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Abstract

A nonlinear hybrid system was proposed to describe the fed-batch bioconver-

sion of glycerol to 1,3-propanediol with substrate open loop inputs and pH logic

control in previous work (Ye et al., 2011). The current work concerns the opti-

mal control of this fed-batch process. We slightly modify the hybrid system to

provide a more convenient mathematical description for the optimal control of

the fed-batch culture. Taking the feeding instants and the terminal time as de-

cision variables, we formulate an optimal control model with the productivity of

1,3-propanediol as the performance index. Inequality path constraints involved

in the optimal control problem are transformed into a group of end-point con-

straints by introducing an auxiliary hybrid system. The original optimal control

problem is associated with a family of approximation problems. The gradients

of the cost functional and the end-point constraint functions are derived from

the parametric sensitivity system. On this basis, we construct a gradient-based

algorithm to solve the approximation problems. Numerical results show that

the productivity of 1,3-propanediol can be increased considerably by employing
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our optimal control policy.

Key words: Optimal control; hybrid system; inequality path constraint;

parametric sensitivity system, optimization algorithm

1. Introduction1

1,3-Propanediol (1,3-PD) has wide applications for a large volume of mar-2

kets, especially as a monomer for polyesters, polyethers and polyurethanes3

(Homann et al, 1990). Generally, 1,3-PD is produced by chemical or biotechno-4

logical route. Compared with chemical synthesis, the bioconversion of glycerol5

to 1,3-PD is more attractive to industry since it is environmentally safe and6

has renewable feedstock (Zeng et al., 1994). There are three typical cultures for7

microbial fermentation of glycerol, including batch, continuous and fed-batch8

cultures, among which the fed-batch fermentation has attracted great interest9

due to its high productivity (Cheng et al., 2004).10

To improve the productivity of the fed-batch culture, the concentration of the11

substrate should be controlled in a proper level. In the laboratory, the addition12

of the substrate is determined by a preassigned sequence of feeding times, which13

is usually given on an empirical basis. With consideration of expensive cost, it14

is impossible to carry out plenty of experiments under various glycerol feeding15

strategies to obtain the optimal one. For this reason, mathematical modelling16

and optimal control of this microbial process become necessary.17

Over the past decades, model-based optimization of biological processes has18

been attracted the attention of many scientists and engineers (e.g., Asenjo et19

al., 1996; Cacik et al., 2001; Banga et al., 2005). Banga et al. (2003) presented20

an excellent review of various methods for bioreactor optimization. Recently,21

researchers have also put great effort on multiple objective optimal control of22

bioprocesses (e.g., Logist, et al., 2009; Mandli et al., 2012; Logist, et al., 2013).23

Modelling and optimization of glycerol fermentation by Klebsiella pneumoniae24

have been considered by Gao et al., 2006; Wang et al., 2008; Yan et al., 2012; Liu25

et al., 2011; Wang et al., 2012a, 2012b, 2012c. However, most of the previous26

2



researches on this bioprocess only considered the technique with both open loop1

inputs of glycerol and alkali. Till now, the technique with open loop glycerol2

inputs and pH logic control is seldom discussed, and the existing theoretical3

work in this aspect includes the nonlinear hybrid modelling (Ye et al., 2011)4

and the continued parameter identification in (Ye et al., 2012). Yet optimal5

control of this bioprocess hasn’t been discussed.6

To address optimal control problems, there are in general two categories of7

methods: indirect methods, which are based on solving Pontryagin’s necessary8

conditions (e.g., Bryson and Ho, 1975), and direct method, in which the infinite9

dimensional optimization problem is reduced to a finite dimensional one by using10

control parametrization (e.g., Goh and Teo, 1988a) or complete discretization11

(e.g., Tsang and Himmelblau, 1975; Renfro et al., 1987).12

Control parametrization methods (known as sequential methods) have been13

extensively studied from both theoretical and applied aspects over the past14

decades. See, for example, Teo and Goh, 1989a; Barton et al., 2000; Barton et15

al., 2002; Loxton et al., 2009. In control parametrization, only the controls are16

discretized and the dynamic system is decoupled from the optimization stage.17

Given initial conditions and a set of control parameters, the dynamic system18

is solved within an inner loop controlled by an NLP solver, and parameters19

representing the control variables are updated by the NLP solver itself. One of20

the advantages of control parametrization scheme is that a good approximation21

of the state variables can be obtained without affecting the size of the NLP22

problem. However, if the inequality path constraints are involved, the solution23

would become much more complicated due to the potential high-index DAEs24

composed of the active path constraints and the original ODEs or DAEs. To25

overcome this problem, Feehery and Barton (1998; 1999) have proposed an ap-26

proach based on the dummy derivatives to deal with high-index DAEs. Other27

practical methods are included in Chen and Vassiliadis (2005) and the references28

therein. In general, handling the path constraints by using DAE solver would29

reduce the number of decision variables in the combined NLP solver, because30

part of the decision variables may be directly determined in the DAE solver.31
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Therefore, this method for handling path constraints would be much more effi-1

cient than that including the path constraints in the master NLP (Feehery and2

Barton, 1999).3

In complete discretization (known as simultaneous approach) the state vari-4

ables are discretized at the same level of the control variables. Tsang et al.5

(1975) used collocation to discretize the dynamic system. Biegler (1984) ap-6

plied global orthogonal collocation and Lagrange polynomials for the approxi-7

mation of the continuous variables. An efficient simultaneous solution strategy8

based on multiple shooting and reduced SQP was proposed by Leineweber et al.9

(2003a,2003b). An excellent review of simultaneous strategies can be founded in10

Biegler (2007). The simultaneous approaches have several advantages: firstly,11

simultaneous approaches directly couple the solution of ODE/DAE system with12

the optimization problem, the dynamic system needs to be solved only once dur-13

ing the optimization procedure; secondly, simultaneous approaches can deal with14

instabilities that occur for a range of inputs; thirdly, simultaneous approaches15

such as multiple shooting method have advantages for singular control problems16

and problems with high index path constraints. In particular, the simultane-17

ous strategy is the relative ease in handling path constraints by including them18

directly in the optimization problem as a set of point constraints (Feehery and19

