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Abstract—The number of spreading sequences required for di-
rect-sequence code-division multiple-access (DS-CDMA) systems
depends on the number of simultaneous users in the system. Often
a sequence family provides more sequences than are required; in
many cases the selection of the employed sequences is a compu-
tationally intensive task. This selection is a key consideration, as
the properties of the sequences assigned affect the error perfor-
mance in the system. In this paper, a branch and bound algorithm
is presented to perform this selection based on two different cost
functions. Numerical results are presented to demonstrate the im-
proved performance of this algorithm over previous work.

Index Terms—Branch and bound technique, sequences, subset
design.

I. INTRODUCTION

F OR most classes of spreading sequences, the size of the
family is determined by the sequence length, for example

[1]–[3]. Many applications provide constraints on both the se-
quence length and the number of sequences required. Thus, it is
often necessary to employ a family containing more sequences
than necessary and to assign only as many sequences as re-
quired. The problem is to select the sequences employed such
that they are optimal with respect to some measure. Of particular
interest are correlation measures which, when the sequences are
employed in communication systems, are related to the resulting
error rates [4].

Given a family of spreading sequences and the number of se-
quences required, the selection of such a subset of sequences is
nontrivial. The number of possible subsets quickly becomes as-
tronomical as the family size increases. For example, the search
space for selecting 32 sequences from a family of 64 is

. Previous methods to solve this problem include a brute
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force solution proposed for multicarrier code-division multiple-
access (CDMA) systems [5], a genetic algorithm approach [6]
and different approaches which select incrementally optimal se-
quences [3], [7], [8]. Of these, only the brute force solution is
guaranteed to produce the global optimum but, due to its com-
putational complexity, such an approach is only usable for very
small families.

Branch and bound algorithms [9] are well suited to large com-
binatorial problems. For example, in [10], such an approach is
employed to examine the merit factor problem.

In this paper a new algorithm is developed, based on a branch
and bound approach, to solve the problem of subset selection.
Two different cost measures are considered, both related to cor-
relation measures on the sequences. New methods are proposed
to obtain bounds on the cost functions used. In order to deter-
mine this lower bound for the mean squared cross-correlation
measure, a new procedure is developed to approximate the op-
timal subset. By applying these bounds to the branch and bound
algorithm, a reduction of the computational expense of the opti-
mization procedure is obtained. In contrast to previous methods
[5]–[8], the branch and bound approach achieves this compu-
tational saving without sacrificing the optimality of the result.
Computational complexity can be further reduced if some de-
gree of suboptimality is allowed.

The computational saving of the branch and bound approach
means that it is suitable for use with much larger families than
can be handled by a brute force solution. There will be a limit
to the family size for which this approach is suitable. The algo-
rithm is not constrained by the sequence length of the family,
only the number of sequences to select from.

Examples of the operation of the branch and bound algo-
rithm are given for a number of different sequence families and a
number of different subset sizes. These design examples demon-
strate the effectiveness of the branch and bound algorithm, as the
sequence families selected have lower correlation values than
those produced by the approaches listed above.

The outline of this paper is as follows. Section II introduces
the notation used and the correlation measures of interest. The
optimization problem is outlined in Section III. A branch and
bound algorithm is presented in Section IV. Strict lower bounds
on the cost functions are developed in Section V. A new proce-
dure, used to efficiently generate an approximate bound on mean
squared cross-correlation values, is presented in Section VI. An
example of the operation of the branch and bound procedure is
detailed in Section VII. Section VIII provides numerical results
and conclusions are presented in Section IX.

0018-9448/$25.00 © 2009 IEEE
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II. DEFINITIONS

Consider a sequence family with indexes from the finite set

(1)

where each sequence has length :

(2)

It is assumed that for . The family size is thus

(3)

where denotes the cardinality of a set. In light of this, is
simplified as .

For any , the subset of consisting of sequences with
indexes from is denoted by

(4)

and is referred to as an index set. The collection of subsets of
of size is denoted by

(5)

The set of all subsets of of size is and for sim-
plicity is denoted by

(6)

The branch and bound procedure of Section IV aims to select
the member of that minimizes some predefined cost
function. Such a method requires a means of ordering index sets.
A suitable means is lexicographic ordering [11], based on the
order of elements of . Given two sets

with and , we define
if either:

1) and for ; or
2) there exists some such that

for all and for .
Using this ordering, a hierarchy of subsets may be defined.

