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Abstract

This paper discusses construction of evolution models for financial time series evolving
within a given interval. We calibrated a model for the case of the USD/HKD exchange
rate after the separation of strong and weak side convertibility undertakings, in which the
rate is confined to a specified corridor. This process represents an interesting example of a
tradable bounded process. A 1D model was able to replicate the bounded distribution of
the process, but a 2D model better captured dynamics as measured by the volatility without
losing features of the 1D model. We briefly consider the ergodic properties of these models.
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1 Introduction

This paper suggests an evolution model for financial time series in the presence of reflecting
boundaries or other factors that enforce some restrictions on its movements. These processes
are not very common in financial modelling; however, there are some important examples of
these processes such as volatility indices, and foreign exchange under a currency corridor. The
model suggested in this paper was tested and calibrated for the USD/HKD exchange rate after
the separation of strong and weak side convertibility undertakings. In 1983, prior to May 2005,
the HKD was taken off a free float and pegged at a fixed rate to the USD under the linked
exchange rate system by a single convertibility undertaking at 7.80. From May 2005, this was
separated into the strong and weak side convertibility undertakings to form a target zone of
7.75 − 7.85. Effectively, the result is that it functions as a currency band in which exchange
rates are maintained within a target zone; that is, the rate is expected to remain between an
upper and lower bound [1]. We consider only this latter period.

This particular exchange rate is noteworthy as the HKD is a tradable asset which has success-
fully maintained its exchange rate with the USD under a currency band for a significant period
of time. As far as we know, this represents a unique example of a tradable asset with price
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fluctuations within a predetermined range. Of the currencies pegged in such a manner, none
can match the liquidity or tradability of the HKD with the status of Hong Kong as a financial
hub. The HKD is thus a rare and unique tradable asset for which trading strategies operating
under such a bounded dynamic may be considered [2]. According to modern portfolio theory,
existence of a tradable asset with mean reverting price dynamics will lead to unusual speculative
opportunities or even arbitrage opportunities in spite of the unpredictability of prices [3, 4, 5].
The property of boundedness is stronger than the mean reversion property in the sense that
instead of simply being assured that a process will eventually return to a mean, it is assured
that a bounded process will never leave a particular interval. As such, the same arguments
leading to speculative or arbitrage opportunities still apply.

It can be noted that although there are traded commodities whose price variations are
similarly confined to a band, such price enforcement is usually accompanied by trading restraints
which limit liquidity; such situations therefore do not represent an interesting case from the point
of view of arbitrage theory. The USD/HKD exchange on the other hand, is a consequence of the
money market, which having some of the highest trading volumes and liquidities of all financial
markets, could present an interesting case.

We consider a model representing the USD/HKD exchange rate as a stochastic process.
This approach was first introduced for stock prices [6]. By the latter half of the 20th century,
the stochastic and unpredictable nature of price dynamics had been well established as the
predominant viewpoint [7]. A review of the literature covering the developments during this
period can be found on pages 37− 39 of Shiryaev [8]. There is overlap between the various
statistical distributions proposed for stock prices and foreign exchange rates, for example, the
Gaussian distribution which was used by Black and Scholes [9], stable distributions [10, 11, 12],
the Student distribution [13, 14], and distributions with time varying parameters [15]. Foreign
exchange processes have also been characterized as autoregressive time series with conditional
heteroscedasticity (ARCH) [16] and self-similar fractals [17, 18] especially when high frequency
intraday data is considered.

It appears that the existing models of stock prices and foreign exchange rates need to be
reconsidered to take into account the boundedness of the USD/HKD exchange rate. A model for
a theoretical exchange rate under a currency band has been suggested such that the dynamics are
mean reverting [19]. In the framework of this model, this dynamic is justified by the economic
belief of market participants that within this bound, a credible level for the exchange rate
exists. A theoretical investigation of this model postulates that deviations from this credible
level beyond the bounds will be expected to incur correction by external intervention thus
setting up the mean reversion and boundedness property. To our knowledge, there has been
only one investigation of the USD/HKD exchange rate after the separation of strong and weak
side convertibility undertakings [20]. This investigation has concluded that, for this exchange
rate, the hypothesis of a mean reversion property is to be rejected. This shows that the problems
of modelling of this particular process are not completely solved yet.