Barton, 1998). Recent work (Drag and Styczen, 2012) has also shown that the20

simultaneous approaches have advantages in parallel computing. However, it21

has been well recognized that the simultaneous approaches lead to large scale22

NLP that requires efficient optimization strategies (Biegler, 2007).23

The optimization of glycerol fed-batch process considered in this work is a24

dynamic optimization of switching times due to the special control method of25

this bioprocess. In the laboratory, since it is hard to control the flow rate of26

glycerol precisely by the pump, the flow rate is set to be a fixed constant and the27

inlet flow is controlled by on/off switches of the pump. Therefore, the decision28

variables are the feeding instants and the terminal time, and the considered29

problem is essentially an optimal parameter selection problem (OPSP) with30

inequality path constraints arising from biochemical limitations on the system.31
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It is therefore not necessary to use discretization technique for this problem.1

In addition, it is not suitable for OPSP to directly handle the path constraints2

in the DAE solver. The reason is that one often fails to determine part of the3

decision variables due to the possible over-determination in the DAE system.4

In this work, we firstly modify the hybrid system proposed in our previous5

work (Ye et al., 2011) on the basis of a control method that is much easier to6

be implemented on the equipment of our laboratory. Then, taking the feeding7

instants and the terminal time as decision variables, we formulate a free-time8

optimal control model with the productivity of 1,3-PD as performance index, in9

which inequality path constraints are involved. An auxiliary state-based impul-10

sive system is introduced to derive the sensitivity functions of the hybrid system11

with respect to the decision variables, and the inequality path constraints are12

transformed into a group of end-point constraints. The original optimal control13

problem is finally associated with a family of approximation ones, parametrized14

by a tolerance error for the end-point constraints. A gradient-based algorithm15

is constructed to solve the approximation problem. Numerical results show that16

the algorithm can solve the optimal control problem efficiently.17

This paper is organized as follows. In Section 2, we present the nonlinear18

hybrid dynamical system of the fed-batch culture and the basic properties of the19

system. In Section 3, an optimal control model with path constraints is formu-20

lated, and the corresponding approximation problems are deduced. Section 4 is21

devoted to the algorithm of the approximation problems and Section 5 shows22

the corresponding numerical results. Discussions and conclusions are presented23

at the end of this paper.24

2. Reformulation of the nonlinear hybrid dynamical system in fed-25

batch culture26

The fermentation of glycerol by Klebsiella pneumoniae is a complex bio-27

process, since microbial growth is subjected to multiple inhibitions of substrate28

and products (Zeng et al., 1994). Among most of the literature, the considered29
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states are the biomass, the substrate glycerol, the product 1,3-PD, the inhibitory1

metabolites acetate and ethanol (Zeng et al., 1994; Wang et al., 2008; Wang et2

al., 2012a). In our previous work (Ye et al., 2011), we introduced two additional3

states, Na+ ions and the volume of the solution, so as to formulate the logic4

control of the PH of the solution in the reactor.5

In the fed-batch culture, the substrate glycerol is discontinuously added to6

the reactor every so often in order that glycerol concentration keeps in a given7

range. Alkali (NaOH solution) is also fed into the reactor from time to time for8

neutralizing the formed acid byproduct such as acetic acid, lactic acid, succinic9

acid and so on. The inputs of glycerol and alkali are determined by a preas-10

signed time sequence and a pH logic controller, respectively. The flows of alkali11

and glycerol are set to be constant rates. According to the above description,12

the fermentation switches among the following four different operating modes13

throughout the entire fed-batch process.14

Mode 0. batch process (no glycerol or alkali feeding);15

Mode 1. semibatch process with alkali feeding only;16

Mode 2. semibatch process with feeding glycerol only;17

Mode 3. semibatch process with both glycerol and alkali feeding.18

Some notations are adopt as follows. Let [t0, T ] be the entire time horizon19

of the fed-batch fermentation, and let Tad := [T∗, T
∗] be the admissible set of T ,20

which is known a prior in the laboratory. Let x(t) := (x1(t), x2(t), . . . , x7(t))ᵀ21

be the continuous state vector at time t, the components of which are the22

concentrations of biomass (g·L−1), glycerol (mmol·L−1), 1,3-PD (mmol·L−1),23

acetate (mmol·L−1), ethanol (mmol·L−1), Na+ ions (mmol·L−1) coming from24

the added NaOH and the volume (L) of the solution, respectively. If there is no25

confusion, we also simplify x(t) as x.26

2.1. Mathematical description of glycerol feeding strategy27

The input of glycerol is an open-loop control, which, however, takes only28

discrete values. To formulate this class of control functions, a general framework29
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is to use a set of N+1 ordered time points t0 = b̄0 < b̄1 < . . . < b̄N = T to divide1

the entire time horizon into N segments. Then the input signal of glycerol can2

be represented by the following piecewise constant function3

FG(t) = FG(t; ā, b̄) =

N∑
i=1

χ[b̄i−1,b̄i)(t)āi, (1)

where b̄ = (b̄0, b̄1, b̄2, · · · , b̄N )ᵀ, and ā = (ā1, ā2, · · · , āN )ᵀ composting of the val-4

ues of inlet flow rate of glycerol in each segment. χI(t) denotes the characteristic5

function of I. If there is no confusion, we also simplify FG(t) as FG.6

In the factual experiments, the inlet flow rate of glycerol only takes two dis-7

crete values, i.e., āi ∈ {0, FmG }, where FmG is the maximum flow rate of glycerol8

pump. Since the inlet flow rate of glycerol always takes zero value at the begin-9

ning of the experiments, the unknown variables are only the number of switches10

and the time points bi, while the input value āi in each segment is fixed. That11

is, the variables to be optimized are only the integer N and the vector b̄. A12

common method for solving this class of problems is to separately treat the dis-13

crete and continuous variables in two different optimization level. For example,14

Xu and Antsaklis (2002) proposed a two-stage algorithm for solving switching15

optimal control problems, in which the switching times are optimized in Stage16

one and the number of switchings as well as the modes are optimized in Stage17

2. Egerstedt et al. (2003) proposed a gradient-descent algorithm for solving18

switching optimal control problem, in which the continuous variables are opti-19

mized by using the gradient-based methods, and the number of switching times20

can be optimized by evaluating the gradients between two adjacent time points21

and deciding whether to inject a new switching time point or not. The solution22

methods in this framework would be computationally expensive, because the23

continuous optimal control subproblem is an expensive step and typically must24

be performed many times to solve the problem.25

For the particular problem considered here, we can see from our previous26

work (Ye et al., 2011) that the switching number N would be quite large (usually27

no less than 1000). Therefore, the resulting NLP would also be a large scale28

one if the control function of glycerol input is expressed as a general form in29
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(1). On the other hand, even if the resulting NLP can be solved properly, the1

obtained optimal control strategy is not convenient to be implemented on the2

existing control system in our laboratory (Jiang et al., 2010). The reason is3

that the length of the time sequence would quite large and irregular, and it is4

therefore a big workload to type this time sequence into the existing control5

system before the fermentation. In what follow, we will present a problem6

specific time partition for the control function in (1) by using the empirical7

knowledge about the growth characteristic of the strain.8

Firstly, according to the growth characteristic of the strain, the entire time

horizon [t0, T ] is divided into several phases by a main grid t0 = T0 < T1 < T2 <