Take some and some integer . The set
equals if , otherwise if it

contains all subsets of of size whose index set is either
formed by appending to indices which are larger than any
element of . That is, contains and is greater than or equal
to under lexicographic ordering:

(7)

If then this set is empty. If , the size of
is

(8)

where denotes the largest element of and
is the number of possible ways to choose elements
from a set of size . Noting that when
or , and when or , simple tests may be
produced for the special cases where is empty or contains
a single family.

Property 1: The set of subsets is either empty or con-
tains a single element in the following cases:

or
or

(9)

In view of application areas such as asynchronous CDMA
systems, we consider aperiodic correlation measures. Aperiodic
correlation have been demonstrated to be a useful and popular
measure for the suitability of a sequence family to such sys-
tems [4]. The aperiodic cross-correlation (CC) between two se-
quences and is defined as

otherwise
(10)

where the argument represents the discrete shift between the
two sequences and denotes the complex conjugate of .

A quantification of the CC properties with respect to all pos-
sible shifts and all possible sequences in a given family is pro-
vided by the mean squared aperiodic cross-correlation (MSCC).
For any defined as in (4), the MSCC value is defined as [3]

(11)

The maximum cross-correlation, , is a worst case measure
of multi-user interference and is defined for via

(12)

The use of may overestimate interference, particularly
in systems where each user’s delay changes often [12]. In such
cases, MSCC can give a more accurate indication of interference
[13]. Where delay is more static, can be a more accurate
measure [14].

III. PROBLEM FORMULATION

For a given sequence length , traditional spreading se-
quence families, such as Gold [1], Frank–Zadoff–Chu [2],
and Oppermann sequences [3] produce a fixed number
of spreading sequences. For many practical applications the
number of sequences required, related to the number of
users, is less than the total number of sequences in the given
family. Thus, the design problem can be formulated as selecting
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the subset of sequences from the entire set of se-
quences that minimizes a cost function relating to correlation
properties. This may be formulated as the optimization problem

minimize
subject to

(13)

The minimal value for is denoted by

(14)

In this paper we concentrate on the following two design
problems: i) minimize the mean squared cross-correlation; and
ii) minimize the maximum cross-correlation. These problems
can be formulated as in (13) with

(15)

and

(16)

respectively. A similar approach to that described here can be
used for other cost functions.

Using the same approach as (8), the size of the search space of
is , which becomes increasingly large as approaches

. In light of this, an efficient optimization technique is re-
quired to solve problem .

IV. A BRANCH AND BOUND PROCEDURE

Problem , given in (13), can be solved by a branch and
bound method, which operates by partitioning the problem into
several subproblems, each easier to solve [11]. Although it is
not considered in this implementation, parallelization of branch
and bound algorithms is a well developed area of research [15].

A set of subproblems is said to partition if the subproblems’
search spaces are disjoint and their union is the search space of

. In order to perform this partitioning, a notation for subprob-
lems of is required. For any define the subproblem
as

subject to
(17)

where is as defined in (7). Denote by the minimum cost
for the subproblem , that is

(18)

Take some with . We wish to show that the set of
subproblems

(19)

is a partition of subproblem . The subproblem is

defined similarly to . The search space is , that is
the smallest elements of the index set are , and the next
smallest is .

For any family , noting that , the
value is well defined. From this definition of ,
it follows that , and . Conversely,

for any and any we have

. Hence

(20)

Next, consider with . For any
, the smallest elements of are the elements

of , hence . The same reasoning applies

to show that for any we have .
Hence

(21)

Thus the set described in (19) is a partition for . The optimum
cost for can be found from this partition via [11]

(22)

The branch and bound algorithm is aimed at producing the
optimal value of problem . As such, if for some subproblem

the optimal value satisfies , then the exact value is
not of interest. To this end, we introduce the term , which is
the output produced for . This output satisfies

when

and

when (23)

When it can be determined that does not contain the optimal
value for , that is , the output can be set to ,
eliminating the need to solve .

The branch and bound procedure is started by partitioning the
original problem and recursively solving each subproblem in the
resulting partition. The solution to the original problem is then
found from the solutions to the first partition. This is detailed in
Procedure 1 and summarized in the flow chart of Fig. 1.

Procedure 1 (Branch and Bound):

Inputs Sequence family , subset size , cost
function .

Step 1 Construct a partition for problem :

(24)

Step 2 For each , use Step 3 with input
to produce .