We reconsider this issue of a dynamic for a bounded exchange rate, specifically the USD/HKD
exchange rate and the problem of reproducing it from its dynamics. In another paper, we show
evidence of fractal dynamics exhibited by this exchange rate [21]. However, we assume no such
prior knowledge in this approach. To that end, we specifically use the fact that the USD/HKD
exchange rate is bounded in the interval 7.75 − 7.85 to suggest the following model: a discrete
time model wherein the distribution of process increments is completely specified and conditional
on the current exchange rate. For the purposes of simulation, a discrete time model is considered.
We tested two discrete time Markov models: a 1D model and a 2D model. For both of these
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models, we consider:

(i) the state distribution resulting from the set of all transition probabilities after the state
space discretization with arbitrarily small step size

(ii) the volatility of the exchange rate process

We found that a 1D model was sufficient to replicate the long term state distribution and the
bounded dynamic of the process. On the other hand, extension to 2D appears to better capture
the volatility and dynamics of the historical process. Note the concurrent achievement of these
objectives appears to be a difficult task and has not been achieved in the case of a continuous time
model [20]. It should also be noted that the approach of this paper is not without restrictions
as it can only be applied if the range of the process considered is finite as is the case for the
USD/HKD exchange rate as considered here.

We model separately the rate behaviour inside the band and in the neighbourhood of the
boundaries, as in the framework of Nicolau [22]. In this setting, the local dynamics of the process
inside the open interval between the boundaries can be treated independently of the dynamics
when within the presence of the boundaries. This is different from the approach in the mean
reverting model [19]. This also allows consideration of other behaviours for the boundaries
such as repulsion, reflection or impedance. Taking into account what has been observed of the
historical USD/HKD exchange rate so far, we also suggest that the boundary can act as an
attractor for the process, resulting in the process ‘sticking’ to the boundary for some time once
it approaches too closely.

The rest of the paper is organized as follows: Section 2 describes the distribution of the pro-
cess and possible dynamics; Section 3 suggests a discrete time Markov model to reproduce these
dynamics and compares the simulated process and volatility to their historical counterparts;
Section 4 modifies the model to account for correlation between adjacent increments resulting
in the 2D Markov model.

2 Historical distribution and dynamics

We begin by attempting to characterize the distribution of the USD/HKD exchange rate process.
Exchange rate values at which trades have been executed are sampled at one minute intervals,
excluding non-trading times. These values are generally contained within the interval [7.75, 7.85]
and are discretized to 4 decimal places. A histogram of these values attained over the period from
2008 until 2012 is shown in Figure 2.1. While the entire range of permissible values [7.75, 7.85]
for the USD/HKD exchange rate is displayed, activity is mostly confined to the lower half of this
range. Note also the peak at the lower boundary indicating a high frequency of trades around
that particular exchange value.

Figure 2.2 contains a similar depiction for each of the 5 years in the 2008 to 2012 interval.
In each of the 5 years, the distribution of values once again remains mostly in the lower half
of the interval [7.75, 7.85]. When observed yearly, the distributions appear to follow one of two
distinct patterns:

(i) high peak at the 7.75 boundary with a large positive skew, similar to that seen in the
original 5 year histogram (Figure 2.1)

(ii) more symmetrically dispersed with lower peak(s) within the interval [7.75, 7.85] away from
the boundary.
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Figure 2.1: Frequency of USD/HKD exchange values from 2008 to 2012

Some years appear to be a mix between these two distributions. This would appear to suggest
at least two distinct phases for this process:

(i) when the process is on or close to the 7.75 boundary and

(ii) when the process is further from the boundary from but still within the interval [7.75, 7.85]

which each histogram contains a mixture of as an annual snapshot. It is postulated that along
the time axis, the process remains in one of these two phases with transitions occurring from
one phase to the other. Over the entire 5 year history considered, this is masked by the high
activity at the 7.75 boundary and is seen more clearly in the annual histograms which capture
the process during and in between transitions.

3 1D Markov model

To investigate whether this exchange rate process can be reproduced, we propose a discrete time
Markov model where increments in the process are assumed to be conditional on the process’
current value. To specify these conditional increment distributions, the probability of events of
the following type need to be determined:

P(Xt+1 −Xt = δ | Xt) , (1)

where Xt represents the value of the exchange rate process indexed by time t where t is the
current time and δ is the value of the rate increment. Advantage is taken of the fact that the
process is bounded within the interval [7.75, 7.85] as this restricts the possible values attainable
by Xt and hence the possible states which need to be conditioned upon. These probabilities are
derived from frequentist estimates using historical exchange rate data which is discrete hence
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Figure 2.2: Frequencies of yearly USD/HKD exchange values

the specification of the conditional increment distribution as a discrete distribution. This does
not however preclude the usage of continuous increment distributions in the model instead.