· · · < TNT = T . Secondly, the subinterval [Tn−1, Tn] is further divided into Nn

units by introducing a minor grid

Tn−1,j := Tn−1 + j · dTn, j = 1, 2, · · · , Nn,

where dTn =
Tn − Tn−1

Nn
. Thirdly, in [Tn−1,j , Tn−1,j+1], a glycerol input starts9

from the time t = Tn−1 + j · dTn and this input is stopped at some moment10

t = Tn−1 + j · dTn + τn, followed by a period of time without glycerol feeding11

until t = Tn−1 + (j+ 1) · dTn. The partition of the time domain is illustrated in12

Figure 1.13

Note that all the units {[Tn−1,j , Tn−1,j+1]}Nnj=1 in the phase (Tn−1, Tn] have14

the same duration time for glycerol feeding. Obviously, τn ∈ [0, dTn]. For conve-15

nience, let τ := (τ1, τ2, . . . , τNT )ᵀ, which is referred to as the glycerol switching16

signal vector. According to the above special time partition, the optimal con-17

trol of glycerol feeding is equivalent to the optimization of the glycerol switching18

signal vector τ . The admissible set of τ is defined as Ωad :=
NT∏
n=1

[0, dTn].19

Remark 1. The time partition in Figure 1 can be regarded as a special case of20

(1). In other words, it can be viewed as imposing a set of equality constraints21

in the time grids b̄0, b̄1, b̄2, · · · , b̄N , where b̄0 = T0, b̄1 = T0 + τ1, b̄2 = T0,1, b̄3 =22

T0,1 + τ1, b̄4 = T0,2, · · · , b̄2N1
= T0,N1

, b̄2N1+1 = T0,N1
+ τ2 = T1 + τ2, · · · , b̄N =23

TN = T and N =
NT∑
n=1

2Nn. Correspondingly, the binary vector ā in (1) is of24

the form (FmG , 0, F
m
G , 0, · · · )ᵀ with one dimension less than b̄.25
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Figure 1: The illustration of time partition of the fed-batch culture.

Remark 2. The special time partition here is given by the empirical knowledge1

of this particular fermentation process. In this context, the number of grid points2

N is a constant and therefore needn’t be optimized. In addition, we can see in3

the later section that the number of continuous variables to be optimized, i.e.,4

NT , can also be greatly reduced by using the problem specific reformulation of5

glycerol input here compared with the general time partition in (1).6

2.2. Mathematical description of pH logic control process7

According to the previous work (Ye et al., 2011), the pH value of the solution8

at time t is given by9

ph(t) = ypH(x(t))

=

 pKa − log10
x4−γx6

γx6
if x6 ≥ ε0,

− log10(
−Ka+

√
K2
a+4Kax4/(1000γ)

2 +
√
K−w ) otherwise.

(2)

Here Ka is the averaged dissociation constant of acid byproducts, and pKa =10

− log10(Ka); K−w = 1 × 10−14 is the dissociation constant of water; γ is the11

ratio of acetic acid concentration to the total acid byproducts concentration; ε012

is a sufficient small constant, below which the concentration of NaOH can be13

ignored while computing the pH.14

According to the growth characteristic of the strain, the pH of the solu-15

tion should be limited in a desired range [pH∗,pH∗], which is described by the16
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following inequality constraints.1

ph0(x(t)) := pH∗ − ypH(x(t)) ≥ 0, (3)

ph1(x(t)) := ypH(x(t))− pH∗ ≥ 0. (4)

Let FN (·) : [t0, T ]→ {0, FmN } be a piecewise constant function representing the2

flow rate of alkali input, where FmN > 0 is the maximum flow rate of alkali3

solution. In detail, FN (t) takes value FmN when the alkali pump is on, and 04

otherwise. When FN (t) = FmN and ph0(x(t)) = 0, it means that the pH reaches5

its allowable upper bound but the alkali flow is still kept feeding, so the pH6

control system will impose the alkali pump to be shut down. Alternatively,7

FN (t) = 0 and ph1(x(t)) = 0 implies that the pH reaches its allowable lower8

bound but the the alkali pump is still closed. The alkali pump is imposed to9

pour the alkali solution into the reactor in this situation until the pH value10

increases to its upper bound again. The process is repeated until the end of the11

fermentation. As a result, the function FN (·) is naturally defined as follows.12 
ḞN (t) = 0, if phi(x(t)) 6= 0, i = 0, 1,

FN (t+) = i · FmN , if phi(x(t)) = 0, i ∈ {0, 1},

FN (t0) = 0.

(5)

2.3. Nonlinear hybrid dynamical system in fed-batch culture13

In the previous two subsections we developed formulations describing on/off14

switches of the pumps of glycerol and alkali, respectively. Let f(x, FG, FN ) :=15

(f1(x, FG, FN ), f2(x, FG, FN ), . . . , f7(x, FG, FN ))ᵀ be the vector field describing16

the temporal changes of the states during the fermentation process, the compo-17
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nents of which are defined as follows referring to Ye et al. (2011).1

f1(x, FG, FN ) = (µ− ds)x1 −
FG(t) + FN (t)

x7
x1, (6)

f2(x, FG, FN ) = −p2x1 +
FG(t)

x7
(Cs0 − x2)− FN (t)

x7
x2, (7)

fk(x, FG, FN ) = pkx1 −
FG(t) + FN (t)

x7
x3, k = 3, 4, 5, (8)

f6(x, FG, FN ) = −FG(t)

x7
x6 +

FN (t)

x7
(%− x6), (9)

f7(x, FG, FN ) = FG(t) + FN (t), (10)

where FG(t) and FN (t) are defined in (1) and (5), respectively. ds is the specific2