Step 3 Recursive step. The input is an index set .

Step 3A If , then the subproblem is infeasible.
Set and terminate. As per Property 1,
this is the case if or

.

Step 3B If is trivially determinable, then can
be returned immediately. This case is referred to
as optimality. We define trivially determinable
as . Following Property 1,
optimality applies if
or .
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Fig. 1. Flowchart of the branch and bound procedure (Procedure 1).

Step 3C If is not trivially determinable, test for value
dominance. This is done by finding a lower
bound for and an upper bound
for . If then and hence
this subproblem cannot produce a solution
which is optimal for . Terminate and return

. The derivation of and is
considered in Section V.

Step 3D If none of the above possibilities apply,
requires optimization. The problem
is partitioned as in (19). For each

recursively call
Procedure 1 Step 3 with input to
produce .

Step 3E The output is found, in a similar manner to
(22) via

(25)

Step 4 The optimal value is found as per (22)

(26)

End

The subproblem considered above has search space

, containing all sequence families whose minimum se-
quence index is .

It follows from (23) that the output produced by Procedure 1
is , the optimal value for . Noting that
is a partition for , at least one subproblem must contain

the optimal point in the search space for , and hence for that
we have .

Given that Procedure 1 contains a recursive step, it must be
verified that the procedure will terminate. The partitioning per-
formed in Step 3D strictly reduces the size of the search space
considered in each recursive call. Since Procedure 1 Step 3 ter-
minates when the search space reaches size 1 or 0, and the initial
search space is finite, it follows that there is a finite limit on the
number of recursive calls.

V. STRICT BOUNDS FOR VALUE DOMINANCE

The key to an efficient branch and bound procedure is the
production of tight and computationally simple bounds
and , used in Step 3C.

The upper bound can be calculated the same way regard-
less of the cost function used. A suitable value is the smallest
value of produced by any previous execution of Procedure 1
Step 3. This holds since for all we have , hence

. If no values have been
produced, the upper bound is used.

The lower bound on the optimal value of the current sub-
problem must be formulated separately for each different cost
function. In the following we propose lower bounds corre-
sponding to the two cost functions presented in Section III.

A. Minimizing Mean Squared Cross-Correlation

Let be the current subproblem and define and
. Let the optimal solution to be

(27)
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where for some with . The
MSCC of this optimal solution is then

(28)

A lower bound on is produced by considering
each of the three terms in (28) separately. The bound, denoted

, is calculated via

(29)

where is the exact value of the first term of (28) and
are lower bounds for the second and third terms,

respectively. The terms and are derived in
the following.

• Since is known, may be calculated via

otherwise
(30)

• The second term of (28) can not be directly calculated since
it sums over , which is unknown. Noting that , a
lower bound on this term may be found by considering the
elements of which give the smallest contribution to such
a sum. For each let

(31)

Let denote the indices of the smallest
elements of the set . The set is
thus the subset of which gives the smallest possible sum
in the style of the second term of (28). If we define

otherwise
(32)

then, as required

(33)

• To produce , note that the third term sums over the
possible pairs such that with

. Whilst is unknown, it is known that . A lower
bound on the contribution of each pair with

is thus the minimum contribution from any pair with
and . Let

(34)

be this minimum. The lower bound on the third term of
(28) is thus

otherwise
(35)

Clearly for any with it follows that
and hence

(36)

B. Minimizing Maximum Cross-Correlation

Given the index set for the current subproblem , mini-
mizing maximum cross-correlation, a lower bound, , for

is

(37)

This follows from (12), since if is the optimal solution to
, we have and hence .

VI. AN APPROXIMATE LOWER BOUND FOR MEAN SQUARED

CROSS-CORRELATION

A. The Use of an Approximate Lower Bound

If value dominance is never applied, the branch and bound
algorithm simply performs global optimization. As value dom-
inance is applied more often, the efficiency of the algorithm in-
creases. The frequency with which value dominance can be ap-
plied, and hence the efficiency of the branch and bound algo-
rithm, is dependent on the tightness of , the lower bound
on . A tighter bound will result in a more efficient algorithm.

Rather than use an exact lower bound , an approxi-
mate lower bound can be employed. As the bound is no
longer required to be a strict lower bound, a larger value can
be selected. However, since the actual value will typically be
larger than the strict lower bound, the approximate bound
will generally be closer to the actual value than the strict bound

. The price for this gain is that may sometimes be
larger than and hence lead to value dominance being incor-
rectly applied. An incorrect application of value dominance may
lead to when , which violates (23). Since the
optimality of the output is dependent on (23), the use of an
approximate bound may lead to suboptimal output.