Traditionally, the increment between the logarithm of the process values is examined rather
than the increment between the values directly. In this case, since the process takes only values
that are numerically small and are bounded within a similarly small interval, the application
of the logarithm is forgone. Increments in the process are calculated as [Xt+1 −Xt] and paired
with the current value Xt. Histograms of the conditional distribution of increments in the
process [Xt+1 −Xt] for each current value Xt are collated to form a 3 dimensional surface as
shown in Figure 3.3. This shows the distribution of increments with respect to the condition
of current state Xt. A close-up is shown in Figure 3.4 where it can be more clearly seen that
the conditional distribution of process increments are approximately symmetrically distributed
and centrally clustered around mean 0 at most of the current values Xt attained in the interval
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Figure 3.3: Frequency of increments conditional on current state of process

[7.75, 7.82] upon which the distributions are conditioned. Note that at the lower boundary of
7.75 there are a large number of increments associated with the values in the range [7.75, 7.76].
This is consistent with the histograms from Figure 2.1 and Figure 2.2 showing high activity at
the lower boundary. There is comparatively less activity and hence there are fewer increments
at values beyond the interval [7.75, 7.82]. While this can be seen in Figure 3.4 for values of
Xt greater than 7.81, this is obscured at the 7.75 boundary by the high peak in the interval
[7.75, 7.76].
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Figure 3.4: Frequency of increments conditional on current state of process (Close-up)

From these frequencies, the required probability estimates for the conditional increment
distributions are obtained by normalising the frequencies at each current state Xt. This by
definition preserves the structure of the distributions obtained from the historical data. To
better show the distribution of increments at the extremities, the conditional mean (2) and
variance (3)

E(Xt+1 −Xt | Xt) , (2)

Var(Xt+1 −Xt | Xt) , (3)

of the distribution of increments [Xt+1 −Xt] are calculated
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Figure 3.5: Mean of increments conditional on current value

in Figure 3.5 and Figure 3.6 respectively. For the values assumed by the process Xt in the
interval [7.75, 7.82] away from the end points, the distributions of increments have relatively
constant variance and close to 0 mean. This would allow the dynamics of the process to conform
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Figure 3.6: Variance of increments conditional on current value

to a random walk at such values of Xt. Of more interest however is the distribution at the end
points of the interval [7.75, 7.82]. At the lower boundary of 7.75, the mean of the increment
distribution becomes positive, indicating upward movement of the process when at these values.
Similarly, at the upper interval end point of 7.82, the mean becomes negative indicating down-
ward movement. Inspection of the distributions at the upper and lower boundary reveal their
supports to be transitioning to a more non-positive and non-negative nature respectively. Based
on these characteristics, the upper boundary of 7.85 might be described as a repelling boundary
and the lower boundary of 7.75 an impassable boundary with some degree of stickiness. An
alternative characterization of the lower boundary might be a reflecting boundary with delay,
such that the process remains on the boundary with probability one for some period of time.

3.1 Comparison of historical process and simulated prices using the 1D model

The conditional increment distribution required to completely specify the Markov model (1) is
obtained by normalising the conditional frequency distribution from Section 3. This discrete
time Markov model is then used to simulate the USD/HKD exchange rate process. By virtue
of its construction, it is expected that over a sufficiently long time horizon, histograms of the
simulated process will be virtually indistinguishable from the historical process. It appears that
this is indeed the case therefore further analysis of the long term distribution of the simulated
process becomes moot. Instead, we consider another important parameter used in the description
of financial processes, that is the volatility.