decay rate of cells. Cs0 (mmol·L−1) and % (mmol·L−1) are the concentrations3

of glycerol and NaOH in feed medium, respectively. µ, p2 and pi, k = 3, 4, 5,4

are, respectively, the specific growth rate of cells, the specific consumption rate5

of glycerol and the specific formation rate of 1,3-PD, acetic acid and ethanol,6

which are given as follows.7

µ =


µm

x2
x2 + ks

(1− x1
x∗1

)(1− x2
x∗2

)(1− x3
x∗3

)(1− x4
x∗4

)(1− x5
x∗5

),

if 0 < xi ≤ x∗i , i = 1, 2, 3, 4, 5,

0, otherwise,

(11)

p2 = m2 +
µ

Y2
+ ∆2

x2

x2 +K∗2
, (12)

p3 = m3 + µY3 + ∆3
x2

x2 +K∗3
, (13)

p4 = m4 + µY4 + ∆4
x2

x2 +K∗4
, (14)

p5 = m5 + µY5 + ∆5
x2

x2 +K∗5
. (15)

In (11)-(15), µm, ks, mi, Yi,∆i and K∗i , i = 2, 3, 4, 5, are kinetic parameters;8

x∗1 is the carrying capacity of the reactor and x∗i , i = 2, 3, 4, 5, are respec-9

tively the critical concentrations of glycerol, 1,3-PD, acetic acid and ethanol10

for cell growth. The admissible set of the state vector x is defined as Wad :=11

7∏
i=1

[xi∗, x
∗
i ] ⊂ R7

+, where x∗6 and x∗7 are the upper bounds of x6 and x7, and xi∗,12

i = 1, 2, . . . , 7 are the lower bounds of xi, respectively.13

Based on the above definitions and notations, the fed-batch fermentation of14
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glycerol can be described by1  ẋ(t) = f(x(t), FG(t), FN (t)),

x(t0) = x0,
(16)

Note that in the system (16), both the functions FG(t) and FN (t) take2

discrete values. The function FG(t) is explicitly defined by a piecewise constant3

function, and FN (t) is governed by the impulsive system (5), which is coupled4

with the system (16) since the continuous state is involved. Therefore, the5

entirety of (1), (5) and (16) is a hybrid dynamical system, which is referred to6

as the system HDS in the sequel.7

According to the actual experiments, we make the following assumptions.8

(H1) The concentrations of reactants are uniform in reactor, while time delay9

and nonuniform space distribution are ignored.10

(H2) The substrates added to the reactor only include glycerol and alkali.11

(H3) There exists a constant C > 0 such that, for all x ∈Wad,

∇ph1(x) · f(x, FG, 0) ≤ −C, ∀FG ∈ {0, FmG },

and

∇ph0(x) · f(x, FG, F
m
N ) ≤ −C, ∀FG ∈ {0, FmG }.

Assumptions (H1) and (H2) are standard hypotheses in plenty of literature12

on modelling of reactor dynamics. On the other hand, the physical meaning13

of the assumption (H3) is that the change rate of the pH in the solution is14

bounded, which may be hard to be verified from the mathematical model, but15

an acceptable hypothesis from engineering point of view.16

The solution of the system HDS is governed by several different vector fields17

depended on the different values of FG and FN . In detail, the system HDS will18

switch from one vector field to another if one of the following four conditions19

holds:20

• t − (Tn−1 + j · dTn) = 0 for some n ∈ INT = {1, 2, · · · , NT } and j ∈21

ĪNn−1 = {0, 1, 2, · · · , Nn − 1};22
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• t− (Tn−1 + j · dTn + τn) = 0 for some n ∈ INT and j ∈ ĪNn−1;1

• ph0(x(t)) = 0;2

• ph1(x(t)) = 0.3

The above conditions determine the switching of the system HDS, which are4

referred to as the switching conditions of the system HDS. For convenience, the5

kth active switching condition is denoted as6

gkk+1(t, x(t), τ) = 0. (17)

Here, gkk+1 is referred to as the discontinuity function of the kth continuous7

evolution.8

Under the assumptions (H1)-(H3), we can obtain the following properties of9

the system HDS referring to the previous work (Ye et al., 2011).10

Property 1. Under the assumptions (H1)-(H3), the system HDS is non-Zeno11

for all (τ, T ) ∈ Ωad × Tad and x0 ∈ Wad, i.e., the discrete variables FG(t)12

and FN (t) have at most finitely many times of switches over the time interval13

[t0, T ]. Furthermore, the system HDS has a unique solution with each pair14

(τ, T ), denoted by x(·; τ, T ), which is continuous in (τ, T ) on Ωad × Tad.15

3. Optimal control of the nonlinear hybrid system16

In the fed-batch culture, the set of decision variables are the glycerol switch-17

ing signal vector τ and the terminal time T . The switching of the discrete18

variable FG(t) is explicitly determined by τ , while the switching of FN (t) de-19

pends on the state of the system, which is also indirectly affected by the τ .20

In the sequel, given τ and T , let Nτ,T
∗ < ∞ be the total number of switches21

that the two discrete variables of the system HDS experiences over the interval22

[t0, T ], and denote the switching instants by tτ1 , t
τ
2 , . . . , t

τ
Nτ,T∗

. For convenience,23

we set tτ0 := t0 and tτ
Nτ,T∗ +1

:= T .24
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3.1. Optimal control problem and its properties1

The optimal control problem is to find a feasible pair (τ, T ) to maximize the2

productivity of 1,3-PD. For convenience, let u := (τ, T ) and Uad := Ωad × Tad.3

Then the optimal control problem can be formulated as4

(OCP) min
u
J (u) := −x3(T ;u)/T

s.t. x(t;u) ∈Wad, t ∈ [t0, T ], (18)

x3(T ;u) ≥ x̄3, (19)

u ∈ Uad. (20)

The constraint (19) is imposed to avoid the case that the optimal solution would5

be obtained when the biomass is still at the exponential growth stage and the6

concentration of 1,3-PD is relatively low. So, x̄3 is a preassigned lower bound7

of 1,3-PD.8

To explicitly represent the inequality path constraint (18), we define the9

following functions.10

φi(x(t;u)) := xi(t;u)− x∗i ,

φi+7(x(t;u)) := xi∗ − xi(t;u) i = 1, 2, . . . , 7.

