 36.

4) Within the assumptions of low-frequency Biot’s theory (and
thus up to at least 10 kHz), factor Y scales linearly with

√
ω.

However, it translates into the same linear dependency of
the reflection coefficient R11 only if Y¿ 1. If Y is not small,
then R11 as given by equation 36 is still a function of

√
ω, but

it is no longer a linear function of it, but a rational function.
5) Therefore, the large deviation of the poroelastic reflection

coefficient from the elastic one for an interface between
a free fluid and an air-saturated porous medium at very
low frequencies is due to the fact that the proportionality
constant between poroelastic parameters and the square
root of frequency is very large.

To analyze this problem further, we assume both K f a¿ Kga

and Ka¿ Kga. Then, the poroelastic parameter Na can be writ-
ten as Na≈ K f a/φa and Ca= K f a/φa¿ Ha. Thus, Y can be writ-
ten as

Y =
√
− iωκaφaρb

ηa

√
Kb

K f a
= Z

√
ω

ωc
, (42)

where

Z = φa

√
1
i

ρb

ρ f a

Kb

K f a
, (43)

and ωc is Biot’s characteristic frequency. If the pore fluid is liq-
uid (say, water), then ρb/ρ f a, Kb/K f a, and Z are of the order
1 (or smaller), and hence Y is small for frequencies ω¿ωc.
However, if the pore fluid is air, Y becomes finite (of order 1)
at frequencies much smaller than ωc. Note that the first square
root of equation (42) increases, if one replaces the water in
pores by air. More significantly, with air in the pores, the sec-
ond square root of equation 42 becomes very large due to the
small value of bulk modulus K f a. It is this large contrast in fluid
bulk moduli, not density contrast as suggested by Denneman
et al. (2002), that is the cause of the anomalous difference be-
tween elastic and poroelastic reflection coefficients at the low
frequencies.

To illustrate this difference between free fluid (water) and
an air-saturated medium, we plot in Figure 4 these reflection
coefficients for a fixed frequency (10−1 Hz) against the ratio of
bulk moduli of those two fluids Kb/K f a. The free fluid is water
and the pore fluid has bulk modulus K f a gradually decreasing
from the value for water to its value for air. Solid and dashed
lines correspond to the case where the pore fluid density is

kept constant. The dotted and dash-dotted lines represent the
reflection coefficients when the density is calculated assuming
that half-space a is saturated with an uniform mixture of air
and water:

ρ f a = Swρwater + (1− Sw)ρair , (44)

where water saturation Sw is derived from the Wood formula

1
K f a
= Sw

Kwater
+ (1− Sw)

Kair
. (45)

We see (Figure 4) that the contrast in bulk moduli of the free
fluid and the pore fluid has a greater effect on R/T coefficients
than the density contrast.

Expressions 42 and 43 contain all factors which have influ-
ence on the observed effect. So, the poroelastic effect will be
slightly larger for high porosity and permeability, but as men-
tioned above the leading term in this expression is given by
the large contrast between the bulk moduli of the free fluid
and gas pore fill. The difference between the poroelastic and
elastic reflection coefficients is contained in the factor Y. The
proportionality constant Z in equation 43 indicates when the
fluid flow effects will be important.

Can the same effect occur for an interface between two
porous rocks? To answer this question, consider an interface
between two rocks with all properties except pore fluid proper-
ties being of the same order of magnitude, and with stiff grain
material, so that M ≈ N≈ K f /φ. In this case equation 24 can

Figure 4. Reflection coefficient at an interface between free
fluid (water) and a fluid-saturated porous medium expressed
as a function of the ratio of the bulk moduli of the pore fluid
in half-space a and the free fluid in half-space b. The solid and
dashed lines for poroelastic and elastic coefficients are calcu-
lated by keeping the density constant. The pore fluid has bulk
modulus K f a gradually decreasing from the value for water to
the value for air. The dotted and dash-dotted lines represent
the reflection coefficients when the density is calculated assum-
ing that half-space a is saturated with an uniform mixture of air
and water, where water saturation is derived from the Wood
formula (equation 45).
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Figure 5. Reflection coefficient at an interface between a water-
saturated and an air-saturated porous medium. The incoming
wave is from the water-saturated porous medium.

be simplified to give

X =
ρbv1b

(
Cb

Hb

)2

√
i

ωκbφb

√
ηbK f b

= σ 2
b

φb

√
ρbωκbK 3

f b

iφbηbH 3
b

= σ 2
b

φb

√
1
i

ρb

ρ f b

(
K f b

Hb

)3
ω

ωcb
, (46)

where the bulk modulus of pore fluid in half-space b is much
higher then the one in the half-space a. Equation 46 shows that
for an interface between two similar rocks saturated with two
different fluids, the proportionality constant Z= X/

√
ω/ωcb

is of order 1 (or smaller), and hence X is small for fre-
quencies ω¿ωcb. This is illustrated in Figure 5, which shows
poroelastic and equivalent elastic reflection coefficients for
a gas/water contact. We conclude that poroelastic effects on
normal-incidence reflection coefficients are unlikely to be ob-
served at low frequencies.

CONCLUSIONS

The derived closed-form expressions for reflection and
transmission coefficients for poroelastic interfaces confirm the
expected dependence on the square root of frequency. The
results we have obtained at 10 Hz and 10 kHz are in agreement
with the results of Denneman et al. (2002). In the low-frequency

limit, the poroelastic reflection coefficient reverts to the elas-
tic value. However, this only occurs at frequencies as low as
10−3 Hz. The large deviation of poroelastic coefficient from the
elastic one for an interface between water and an air-saturated
porous medium at very low frequencies is due to the fact that
the proportionality constant between poroelastic parameters
and the square root of frequency is very large due to large con-
trast in compressibilities of the pore fluid and the free fluid.
However, for an interface between two fluid-saturated porous
media, the difference between poroelastic and elastic coeffi-
cients at seismic frequencies is only several percent, and the
coefficients can be approximated by the elastic ones. The pos-
sible realistic situation where the derived expression could be
applied is the fluid-filled borehole at the borehole wall when
the shallow formation is filled with gas, as already suggested
by Denneman et al. (2002). The other situation may occur in
polar conditions when snow saturated with air is floating on
the surface of an unfrozen lake (Johnson, 1982).
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