By convention, the logarithm of returns (log returns) is used in the estimation of volatility.
For the sake of simplicity, a static estimator of volatility, the standard deviation, is used. To fa-
cilitate comparison, the number of observations selected for the calculation is scaled to represent
one year. This results in the traditional volatility estimate [23]

σ2 =
1

(m−m0)δ

m∑
k=m0

(logZtk − µ)2 , (4)

over an interval [t −∆t, t] with t measured in years where m0 and m are the indices for initial
time tm0 = t−∆t and final time tm = t respectively and δ = tk+1− tk is the sampling resolution
which is the time difference between two adjacent time intervals. If observations taken are such
that they span an interval of one year, (m−m0)δ = 1 since ∆t = 1 and the number of intervals
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(m−m0) = n− 1 is related to the sampling resolution by n− 1 = ∆t
δ . Equation (4) simplifies to

a sum of the entire year’s values as the scaling fraction preceding the sum reduces to 1. This is
used to calculate the annual historical volatilities for each of the five years as tabulated in Table
1. Since the entire five year dataset is available, each of the annual volatilities are calculated from
an entire year’s worth of data without any additional scaling. We compare this to volatilities

Year 2008 2009 2010 2011 2012

σ 0.01277 0.00783 0.01123 0.01088 0.00892

Table 1: Annual Historical Volatility (standard errors in the order of magnitude 10−7)

obtained from simulations of the USD/HKD exchange rate process producing a year’s worth of
exchange rate values. Figure 3.7 shows the distribution of volatilities calculated from 100000
of these simulations. The volatilities for all five years could be reasonably contained within the
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Figure 3.7: Frequency of volatilities from 1D Markov model simulations

support of this distribution though the more extreme volatilities could be cause for concern.
To further ascertain the suitability of the Markov model in reproducing the USD/HKD ex-

change rate process, we compare a 5 year simulation using the Markov model with the historical
data over the 5 year interval from 2008 to 2012. Instead of analysing static distributions using
histograms, the evolution of the exchange rate process through time is compared. Figure 3.8
shows the historical exchange rate process over the years from 2008 to 2012. Compare this with
a simulation as shown in Figure 3.9 over a five year duration using the previously mentioned
Markov model. The overall trends of the simulated process do exhibit some necessary character-
istics such as the maintenance of the lower boundary at 7.75 as well as the tendency to remain
in that region for more time as compared to other possible levels attainable by the process.
Closer inspection of short stretches of both processes however reveal that the simulated process
fluctuates more. This is most clearly seen when the processes remain at the lower boundary as
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Figure 3.8: 5 year historical evolution of USD/HKD exchange rate
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Figure 3.9: 5 Year simulated evolution of USD/HKD exchange rate process using 1D Markov model

the more frequent departure by the simulated process from the lower boundary compared to the
historical process.

The effects of this apparently greater fluctuation would be an increase in the volatility of the
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simulated process in addition to the visual differences seen in the plots of the processes against
time. This fluctuation can be attributed to the assumption of independence of increments in the
Markov model. High frequency intraday foreign exchange data displays a significantly negative
first lag autocorrelation in their returns, unlike the independent returns observed at a coarser
time resolution [24]. Returns being simply the increments in the logarithm of the process, it is
not inconceivable that the increments of the process directly also demonstrates this as well.

4 2D Markov model

Consider instead conditional probabilities for the process increments

Yt = Xt+1 −Xt , (5)

and to construct a model for a 2D Markov process using (Xt, Yt). To ascertain the independence
of increments Yt, we estimated the time lagged correlation or autocorrelation for the historical
USD/HKD exchange rate dataset. While the increment Yt−1 appears to depend on Xt as seen in
(5) for Yt−1, there should be no direct correlation between Xt and Yt−1 as arrival at a particular
Xt can be achieved via any number of different increments Yt−1 depending on the value of Xt−1.
The autocorrelation at a time lag k is

γk =
Cov (Yt , Yt−k)

Var Yt
,

and Figure 4.10 shows the autocorrelation of Yt for up to 25 time lags. Only lags k = 1, 2
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Figure 4.10: Autocorrelation plot of increment Yt up to lag 25

show any appreciable correlation. Table 2 shows the autocorrelations for the first 5 lags. The
remaining autocorrelations do not exceed 0.005 in magnitude. The first lag autocorrelation is
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k (Lag) 1 2 3 4 5

γk -0.2658 -0.0349 -0.0047 -0.0094 0.0001

Table 2: Autocorrelation of increment Yt for lags 1 to 5 (standard error: 9.707× 10−4)

sufficiently large to refute any notion of the possible independence of two immediately adjacent
increments. Taking this into account, the Markov model (1) is extended by incorporating this
dependency as follows:

P(Xt+1 −Xt = δ | Xt , Xt −Xt−1) ,

or, more concisely,
P(Xt+1 −Xt = δ | Xt −Xt−1) . (6)

While it is no longer strictly Markov in Xt it may still be considered Markov in Yt as (6) can be
rewritten as

P(Yt = δ | Yt−1) . (7)

The model in (7) shall be referred to as the 2D Markov model for the process (Xt, Yt), where
Yt−1 = Xt −Xt−1.