The approximate bound should be selected such that this risk
of suboptimal output is offset by a large decrease in computa-
tional cost. In the study performed by the authors, the results of
which are given in Section VIII, a significant reduction in run-
ning time was achieved when the bound described below
was used and the resulting output was in all cases still optimal.
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Using the same framework as in Section V-A we consider an
approximate bound for use in Procedure 1 when the cost func-
tion is the MSCC. The first two terms of (28) are calculated as
before. The third term remains to be considered. An ideal lower
bound for this term would satisfy

(38)

Identifying this minimal value involves solving an optimization
problem very similar to the original problem . As such an ap-
proximate lower bound can be found via methods which find an
approximately optimal solution to the selection of a subset with
respect to MSCC.

B. The Fillin Method

We first present a new method to find an approximate solution
to such a problem, which we will refer to as the Fillin method.
The advantage of this new method is its very small computa-
tional cost compared to other techniques, such as Mourad et al.’s
algorithm [8] or a Monte Carlo algorithm [14].

The Fillin method approximates the optimal cost of a subset
of size of a given family by recursively considering subsets
of size . The results of these considerations are stored in
two tables, and . The th column of contains the
costs of subsets of size , the th column of contains
the corresponding index sets. Within the tables, the row indi-
cates how much of the original family is being considered for
inclusion. The entry in row , column corresponds to selecting
a subset of size whose index set contains values greater than
or equal to , that is an element of .

In the case where is empty, the corre-
sponding entries in and can be immediately filled as

(39)

(40)

Similarly, when the subsets in contain a
single sequence the MSCC is undefined and hence

(41)

(42)

In the remaining cases, is an approximation of the optimal
MSCC for an element of

(43)

and is the index set of the corresponding subset .
For an with and

the values and can be found as described below, with
reference to the values for and . In this
manner the two tables can be recursively filled in in order of
increasing and decreasing .

Fig. 2. The steps taken to calculate cost � using the Fillin method, including
the order of calculation. “�” indicates a value not calculated.

Take such an and consider the elements of
. First there are those subsets which do not con-

tain . These subsets are all members of ,
the best known element of which is . Alternatively, there
are those subsets which contain . Each of these subsets can be
constructed by adding to a subset in for
some . As such, suitable candidates for the optimal
such subset are for .

If we define

(44)

and

(45)

then

(46)

The value can be used as an approximate solution to .
Of more interest is the value , which is an
approximation of the ideal bound given in (38).

The operation of the Fillin method is illustrated in Fig. 2. This
figure shows the matrix for the case . The
values which are required to calculate the entry are indi-
cated, as well as the order in which these values will themselves
be calculated.

C. The Approximate Lower Bound

An approximate lower bound to the third term of (28) is ob-
tained by employing both the Fillin method and the Removal
method of [7]. The final result is the minimum of the two results

(47)

Here , as defined in (43), is the Fillin method ap-
proximation of the optimal MSCC of an element of
and is the corresponding approximation pro-
duced by the Removal method. Noting that there are only a
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Fig. 3. Search trees for subsets of size � of the Walsh Hadamard family of length �. (a) The unpruned tree and (b) the pruned and labeled tree.

small number of possible values for and , these values
can be calculated before the start of the branch and bound
procedure and stored for later reference.

The resulting approximate lower bound on is

(48)

As will be seen in Section VIII, the branch and bound proce-
dure using gives the same, optimal, results as one using

in all the tests performed here. It is important in (47) to
use both the Fillin method and the Removal method together. If
either of these methods is used on its own, there are cases where
the output of the branch and bound algorithm is suboptimal.

VII. BRANCH AND BOUND EXAMPLE

To demonstrate the use of the branch and bound procedure,
we now consider an example where is the Walsh Hadamard
family [16] of size , that is , and a subset
of size is optimized for MSCC.