Then the inequality path constraint (18) can be rewritten as11

φi(x(t;u)) ≤ 0, ∀t ∈ [t0, T ], i ∈ I14. (21)

The existence of inequality path constraints would increase the complexity12

of the solution to the optimal control problem due to the potential high-index13

DAEs composed of the active path constraints and the original ODEs or DAEs.14

The existing methods for handling inequality path constraints can be classified15

into four broad categories: introducing squares of slack variables, addition of a16

penalty function to the objective function, using the penalty function to form a17

set of end-point constraints, and imposing pointwise constraints. Kameswaran18

and Biegler (2008) presented an excellent review on various methods for han-19

dling the inequality path constraints. In the control parametrization scheme,20

14



Feehery and Barton (1998, 1999) propose an algorithm for inequality path con-1

straints (possibly high index) by detecting activation and deactivation of the2

constraints during the solution of the IVP and solving the resulting high index3

DAEs based on the method of dummy derivatives. However, for the particular4

problem considered in this work, since the decision variables are time-invariant5

parameters, which do not appear in the path constraints or the vector field, the6

approach proposed by Feehery and Barton (1999) cannot be applied.7

The method adopt in this work is to transform the inequality path con-8

straints into equivalent end-point constraints. One can refer to the previous9

work by Vassiliadis et al. (1994) for a detailed description of this method. For10

the particular problem (OCP), we can define a group of new differential variables11

ϕi, i = 1, 2, . . . , 14, which are given by the following differential equations12

ϕ̇i = (max{0, φi(x(t;u))})2, t ∈ (tτk, t
τ
k+1], k = 0, 1, . . . , Nτ,T

∗ , (22)

with the initial condition13

ϕi(t0) = 0 (23)

and junction conditions14

ϕi(t
τ
k+) = ϕi(t

τ
k), k = 1, . . . , Nτ,T

∗ . (24)

The path constraint (18) is equivalent to the end-point constraints15

ϕi(T ;u) = 0, i ∈ I14. (25)

A major disadvantage arising from the use of the end-point constraints (25) is16

that both the violation measure and its gradient with respect to all optimization17

parameters are zero when the constraint is inactive. Thus, no useful information18

can be conveyed to the optimizer regarding the proximity of the current point19

to the boundary of the feasible region, which may result in inefficient behavior20

involving excessive oscillations between feasible and infeasible choices of the21

optimization parameters in successive optimization steps or during the line-22

search procedure.23
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To overcome this problem, Walsh (1993) introduced a small violation tol-1

erance ε > 0 to the end-point equality constraints, resulting in the following2

inequality end-point constraints.3

ϕi(T ;u) ≤ ε, i ∈ I14.

It was reported that the above relaxation of the path constraints could in gen-4

eral lead to significant performance improvement in the numerical computation5

(Vassiliadis et al., 1994). The problem (OCP) is finally approximated by6

(OCPε) min
u
J (u) := −x3(T ;u)/T

s.t. ϕi(T ;u) ≤ ε, i ∈ I14,

x̄3 − x3(T ;u) ≤ 0,

u ∈ Uad.

From Property 1 and (22)-(24), we can verify that ϕi, i ∈ I14, are continuous7

in u on Uad, and readily obtain the following relationship between the solutions8

of the problem (OCP) and the problem (OCPε) as ε→ 0.9

Property 2. Let {u∗ε} be a sequence of optimal solutions to (OCPε) as ε→ 0.10

Then there exists a subsequence of {u∗ε} converging to a point u∗ ∈ Uad, which11

is an optimal solution of the problem (OCP).12

Proof. The proof of the property is similar to that of Lemma 3.1 in Teo and13

Jennings (1989b). �14

Property 2 indicates that the solution to the problem (OCP) can be approx-15

imately computed by solving a sequence of problems {(OCPε)}. Next, we shall16

derive the gradients of the cost functional and the constraints for the problem17

(OCPε), and construct an algorithm to solve (OCPε).18

3.2. Parametric sensitivity functions and gradient information19

To get the gradients of the cost functional and the constraints with respect to20

the decision variables, we shall first present the parametric sensitivity function21

for the system HDS.22

16



The partial derivatives of the continuous state x with respect to the decision1

variables τn, n = 1, 2, . . . , NT , and T are referred to as parametric sensitivity2

functions. For convenience, we let Sn(t;u) :=
∂x(t;u)
∂τn

, n = 1, 2, . . . , NT , if3

the partial derivatives exist. In an abuse of notations, we use f(tτk+) to denote4

f(x(tτk+), FG(tτk+), FN (tτk+)), and f(tτk−) to denote f(x(tτk−), FG(tτk−), FN (tτk−))5

for all k = 1, 2, · · · , Nτ,T
∗ .6

Property 3. (The parametric sensitivity function of x with respect to τ)7

Given u ∈ Uad, let x(·;u) be the solution of the system HDS over [t0, T ].8

Assume that x(t;u) ∈ R7
+ for all t ∈ [t0, T ], and assume that the following9

equations10

∂gkk+1

∂x
|t=tτk f(tτk−) +

∂gkk+1

∂t
|t=tτk 6= 0,

hold for all k ∈ {1, 2, . . . , Nτ,T
∗ }. Then, under the assumptions (H1)-(H3), the11

partial derivatives Sn(t;u), n = 1, 2, . . . , NT , exist for all t 6= tτk and satisfy the12

following equations13

dSn
dt

=
∂f

∂x
Sn, tτk−1 < t ≤ tτk, k = 1, 2, . . . , Nτ,T

∗ + 1, (26)

with the initial conditions14

Sn(t0;u) = 0. (27)

Moreover, the transition from one equation in (26) to another is given by15

4Sn(tτk) = (f(tτk−)− f(tτk+))
dt

dτn
, (28)

for all k ∈ {1, 2, . . . , Nτ,T
∗ }, where16

4Sn(tτk) , Sn(tτk+;u)− Sn(tτk;u),

and17

dt

dτn
= −

∂gkk+1

∂x
|t=tτk Sn(tτk;u) +

∂gkk+1

∂τn
|t=tτk

∂gkk+1

∂x
|t=tτk f(tτk−) +

∂gkk+1

∂t
|t=tτk

. (29)
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Proof. From Eqs.(6)-(15), we can obtain that the function f is continuously1

differentiable with respect to x on R7
+. Then the conclusion of the theorem2

can be directly obtained by applying Theorem 3.1 in Rosenwasser and Yusupov3

(2000). �4

Note that the cost functional is of the form J (u) = −x3(T ;u)/T . So the

partial derivatives of the cost functional with respect to the decision variables

τn, n = 1, 2, . . . , NT can be readily obtained from Property 3. And its partial

derivative with respect to T can be computed due to the fact

∂x

∂T
(T ;u) =

dx

dt
(T ;u) = f(x(T ;u), q1(T ; τ), q2(T )).