As before, a conditional frequency distribution is obtained for the 2D Markov model and
normalized to produce the probabilities for the conditional increment distribution. As the fre-
quencies are being conditioned on the two states Xt and Xt−1 required to obtain Yt−1, a graphical
representation is not feasible as it would require a 4 dimensional display, the additional dimen-
sion coming from the added state to condition upon. This model is then used to simulate the
exchange rate process and compare the volatility produced by this model to that obtained from
the historical process, similarly to what was done for the Markov model in Section 3.1. The
volatility distribution as shown in Figure 4.11 is obtained from 150000 simulations of the 2D
Markov model, each over a time period representing one year. A sample trajectory of the pro-
cess over a 5 year interval is shown in Figure 4.12. The introduction of this dependency in the
increments to the model has had two notable effects. With regards to the volatility of the model,
Figure 4.11 shows that the support of the volatility distribution has been extended to include
lower volatilities. When compared to the historical volatilities in Table 1, this support does not
extend too far beyond what is historically observed. Comparing the simulated 5 year process by
the model to the previous, the moment to moment fluctuation is reduced but the overarching
trends and boundary behaviour remain the same. Note that this results in a greater tendency
for the process to remain at the lower boundary without departing as frequently as compared
to the previous model.

5 Distributions of the 2D Markov model

The long term distribution of the 2D Markov model should approach the historical distribution
by virtue of the model’s construction. This, in and of itself, should be no surprise; what is of
interest however, is the distribution at intermediate time intervals and the stability of this long
term distribution. Instead of simulating a realization of values of Xt as done previously, the
exact one-step distribution as contained within the model is used to derive the distribution of
values for subsequent steps. In other words, using the known probabilities from the model in
(7)

P(Yt = δ | Yt−1) = P(Xt+1 = Xt + δ | Xt , Xt−1) , (8)
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Figure 4.11: Frequency of volatilities from 2D Markov model simulations
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Figure 4.12: 5 Year Simulated evolution of USD/HKD exchange rate process using 2D Markov model

the probabilities

P(Xt+k = x | Xt , Xt−1) , x = 7.75 + i× 10−4 ,
i ∈ {0, 1, . . . , 1000}
k ∈ N , (9)

can be derived to obtain the distribution of Xt+k.
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The general finite state Markov model with n states can be represented using n-dimensional
vectors vt and matrices M with values in Rn×n as follows

(vt+1)T = (vt)
TM . (10)

Here the ith element of the vector v is the probability associated with the ith state out of the
possible n states; the i, jth element (ith row, jth column) of the matrix M is the probability
of transitioning from the ith state to the jth state in one time step. The vector vt represents
the distribution of the n states at time t. Each row of the matrix M represents a conditional
one-step distribution. In terms of the individual components, (10) can be written as

(vt+1)j =
n∑
i=1

(vt)i(M)i,j , ∀ j ∈ {1, . . . , n} . (11)

To obtain the distribution of Xt which is an underlying component of the Markov process
(Xt, Yt), it is possible to adapt (9) to the machinery of Markov models as in (10) by considering
ordered pairs such as (Xt, Xt−1) and its subsequent step (Xt+1, Xt) as the new states of another
model, this results in a Markov model with n2 states and a sparse n2×n2 transition matrix. The
number of new states, as well as transition matrix sparsity, increases exponentially as determined
by the dependency on prior times, for example, in extending the dependency by another time
period, ordered triples are considered resulting in n3 new states and a n3×n3 transition matrix.
When dealing with a dependency of d prior states, the transition matrix increases to dimension
(nd)2. This quickly leads to unwieldy sparse transition matrices for large d or even with small
d with large enough n.

