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Abstract

In this paper, we develop a computational method for a class of optimal control problems where the objective and constraint
functionals depend on two or more discrete time points. These time points can be either fixed or variable. Using the control
parametrization technique and a time scaling transformation, this type of optimal control problem is approximated by a
sequence of approximate optimal parameter selection problems. Each of these approximate problems can be viewed as a
finite dimensional optimization problem. New gradient formulae for the cost and constraint functions are derived. With these
gradient formulae, standard gradient-based optimization methods can be applied to solve each approximate optimal parameter
selection problem. For illustration, two numerical examples are solved.

Key words: Control parametrization; Optimal control computation; Non-linear optimal control; Constrained optimal
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1 Introduction

In this paper, we consider a general class of optimal con-
trol problems where the objective and constraint func-
tionals depend on two or more discrete time points.
These time points are known as characteristic times and
such problems are referred to as multiple characteristic
time optimal control problems. An example arises in the
study of drug administration for cancer chemotherapy.
Martin & Teo (1994) and Martin (1992) examined the
delivery schedule for this type of anti-cancer drug from
an optimal control viewpoint. The planning horizon is
partitioned into a set of intervals and the size of the can-
cer tumour is required to decrease sufficiently over each
interval. This stipulation forces the tumour size to de-
crease at, or faster than, a given rate and leads to a set
of inequality constraints. Each of these inequality con-
straints depends on two characteristic times.

Consider another important application. Suppose we
wish to construct a dynamic model to simulate a physi-
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cal system, where some of the model parameters are to
be identified. The problem of choosing values for these
unknown parameters in such a way that the solution of
the dynamic model will best fit experimental data at a
set of sample points can be formulated as an optimal
parameter selection problem with the objective function
depending on many characteristic times. This technique
has recently been applied to the study of crystallization
processes; see Livk, Pohar & Ilievski (1999) and Li, Livk
& Ilievski (2001), for example. However, finite differ-
ence approximations are often employed to generate the
gradients required by the underlying optimization pro-
cedure. Thus, convergence can be poor or non-existent.

Martin & Teo (1994) and Martin (1992) solved the fixed
multiple characteristic time optimal control problem
numerically using the classical control parametriza-
tion scheme (see Teo, Goh & Wong (1991)). Rele-
vant gradient formulae were derived. On this basis,
a gradient-based optimization technique, such as se-
quential quadratic programming (SQP) (see Nocedal &
Wright (1999)), is used to generate a numerical solu-
tion. However, computation of the required gradients
involves the integration of a system of state differential
equations forward in time, followed by the integration
of corresponding systems of costate differential equa-
tions with jumps backwards in time. The presence of
the jump conditions makes the application of this tech-
nique cumbersome. Moreover, the state and costate
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systems are solved in opposite directions using an adap-
tive integration scheme. Thus, it is impossible to ensure
that the state and costate knot sets coincide. Since each
costate system depends on the solution of the state sys-
tem, an appropriate interpolation method needs to be
invoked. Hence, the accuracy of the gradients obtained
is compromised.

Teo, Lee, Jennings, Wang & Liu (2002) considered the
case where the characteristic times are variable. Control
parametrization was again used— this time, in conjunc-
tion with two time scaling transformations— and an ap-
proximate problem with fixed characteristic times was
derived. This approximate problem can be solved using
the gradient formulae previously developed by Martin &
Teo (1994).

In this paper, we derive alternative gradient formulae us-
ing an approach first introduced byVincent &Grantham
(1981) and extended by Kaya & Noakes (2003). Our gra-
dient computation scheme is applicable to both fixed
and variable multiple characteristic time optimal con-
trol problems and relies on the continuous integration of
differential equations forward in time. Thus, it has two
important advantages over the existing scheme: the com-
plexities involved in dealing with a discontinuous costate
system are avoided; and, more importantly, no interpo-
lation of the state is necessary if a variable step size inte-
gration method is used to solve the relevant differential
equations.

2 Problem Statement

We will introduce two optimal control problems: one
with fixed characteristic times, and the other with char-
acteristic times as optimization parameters. Consider a
process evolving over the fixed time horizon [0, T ] ac-
cording to the dynamical system

ẋ(t) = f(x(t),u(t)) (1)

with the initial condition

x(0) = x0. (2)

Here, x(t) ∈ R
n is the state of the process at time t,

u(t) ∈ R
r is the control input applied at time t, and

f : Rn × R
r → R

n is a given function continuously dif-
ferentiable with respect to each of its arguments. Define

U =
{

v = [vi] ∈ R
r : vLi ≤ vi ≤ vUi , i = 1, . . . , r

}

,

where vLi and vUi , i = 1, . . . , r, are given constants
such that vLi < vUi . Any Borel measurable function
u : [0, T ] → R

r such that u(t) ∈ U almost everywhere
in [0, T ] is said to be an admissible control. Let U be the
class of all such admissible controls.