The subproblems produced by the branch and bound process
form a tree structure. For simplicity, we identify each sub-
problem by the set . The empty set, , corresponding to
problem , is the root of the tree, denoted level 0. For any

the children of node , that is nodes one level below
and directly connected to , correspond to the subproblems

forming the partition of given in (19). If then
there are no such children, otherwise the child nodes are the
sets for each with . Nodes with
no children are referred to as leaves, by the definition above
every node at level will be a leaf. If is a leaf at level ,
then is a member of the search space of . It follows
that a node which has no level descendants will correspond
to an infeasible subproblem. At any node corresponding to

TABLE I
BRANCH AND BOUND PROCEDURE FOR THE WALSH HADAMARD FAMILY

WITH SIZE � � � AND � � �

an infeasible or value dominated subproblem the tree can be
pruned, since no children of such a node need to be considered.

For the problem presented here, the entire search tree before
pruning can be seen in Fig. 3(a). Examining level 3 of this tree
we see that the search space contains four families. The order in
which the nodes of the tree are considered, as well as the action
taken in each case, is summarized in Table I.

The first node considered, via a call to Procedure 1, is .
From this procedure, Procedure 1 Step 3 is called for each size
1 subset of , that is the nodes
and . The first subproblem considered is . Since the

search space of , the set , contains multiple families,
namely and , neither in-
feasibility now optimality apply. No suitable upper bound for
the optimal value has yet been found, hence value dominance
cannot apply. Thus optimization is required. As a result, Step
3 recursively calls itself with inputs and ,
corresponding to the children of . As before, the node
requires optimization and hence recurses to nodes and
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TABLE II
COSTS FOR MSCC MINIMIZATION TECHNIQUES

. The node is a leaf at level 3, so optimality ap-
plies, producing . Similarly for node
optimality applies and . These results allow

to be labeled with
.

Examining now , since optimality ap-
plies, producing . Finally, the node is
infeasible and is hence labeled with . These results
produce .

The next node in level 1 to consider is . Since ,
optimality applies, giving . Finally, for both

and so the two nodes are infeasible and can
be labeled with and , respectively.

There are no further calls to Step 3 to process, so Procedure
1 can proceed to Step 4 and then terminate. The final output is
thus

(49)

The pruned search tree, with each node labeled appropriately, is
seen in Fig. 3(b).

VIII. DESIGN EXAMPLES

A study was performed to compare the correlation perfor-
mance of the branch and bound procedure to that of the Removal
algorithm, a Monte Carlo algorithm similar to that of [14] and
Mourad et al.’s approach [8].

The Removal algorithm removes sequences from the family
one at a time until the desired subset size is reached. Two

different versions of this algorithm, one for each problem
described in Section III, were considered. The first iteratively
finds the pair of sequences which yield maximum cross-corre-
lation and removes the sequence in the pair which contributes
more to the MSCC of the entire set [7]. The second, used to
optimize , iteratively finds all sequences which achieve the
maximum cross-correlation and removes that which achieves
this maximum correlation the largest number of times. Whilst
the Removal algorithms have the lowest computation cost
of any method considered here, the subsets they produce are
almost always suboptimal.

The Monte Carlo algorithm randomly generates a fixed
number, in this case 1000, of subsets of size using a uniform
distribution. Of these subsets that with the smallest cost func-
tion is selected. The Monte Carlo algorithm is conceptually the
simplest of the methods listed here, although it is computation-
ally more intensive than either the Fillin or Removal methods.
The random nature of its selection of subsets means there is a
large uncertainty in its output. Thus there is no guarantee that
its output is close to optimal, and the results can vary greatly
between different executions.

The algorithm of Mourad et al. [8] follows a similar approach
to the branch and bound procedure. The set initially contains a
single sequence and sequences are added one at a time until the
required set size is met. At each stage the additional sequence is
the one producing the minimal incremental increase in the cost
measure. By choosing all possible initial sequences, different
sets of size are produced, the final set is that with the min-
imal cost. Mourad et al.’s algorithm differs from the branch and
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TABLE III
COSTS FOR � MINIMIZATION TECHNIQUES

bound approach in that no ordering of the index sets is main-
tained and that only the minimal incremental cost sequence is
added at each state, rather than every sequence being tested. The
lack of ordering in subsets means that the same subset may be
tested multiple times which, as seen below, results in a higher
computational complexity than the branch and bound algorithm
for small .

The results of this investigation are shown in Tables II
and III. The Removal algorithms are labeled as “Removal”,
Mourad et al.’s algorithm is labeled “Mourad”, the Monte Carlo
algorithm is labeled “MCarlo” and the branch and bound results
are labeled as ‘BnB’. Table II gives the result, ,
when each algorithm is applied to optimize MSCC and Table III
gives the resulting cost, , when they are used to
optimize maximum correlation.