In addition, analogous to the proof of the above theorems, we can derive the5

partial derivatives of the constraint function ϕi (i ∈ I14) with respect to τn6

(n ∈ INT ) as follows.7

Property 4. Under the assumptions (H1)-(H3), the partial derivative of the8

constraint function ϕi ( i ∈ I14) defined in (22)-(24) with respect to τn (n ∈9

INT ), ∂ϕi/∂τn, exists for all t 6= tτk and satisfies the following equations10

d

dt
(
∂ϕi
∂τn

) = 2 max{0, φi(t, x(t;u))}∂φi
∂x

Sn, tτk−1 < t ≤ tτk,

k = 1, 2, . . . , Nτ,T
∗ + 1, (30)

with the initial condition11

∂ϕi
∂τn

(t0;u) = 0 (31)

and junction condition12

∂ϕi
∂τn

(tτk+) =
∂ϕi
∂τn

(tτk). (32)

Property 5. The partial derivatives of the constraint function ϕi ( i ∈ I14)13

defined in (22)-(24) with respect to T ,
∂ϕi
∂T

, exists for all t 6= tτk, taking values14

of zero except for the instant t = T , at which the following equation is satisfied.15

∂ϕi
∂T

(T ) = (max{0, φi(x(T ;u))})2, i ∈ I14. (33)
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4. Optimization algorithm1

In (OCPε), the variables to be optimized are the glycerol switching signal2

τ and the terminal time T . The problem is therefore an OPSP of switching3

system. On the other hand, note that the glycerol switching signal τ is in4

essential a scaled vector of model stage lengths. It was pointed out by Sager5

(2009a) that dynamic optimization of switching systems with variables of this6

kind may suffer several drawbacks: a nonregular situation may occur when state7

lengths are reduced to zero during optimization procedure, resulting in variable8

structures in the sensitivity system; the number of switches may be not known,9

left alone the precise switching structure; the reformulation yields additional10

nonconvexities in the optimization space. The above drawbacks are carefully11

treated in this work as follows. Firstly, to handle the problem that the stage12

lengths may be reduced to zero, we need to detect this special case during the13

optimization procedure. Whenever this nonregular case occurs, the structure of14

the switching system will be updated and the parametric sensitivity functions15

will be recomputed. Secondly, since the time horizon has been partitioned into a16

special structure as stated in Subsection 2.1, the maximum number of switches17

is known in advance. The number of switches decreases only when some stage18

length is reduced to zero, which has been discussed in the first case. Thirdly,19

the nonconvexities is a generic properties arising from the discrete valued of the20

control function. Although some sophisticated techniques have been developed21

for the convexification of this class of problems (e.g., Singer and Barton, 2006;22

Sahlodin and Chachuat, 2011), the efficient solution in this scheme still remains23

a daunting challenge for complicated or large scale problems, and many research24

areas still remain open for finding the global solution of complicated non-convex25

optimization problems (Singer and Barton, 2006). It is therefore not suggested26

to use the convexification techniques in many practical problems. Actually, a27

“good” local solution is often enough for most practical problems, rather than28

a global optimal one.29

In finding the local solution of OPSPs, several successful families of algo-30

19



rithms have been developed (see, for example, Teo and Jennings, 1989b; Goh1

and Teo, 1988b; Polak and He, 1991; Polak, 1997). Generally, this class of2

problems can be solved by several common NLP algorithms (coupled with an3

appropriate ODE solver for evaluating the states and the sensitivity functions),4

such as penalty methods, augmented Lagrangian methods, sequential quadratic5

programming (SQP) methods, etc. It is well recognized that the performances of6

penalty and augmented Lagrangian methods are greatly affected by the update7

strategies of penalty factors and Lagrange multipliers, respectively. Even if a8

good update strategy for penalty factors or Lagrange multipliers is applied, there9

are a sequence of approximated problems parametrized by the penalty factors10

or Lagrange multipliers to be solved. The computation cost in the framework11

of penalty and augmented Lagrangian methods would be quite expensive, be-12

cause differential systems and the sensitivity systems must be performed many13

times for each problem with fixed multiplier. On the other hand, the stan-14

dard SQP methods require the solution of a general (inequality constrained)15

quadratic problem at each iteration. However, the evaluation of the Hessian16

would be computational expensive, in particular in dealing with the optimal17

control problem of switching systems. Because of the above considerations, we18

use the phase I-phase II method to solve (OCPε), because this method has good19

convergence results as shown in Polak (1997), while only the gradient informa-20

tion is required in the implementation of the algorithm.21

To begin with, let22

ϕεi := ϕi(T, u)− ε, i ∈ I14

ϕε15 := x̄3 − x3(T ;u),

Ψε(T ;u) := max{ϕεi(T, u), i ∈ I15},

Ψε
+(T ;u) := max{0,Ψε(T ;u)}.

Let J̄ : RNT+1 × RNT+1 → R be defined as23

J̄ ε(ū, u) := max{J (u)− J (ū)− λΨε
+(T ; ū),Ψε(T ;u)−Ψε

+(T ; ū)},

20



where λ > 0. Given h ∈ RNT+1 and δ > 0, let1

Ĵ ε(u, u+ h) := max{< ∇uJ (u), h > −λΨε
+(T ;u),

max
i∈I15
{ϕεi(T ;u)−Ψε

+(T ;u)+ < ∇uϕi(T ;u), h >}}+
1

2
δ‖h‖2

Note that Ĵ ε(u, u+h) is a first-order, convex (in h) approximation to J̄ ε(u, u+2

h). Now we define the optimality function and descent direction for (OCPε) as3

follows.4

θε(u) := min
h∈RNT+1

Ĵ ε(u, u+ h), (34)

h(u) := arg min
h∈RNT+1

Ĵ ε(u, u+ h). (35)

According to Theorem 2.2.8 in Polak (1997), θε(u) and h(u) are given by5

θε(u) = − min
η∈Σ0

15

{η0λΨε
+(u) +

15∑
i=1

ηi(Ψ
ε
+(u)− ϕεi(T ;u))