For a given u ∈ U , let x(·|u) be the corresponding so-
lution to (1) that satisfies the initial condition (2). We
suppose that, for each i = 1, . . . , N , the following in-
equality constraint is required to be satisfied:

gi(u) = Φi(x(τ1|u), . . . ,x(τm|u))

+

∫ T

0

Li(x(t|u),u(t))dt ≥ 0, (3)

where τ = [τ1, . . . , τm]T ∈ R
m is a fixed vector such that

0 < τ1 < · · · < τm < T . Each τi, i = 1, . . . ,m, is called a
characteristic time. Moreover, we assume that, for each
i = 0, . . . , N , Li : R

n × R
r → R and Φi : R

nm → R are
given functions continuously differentiable with respect
to each of their arguments.

Denote by F the set of all u ∈ U satisfying (3) for each
i = 1, . . . , N . With this groundwork, we are in a posi-
tion to introduce our first optimal control problem.

Problem (P1). Given the system (1) and the initial
condition (2), find a u ∈ F such that the cost functional

g0(u) = Φ0(x(τ1|u), . . . ,x(τm|u))

+

∫ T

0

L0 (x(t|u),u(t)) dt (4)

is minimized over F .

In Problem (P1) above, the characteristic times appear-
ing in the objective and constraint functionals are fixed.
It is not difficult, however, to envisage a practical sce-
nario where these are variable. Suppose now then, that
τ is not fixed and is actually a parameter vector to be
chosen optimally from the set

S =
{

τ = [τi] ∈ R
m : τLi ≤ τi ≤ τUi , i = 1, . . . ,m

}

,

where τLi and τUi , i = 1, . . . ,m, are given constants
such that 0 ≤ τL1 ≤ τU1 ≤ · · · ≤ τLm ≤ τUm ≤ T . Here,
the left hand side of (3) should be replaced by gi(u, τ ).
Let G be the set of combined elements (u, τ ) ∈ U × S
that satisfy all of these constraints. Our second optimal
control problem is stated as follows.

Problem (P2). Given the system (1) and the initial
condition (2), find a combined element (u, τ ) ∈ G such
that the cost functional (4), with the left hand side
replaced by g0(u, τ ), is minimized over G.

3 Control Parametrization

To solve Problem (P1) or (P2) numerically, we apply the
classical control parametrization scheme. That is, the
control is approximated by a piecewise constant function
with a finite number of discontinuities.
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Let τ0 = 0 and τm+1 = T . Within each subinterval
[τk−1, τk], k = 1, . . . ,m+ 1, allow the approximate con-
trol to switch at tkj , j = 1, . . . , pk − 1 (these switching
times are labeled in non-decreasing order). In addition,
allow the approximate control to switch at each charac-
teristic time. For each k = 1, . . . ,m+1, denote tk0 = τk−1

and tkpk
= τk. Then

[

tkj−1, t
k
j

)

, k = 1, . . . ,m + 1, j =
1, . . . , pk, is a partition of the time horizon. Label each

subinterval with the index βk
j =

∑k−1
l=1 pl + j. With this

numeration scheme, the subintervals are labeled from
left to right along the time axis in chronological order.
Thus, the approximate control can be expressed as

up(t) =

m+1
∑

k=1

pk
∑

j=1

σβk
j χ[tkj−1

,tk
j )
(t), (5)

where

χI(t) =

{

1, if t ∈ I,

0, otherwise,

and

p =

m+1
∑

k=1

pk.

For up to be an admissible control, we must have σl =
[

σl
1, . . . , σ

l
r

]T
∈ U for l = 1, . . . , p. Denote by Ξ the set

of all σ =
[

(σ1)T , . . . , (σp)T
]T

∈ R
pr that satisfy this

requirement.

To obtain an approximate optimal control, the parame-
ters in (5) must be chosen to minimize the relevant per-
formance index given in Section 2. However, gradient-
based optimization algorithms are not effective for de-
termining the optimal switching times (for details, see
Lee, Teo, Rehbock & Jennings (1997)). Thus, we employ
the time scaling transformation introduced in Lee et al.
(1997) to map these switching times into a set of fixed
time points on a new time horizon. Firstly, let

Θ =
{

θ = [θ1, . . . , θp]
T ∈ R

p : θl ≥ 0, l = 1, . . . , p
}

.

Then, for any θ ∈ Θ such that

p
∑

l=1

θl
p

= T,

we can define amonotonic transformation from t ∈ [0, T ]
to a new time scale s ∈ [0, 1] by

dt(s)

ds
= vp(s) =

p
∑

k=1

θkχ[ k−1

p
, k
p )
(s) (6)

with the initial condition

t(0) = 0. (7)

By integrating (6) and using (7), it is easy to see that,

for s ∈
[

q−1
p , q

p

)

,

t(s) =

q−1
∑

l=1

θl
p
+

θq
p
(ps− q + 1). (8)

In the new time horizon, the control (5) has fixed switch-
ing times at s = 1

p , . . . ,
p−1
p and can be expressed as:

ũp(s) = up(t(s)) =

p
∑

k=1

σkχ[ k−1

p
, k
p )
(s).

For each i = 1, . . . ,m+ 1, define

κi =

i
∑

l=1

pl and ζi =
κi

p
.