To circumvent this difficulty, consider (11) as a binary operation between a first order and
second order tensor yielding a first order tensor. Instead of extending this to higher order de-
pendencies by considering ordered sequences of consecutive states, the corresponding transition
step can instead be represented as a binary operation between higher order tensors. For in-
stance, instead of extending (9) by considering ordered state pairs, the transition step can be
represented as a binary operation between a second order tensor vt ∈ Rn2

and a fourth order
tensor M ∈ Rn4

yielding a second order tensor vt+1. The fourth order tensor represents the
general multilinear transformation on the space of second order tensors and can be represented
component-wise as

(vt+1)i3,i4 =
n∑

i1=1

n∑
i2=1

(vt)i1,i2(M)i1,i2,i3,i4 , ∀ i3, i4 ∈ {1, . . . , n} ,

noting also that the dimensions of the tensors are the same as that of the elements derived from
the extension using ordered state pairs. More generally, a dependency on d prior states requires
a dth order tensor where the i1, i2, . . . , id

th element represents the probability associated with
the consecutive sequence of states {

Xt−d+1 = f(i1) ,

Xt−d+2 = f(i2) ,
...

Xt−1 = f(id−1) ,

Xt = f(id)
}
,
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and f is the one-to-one mapping between the state values and their numbering. The analogue of
the transition matrix is a (2d)th order tensor representing the general multilinear transformation
on the space of dth order tensors where the i1, i2, . . . , i2d

th element represents the transition
probability from the sequence of states{

Xt−d+1 = f(i1) , Xt−d+2 = f(i2) , . . . , Xt−1 = f(id−1) , Xt = f(id)
}

to the sequence{
Xt−d+2 = f(id+1) , Xt−d+3 = f(id+2) , . . . , Xt = f(i2d−1) , Xt+1 = f(i2d)

}
.

For times t− d+ 2 to t, there is an overlap of states which need to correspond in order for the
transition probability to be non-zero; the transition probability must be zero unless the following
holds:

Xt−d+s = f(is) = f(id+s−1) , ∀s ∈ {2, 3, . . . , d} .

For the model (8), d = 2 and it can be concluded that unless i2 = i3

(M)i1,i2,i3,i4 = 0 , ∀ i2 6= i3 ,

and because of this, one dimension of the fourth order tensor M is redundant and a third
order tensor is sufficient to represent the necessary transition probabilities. In general, d − 1
dimensions are redundant and a (d + 1)th order tensor is sufficient to represent all possible
transition probabilities. The summation over the indices is thus reduced to cover only the
first index. The model (8) can then be represented using a second order tensor vt containing
the distribution of state pairs (Xt, Xt−1) and a third order tensor M containing the necessary
transition probabilities. The operation between the second order tensor and the third order
tensor representing the one step time transition is shown in terms of individual components as
follows

(vt+1)j,k =
n∑
i=1

(vt)i,j(M)i,j,k , ∀ j, k ∈ {1, . . . , n} ,

The distribution of Xt is obtained from the tensor vt by summing the components along each
dimension except the last resulting in a vector containing probability of each state at time
t regardless of the configuration of preceding states. For the case when d = 2, this can be
represented component-wise as

(vt)j =

n∑
i=1

(vt)i,j ,

As an illustration of significance of this reduction in dimensionality, in this study where n ≈ 700
and d = 2, the average office desktop computer can support a third order tensor of dimension
7003 but is unable to contain a matrix of dimension 7002 × 7002.

Using this machinery, the Figures 5.13, 5.14 and 5.15 show snapshots of the evolution of the
distribution of Xt at several different times t starting from 3 different sets of initial state pairs
where X0 is taken to be equal to X1 for convenience. One year in real time is is approximately
200000 time steps. In Figure 5.14, the drift from the initial values can be seen as a widening of the
distribution and flattening of the peak. As the distribution drifts towards the lower boundary at
7.75, there is an accumulation of possible states at the lower boundary as evidenced by the new
peak forming in the distribution. The distribution does not drift beyond the lower boundary and
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Figure 5.13: Evolution of vt where (vt)i = P(Xt = xi | X0 = X1 = 7.7532)
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Figure 5.14: Evolution of vt where (vt)i = P(Xt = xi | X0 = X1 = 7.7682)
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Figure 5.15: Evolution of vt where (vt)i = P(Xt = xi | X0 = X1 = 7.8132)
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does not realize any proximity with the upper boundary. These characteristics are consistent
with what has been observed in the historical process as discussed previously.