+
1

2δ
‖η0∇uJ (u) +

15∑
i=1

ηi∇uϕi(T ;u)‖2}, (36)

h(u) = −1

δ
(ηu0∇uJ (u) +

15∑
i=1

ηui ∇uϕi(T ;u)), (37)

where η := (η0, η1, · · · , η15)ᵀ, Σ0
15 := {η ∈ R16 |

15∑
i=0

ηi = 1, ηi ≥ 0, i =6

0, 1, . . . , 15} and ηu is a solution of (36). Let ξ̄ = (ξ0, ξᵀ)ᵀ with ξ0 ∈ R and7

ξ ∈ RNT+1, and let8

GJε(u) = co


 λΨε

+(T ;u)

∇uJ (u)

 ,

 Ψε
+(T ;u)− ϕεi(T ;u)

∇uϕi(T ;u)

 , i ∈ I15

 . (38)

Then θε(u) and h(u) can be equivalently expressed in the form9

θε(u) = − min
ξ̄∈GJε(u)

{ξ0 +
1

2δ
‖ξ‖2}, (39)

h̄ε(u) = (h0,ε(u), hᵀ(u))ᵀ = − arg min
ξ̄∈GJε(u)

{ξ0 +
1

2δ
‖ξ‖2}. (40)

We construct the following algorithm for solving (OCPε).10

Algorithm 4.111
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Step 1. Set α ∈ (0, 1], β ∈ (0, 1), λ, δ > 0, M ∈ Z+, 0 < ε0 � 1, k = 0,1

u0 ∈ Uad.2

Step 2. At u := uk, solve the system HDS, compute the parameter sensitiv-3

ity functions defined in (26)-(29), the transformed constraint functions4

defined in (22)-(24), and the related gradients from (30)-(32) and (33),5

respectively.6

Step 3. Solve the problem (39) at u = uk. Set θk := θε(uk), h̄k := h̄ε(uk) =7

(h0,ε(uk), hᵀ(uk))ᵀ and hk := h(uk). If θk > −ε0, stop; else goto Step 4.8

Step 4. Set the stepsize9

ιk := max
i∈ĪM
{βi | Ĵ (uk, uk + βihk) ≤ βiαθk}.

Step 5. Set uk+1 := uk + ιkhk, replace k by k + 1, and goto Step 2.10

In algorithm 4.1, the parameter ε0 defines the precision of the conceptual stop-

ping criterion θε(u) = 0. The set ĪM in Step 4 is defined as

ĪM := {0, 1, 2, · · · ,M},

where βM is the minimum stepsize.11

In the kth iteration of Algorithm 4.1, the problem (39) can be numerically12

solved by the following subprocedure based on the Franke-Wolfe algorithm in13

Polak (1997).14

Subprocedure 4.215

Step I-1. Set ξ̄0 ∈ GJε(uk), 0 < ε1 � 1, $0 := ξ̄0, M1 ∈ Z+, j = j1 = 0.16

Step I-2. Compute17

ζ̄j := arg min{< ∇Υ(ξ̄j), ζ̄ − ξ̄j > |ζ̄ ∈ GJε(uk)} (41)

with Υ(ξ̄) := ξ0 + 1
2δ
‖ξ‖2. Set dξ̄j := ζ̄j − ξ̄j and goto Step I-3.18

Step I-3. If (j > 0 and j mod M1 =0), set $j1 := ζ̄j − ξ̄j−M1 and j1 := j1 + 1.19

If ‖$j1‖ ≤ ε1, stop; else goto Step I-4.20
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Step I-4. Compute the stepsize1

`j := arg min{Υ(ξ̄j + ` · dξ̄j)|` ∈ [0, 1]}. (42)

Set ξ̄j+1 := ξ̄j + `j · dξ̄j , replace j by j + 1, and goto Step I-2.2

Remark 3. Note that the search direction finding problem (41) is a linear pro-3

gram, and hence, can be evaluated in a finite number of operations. In fact, it4

follows from the definition of GJε(uk) in (38) that solving (41) needs at most5

16 inner product computations and a comparison of these inner products. In6

addition, the problem (42) can be solved by Golden Section Search method.7

Remark 4. Generally, one can use dξ̄j ≤ ε1 as the stop criterion for the Sub-8

procedure 4.2. However, our numerical experiments show that the subprocedure9

may stop too early by using such criterion, which would reduce the performance10

of Algorithm 4.1. Therefore, we adopt $j1 ≤ ε1 as the stop criterion to avoid11

the possible premature termination of the subprocedure.12

5. Numerical results13

The system HDS and the coupled parametric sensitivity systems need to be14

solved simultaneously. Compared with the numerical simulator for the system15

HDS in Ye et al. (2011), the computation of the parameter sensitivity systems16

requires much higher precision, because there exist intensive state-depended17

impulses in the parametric sensitivity systems. We use a novel alterative step18

Euler method to solve the systems. The solver is coded in Visual C++ 6.0. The19

values of the parameters and the critical values of the states of the system HDS20

are given in Table 1, which can also be referred to Ye et al.(2011). Figures 221

and 3 show, respectively, the trajectories of the sensitivity functions ∂x1
∂τ5

and22

∂x3
∂τ5

with the initial state and glycerol switching signal vector given in Ye et23

al.(2011), where Figures 2(a) and 3(a) are the trajectories over the time interval24

[0,39], and Figures 2(b) and 3(b) are the corresponding partially enlarged views25

over the time interval [15,17.5], respectively.26
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Table 1: The values of parameters and the critical values of the states of the system HDS.

d m2 m3 m4 m5 K∗2 K∗3 K∗4 K∗5

0.02 0 -6.325 -1.345 0.66 20.5 28.5 85.71 -

Y2 Y3 Y4 Y5 ∆2 ∆3 ∆4 ∆5

0.008473 90.482 23.8599 2.66 9.5306 12.9 2.0099 -

pH∗ pH∗ x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7

6.4 6.6 10 2039 1300 1026 360.9 500 5

x1∗ x2∗ x3∗ x4∗ x5∗ x6∗ x7∗
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Figure 2: The trajectory of ∂x1
∂τ5

over the time intervals [0,39] and [15,17.5].
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Figure 3: The trajectory of ∂x3
∂τ5

over the time intervals [0,39] and [15,17.5].