These methods were applied to several different sequence
families. Each family can be found as a block of rows in each
table. The families were:

• The Walsh Hadamard family [17] of length and size
(WHad32);

• The Oppermann family [3] of length and size with
parameters [18] (Opp31);

• The Gold code [1] with sequence length and size
constructed from -sequences with taps 2 and 2, 3, 4
(Gold33);

• The FZC [2], [19] family of length and size (FZC32).
These families were optimized for subsets with sizes

ranging from 2 to 16. When optimizing for MSCC, there is a
noticeable advantage for each family in using branch and bound

over the other approaches, as seen in Table II. When maximum
correlation is used as the cost function, Table III shows an
improvement in the resulting cost when using the branch and
bound technique compared to each of the other techniques for
the Oppermann family and for the Walsh Hadamard family
when , but no gain over Mourad et al.’s approach for
the other families.

The number of recursive branch and bound steps required
for each branch and bound MSCC optimization is shown in
Fig. 4, both using a strict lower bound, , and using an
approximate bound, . For the sets Gold33 and WHad32
this relationship is approximately linear on a semilog scale,
however for FZC32 and Opp31 the rate of increase reduces
as increases. This is particularly noticeable when an ap-
proximate lower bound is used, where the number of
iterations levels after . The final column of Tables II
and III, labeled ‘Itrns (%)’, gives the number of iterations
required by the branch and bound algorithm when employing

, as a percentage of the size of the entire search space. They
show that such an algorithm requires only a small fraction of
the computation of global optimization.

A comparison of the execution times of the different methods
to optimize the MSCC of the set WHad32 is shown in Fig. 5.
This figure shows times for the branch and bound algorithm
using both the exact and approximate bounds to determine value
dominance, labeled as “BnB ” and “BnB ,” respec-
tively, as well as that for Mourad et al.’s approach, the Monte
Carlo algorithm, and the Removal method. As noted previously,
the size of the search space makes performing an exhaustive
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Fig. 4. The number of recursive calls to Procedure 1 required for each MSCC
optimization using the branch and bound algorithm employing � .

Fig. 5. Execution times for the MSCC optimization methods for WHad32.

search for comparison impractical in the best case, or impossible
in the worst case. In this case, Table II shows that the number
of branch and bound iterations required is generally between
and orders of magnitude smaller than would be required for
an exhaustive search. This difference would increase for a larger
search space.

The platform for these tests was Matlab 7.1 on a 3.0 GHz
Pentium 4 and whilst the times are platform dependent, their
relative values are informative. From this graph, the branch and
bound approach is faster than Mourad et al.’s approach for small

, although slightly slower for large . The computational
overhead of precalculating Fillin and Removal method values
to produce approximate lower bounds in the branch and
bound approach is small enough to not be noticeable on this
graph, however the reduction in total operating time compared
to using a strict lower bound, , is evident.

IX. CONCLUSION

A common issue in applications using spreading sequences is
the selection of which sequences from a family to employ at any
given time. While this may be easily phrased as an optimization
problem whose cost function is based on correlation measures

of the resulting family, to date few effective methods exist to
solve this problem. In this paper, two different methods to solve
this problem of selecting a subset of sequences were presented.

First, a branch and bound procedure was presented. As de-
scribed here the method is applicable for optimizing MSCC or
maximum cross-correlation values, however the same approach
may be used for any cost function. Two variations of the branch
and bound approach were considered. The first variation is guar-
anteed to always produce the optimal subset. The second varia-
tion is more computationally efficient, but may be suboptimal in
some cases. In all the cases examined here, the second approach
was still optimal. The Fillin method, a computationally simple
means of producing an approximation of the optimal MSCC of
a subset of a given size, was also introduced. The reliability of
this approximation can be improved by using the Fillin method
in conjunction with the existing Removal method [7].

Results for the branch and bound procedure were produced
for four different sequence families where the required subset
size ranged from 2 to 16. These results were compared to three
previously reported optimization methods. In contrast to the
other methods used, the branch and bound procedure is guar-
anteed to produce the optimal result. Whilst there were some
cases where previously reported methods achieved similar re-
sults to the branch and bound procedure, none of the methods
tested achieved such results consistently. For small subset sizes
the branch and bound approach was faster than Mourad et al.’s
algorithm, in addition to giving smaller correlation results. With
the introduction of parallel processing, the branch and bound al-
gorithm’s execution time could be further reduced.
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