Figure 5.13 shows a similar behaviour to that seen in Figure 5.14, the difference being that
the starting values are closer to the lower boundary. This results in a quicker approach to
the lower a boundary and subsequent formation of the resultant lower boundary peak. Both
Figure 5.13 and Figure 5.14 eventually approach the same distribution which does not exhibit
any further changes beyond a certain point in time, though this is not necessarily achieved at
the same times. Figure 5.15 has a starting value beyond the mid-point of 7.80 and shows a
slower spread of the distribution compared to the previous two cases. Given enough time, it
will achieve the same distribution. For models based on historical data such as this, the issue
of finding such a time invariant distribution and its dependence, if any, on the starting states,
is thus motivated.

A time invariant distribution is a distribution vector vt ∈ Rn for an M ∈ Rn×n which satisfies
the condition

(vt)
T = (vt+1)T = (vt)

TM ,

and is termed a stationary distribution. An analogous definition holds for the general distribution
tensor v ∈ Rnd

with one step time transition as defined previously. For the case of model (8),
the analogous representation in components is

∃ t : (vt)j,k =
n∑
i=1

(vt)i,j(M)i,j,k , ∀ j, k ∈ {1, . . . , n} ,

If the same unique stationary distribution is achieved by long run transitions from any set of
starting states, the model is termed ergodic. For a finite state model such as this, irreducibility
of the states and a single aperiodic state is sufficient to ensure ergodicity [25].

(i) To ensure irreducibility, only the first and final state sets of the historical process need to be
checked for inward and outward transitions respectively. All other state sets in the model
are obtained from the intermediate states of the historical process and are therefore assured
to belong to a single communicating class by virtue of these states forming a communicating
chain. Irreducibility thus ensures that any state set in the model is eventually accessible
from any other state set.

(ii) An aperiodic state is one in which

∃ i1 = i2 = · · · = id+1 : (M)i1,i2,...,id+1
> 0 ,

ir ∈ {1, . . . , n}
r ∈ {1, . . . , d+ 1} ,

for the general case of a dependency on d prior states. The model (8) simply requires the
checking of

∃ i ∈ {1, . . . , n} : (M)i,i,i > 0

that is the existence of at least one aperiodic state.

These two conditions are easy enough to ascertain and do hold for the model in (8).
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6 Discussion and future research

We have started by considering a 1D Markov model and extended to an improved 2D Markov
model for the bounded exchange rate dynamic. The 2D Markov process appears to be a better
match for the historical exchange rate process in terms of its dynamics and volatility. Since
all available prices from the period considered were used, this did not lead to any information
loss. Also, since we have used one of the higher recorded data frequencies, there is no immediate
need to move to a continuous model capable of accommodating the data of an arbitrarily high
frequency. Therefore, the choice of a discrete time model is justified from the practical point
of view. Admittedly, continuous time models are more attractive for analytical methods since
they allow the representation of prices at any frequency via equations with a small number of
parameters.

There are additional challenges for the choice of continuous time models for bounded pro-
cesses similar to USD/HKD exchange rate. The main problem is to take into account the
boundedness. As was mentioned previously, there is evidence to support the characterization of
the dynamics of the USD/HKD exchange rate as a diffusion Itô process when in between the
boundaries. The mean reverting forces can be modelled via choice of the drift coefficient. The
boundedness can be modelled via the choice of the drift and diffusion coefficients vanishing on
the boundary such as in the model introduced by Hui and Fong [20]. This continuous model
satisfies the conditions of boundedness but it does not allow the process to actually reach the
boundary. This is acceptable when the boundary appears to repel the process as seen with
the upper boundary. However, this model does not allow replication of the situation where the
process remains on the boundary for a period of time, which appears to be typical for the lower
boundary of the USD/HKD exchange.

This feature was captured by the discrete time model introduced in this paper. We model
the situation where the boundary acts as an attractor for the process as evidenced by a large
proportion of the historical process values at or near the lower boundary. It could be interesting
to develop a continuous time model that can accommodate this feature. Another possibility is
to consider continuous time processes with reflections such as Skorokhod equations. The model
introduced in this paper need not only be considered for price processes but can be applied to
indices that are presumed to be bounded such as volatility indices. The dimensionality of the
model may also be adjusted based on the dependency of the underlying historical process. We
leave these matters for future research.

There are many other unanswered questions that we leave for future research as well. In
particular, we haven’t considered the economic driving forces of exchange rate mechanisms and
their impact on the rate dynamics.
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