In Algorithm 4.1 and Subprocedure 4.2, the parameters α, β, λ, δ, M , M1,1

ε0, ε1 are, respectively, 0.8, 0.9, 3.0, 2.0, 25, 50, 0.005, 0.001. These parameters2

are derived empirically after numerous experiments. The violation tolerance ε3

is set to be 0.01.4

For ease of calculation, the terminal time of the fermentation is preassigned5

as 45h. For each τ , the optimal terminal time T ∗τ can be easily calculated in the6

numerical simulation of the system HDS. Therefore, only τ needs to be optimized7

in Algorithm 4.1. According to the growth characteristics of the strain, the total8

fermentation time is divided into 26 phases. The start time of these phases are9

0 < 3 < 5 < 6 < 7 < 8 < 9 < 10 < 10.5 < 11 < 12 < 13 < 14 < 15 < 18 <10

20 < 22 < 24 < 26 < 28 < 30 < 32 < 34 < 36 < 39 < 42. In addition, each11

phase is divided into several units with the same length dTn = 100 (seconds),12

n = 1, 2, · · · , 26.13

The admissible set of τ , Ωad ⊂ R26
+ , is given on empirical basis. Algorithm14

4.1 is run under different initial points, which are randomly generalized from Ωad15

(except for one initial point given based on the strategy in Ye et al.(2011)). The16

algorithm is performed in Visual C++ 6.0 on an Intel Core i5 with 2450GHz.17

The average iterations of the algorithm required to find the (local) optimal solu-18

tion is calculated, and 17 runs failed to converge (60 runs in total) are excluded19

25



in the calculation of the average. The average iterations of the algorithm is1

about 167. The computational time of the run from which the optimal strategy2

is obtained is about 2.13h, and the average computational time of the successful3

runs is about 3.45h.4

The optimal glycerol switching signal vector is τ∗ = (0.00, 0.40, 0.51, 0.70,5

0.48, 0.50, 0.48, 1.54, 2.24, 3.42, 1.25, 1.55, 1.65, 1.65, 1.62, 2.32, 1.77, 1.89, 1.23,6

1.0, 0.76, 0.97, 1.58, 0.89, 0.8, 0.8)ᵀ (seconds), and the optimal terminal time un-7

der τ = τ∗ is T ∗τ∗ = 14.9167(h). Under the obtained optimal glycerol switch-8

ing signal vector and the optimal terminal time, the productivity of 1,3-PD is9

45.5342 (mmol· L−1·h−1), which is increased by 53.1% in comparison with the10

experimental result presented in Ye et al. (2011).11

The state trajectories of the system HDS and the trend of the performance12

index x3(t)/t with τ = τ∗ are shown in Figures 4-7. In addition, the change of13

the values of the binary function q2(t), which implies the occurrence of on/off14

switches of alkali pump, is depicted in Figures 8(a) and 8(b), where Figure 8(a)15

is a plot consisting of dots recoded at the discretization grids in the simulation16

of the system HDS, and Figure 8(b) is a line plot of part of these points. Figure17

8(a) shows that the switching frequency of alkali pump decreases as time goes18

on, which is consistent with the fact that the formation rates of acid byproducts19

decrease with time. We also plot the trajectory of the discrete state q(t) in20

Figures 9(a) and 9(b), which represent the order of the active operation modes21

as the fermentation goes on. Similarly, Figure 9(a) is a plot of dots and Figure22

9(b) is a line plot. Here we do not plot the trajectories of q2(t) and q(t) over23

the entire time horizon, because the values of the two functions change too24

frequently, resulting in poor view of the trajectories over the entire time horizon.25

6. Discussions and conclusions26

In this paper, an optimal control problem for the bioconversion of glycerol27

to 1,3-PD in fed-batch culture was considered, which is subject to inequality28

path constraints. Although the simultaneous approaches can deal with path29
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Figure 4: (a) The trajectory of biomass concentration x1(t) with τ = τ∗ over the time horizon

[0,T ∗] and, (b) the trajectories of glycerol concentration x2(t) under different feeding strategies

over the time horizon [0,T ∗].
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Figure 5: (a) The trajectories of 1,3-PD concentration x3(t) under different feeding strategies

over the time horizon [0,T ∗] and, (b) the performance index x3(t)/t with τ = τ∗ over the time

horizon [0,45].
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Figure 6: (a) The trajectory of acetate concentration x4(t) with τ = τ∗ over the time horizon

[0,T ∗] and, (b) the trajectory of ethanol concentration x5(t) with τ = τ∗ over the time horizon

[0,T ∗].
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Figure 7: (a) The trajectory of Na+ concentration x6(t) with τ = τ∗ over the time horizon

[0,T ∗] and, (b) the trajectory of the volume of the solution x7(t) with τ = τ∗ over the time

horizon [0,T ∗].
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Figure 8: (a) The trajectory of q2(t) plotted by dots with τ = τ∗ over the time horizon

[8.0,14.9167] and, (b) the partially enlarged line plot of q2(t) with τ = τ∗ over the time

horizon [10.4,11.5].
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Figure 9: (a) The trajectory of q(t) plotted by dots with τ = τ∗ over the time horizon

[10.4,14.9167] and, (b) the partially enlarged line plot of q(t) with τ = τ∗ over the time

horizon [10.4,11.75].
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constraints efficiently, we didn’t design optimization algorithm in this scheme.1

The reason is that the application of simultaneous approaches on this problem2

would greatly increase the size of the optimization problem. Alternatively, by3

employing the special time partition in this work, which is constructed in consid-4

eration of the growth characteristic of the strain, the variables to be optimized5

form only a finite dimensional control vector with small size. Numerical results6

reveal that the proposed algorithm can solve the optimal control problem effi-7

ciently, and that the productivity of 1,3-PD can be significantly improved by8

employing our optimal control strategy.9

Comparing the glycerol concentration under the optimal feeding strategy10

with the strategy in previous work (Ye et al. 2011), we can find in Figure 4(b)11

that the curve of glycerol concentration in previous work has a more noticeable12

variance. It means that the substrate concentration is kept more stable under13

the optimal feeding strategy obtained in this work. Particularly, under the14

feeding strategy of previous work, the concentration of glycerol was too low15

after 5 hours of fermentation, which is disadvantageous for the growth of strains16

and limits the formation of the goal product. We can also see from Figure17

5(a) that the concentration of the product with the optimal feeding strategy is18

considerable higher than that of previous work (Ye et al. 2011). On the other19

hand, we can see from Figure 8(a) that the switching frequency of alkali pump20

decreases as time goes on, which is consistent with the fact that the formation21

rates of acid byproducts decrease as time goes on.22
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