Then the characteristic times can be recovered from (8)
by

τi = t(ζi) =

κi
∑

l=1

θl
p
, i = 1, . . . ,m+ 1. (9)

Finally, applying the transformation to the dynamics (1)
yields

ẏ(s) = vp(s)̃f (y(s),σ), (10)

with the initial condition

y(0) = x0, (11)

wherey(s) = x(t(s)) and f̃ (y(s),σ) = f (x(t(s)), ũp(s)).

Given a (σ, θ) ∈ Ξ × Θ, one can solve the system of
differential equations (10) using the initial condition (11)
to obtain y(s|σ, θ). Then, the objective and constraint
functionals gi, i = 0, . . . , N , for Problems (P1) and (P2)
collectively become

Gi(σ, θ) = Φi (y(ζ1|σ, θ), . . . ,y(ζm|σ, θ))

+

∫ 1

0

vp(s)L̃i (y(s|σ, θ),σ) ds, (12)

where L̃i is obtained from Li in the same manner as f̃ is
obtained from f .

Finally, defining

Υ = {(σ, θ) ∈ Ξ×Θ : Gi(σ, θ) ≥ 0, i = 1, . . . , N},

we can introduce approximate problems corresponding
to Problems (P1) and (P2) as follows.

Problem (P1(p)). Given the system (10) and the ini-
tial condition (11), find a combined element (σ, θ) ∈ Υ
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such that the cost function G0(σ, θ) is minimized over
Υ subject to

κi
∑

l=1

θl
p

= τi, i = 1, . . . ,m+ 1.

Problem (P2(p)). Given the system (10) and the ini-
tial condition (11), find a combined element (σ, θ) ∈ Υ
such that the cost function G0(σ, θ) is minimized over
Υ subject to

p
∑

l=1

θl
p

= T

and

τLi ≤

κi
∑

l=1

θl
p

≤ τUi , i = 1, . . . ,m.

Remark 1.For any (σ, θ) ∈ Υ, the corresponding piece-
wise constant control up can be readily constructed ac-
cording to (5) with

tkj =

κk−1+j
∑

l=1

θl
p
, k = 1, . . . ,m+ 1, j = 0, . . . , pk.

Similarly, the corresponding characteristic times can be
constructed from (9).

Problems (P1(p)) and (P2(p)) can be viewed as non-
linear optimization problems where the cost function
is to be minimized subject to a set of constraints. A
gradient-based optimization procedure such as SQP can
be used to solve these approximate problems if formu-
lae for calculating the required gradients are available.
These formulae will be derived in the next section.
Firstly, however, we present the following convergence
results. The proofs are similar to the arguments used in
Chapter 4 of Martin & Teo (1994) and Chapter 6 of Teo
et al. (1991).

Theorem 1. Suppose that u∗ is an optimal control for
Problem (P1). Let (σp,∗, θp,∗) be a combined optimal
element for Problem (P1(p)) and let up,∗ be the cor-
responding piecewise constant control constructed from
σp,∗ and θp,∗ as described in Remark 1. Define α =
min{p1, . . . , pm+1}. Then

lim
α→∞

g0(u
p,∗) = g0(u

∗).

Theorem2. Letu∗, up,∗ and α be as defined in Theorem
1. Suppose that the sequence {up,∗}∞α=1 converges to
a control ū almost everywhere in [0, T ]. Then ū is an
optimal control for Problem (P1).

Remark 2. Results analogous to Theorems 1 and 2 are
also valid for Problem (P2) and approximate Problems
(P2(p)).

4 Gradient Formulae

Let (σ, θ) ∈ Ξ × Θ. For each k = 1, . . . , p and j =
1, . . . , r, consider the following system of n auxiliary dif-

ferential equations on s ∈
[

q−1
p , q

p

)

, q = 1, . . . , p :

ϕ̇k,j(s) =



























θq
∂f(y(s|σ,θ),σq)

∂x ϕk,j(s), k < q,

θq
∂f(y(s|σ,θ),σq)

∂x ϕk,j(s)

+θq
∂f(y(s|σ,θ),σq)

∂uj
, k = q,

0, k > q,

(13)
with

ϕk,j(0) = 0. (14)

Similarly, for each k = 1, . . . , p, consider the following

system on s ∈
[

q−1
p , q

p

)

, q = 1, . . . , p:

ψ̇k(s) =



























θq
∂f(y(s|σ,θ),σq)

∂x ψk(s), k < q,

θq
∂f(y(s|σ,θ),σq)

∂x ψk(s)

+f(y(s|σ, θ),σq), k = q,

0, k > q,

(15)
with

ψk(0) = 0. (16)

The gradients of the cost and constraint functions for
the approximate problems are furnished in the following
theorem.

Theorem 3. For each i = 0, . . . , N , we have

∂Gi(σ,θ)

∂σk
j

=
∑m

l=1
∂Φi(y(ζ1|σ,θ),...,y(ζm|σ,θ))

∂x(τl)
ϕk,j(ζl)

+
∑p

l=1

∫ l/p

(l−1)/p θl
∂Li(y(s|σ,θ),σl)

∂x ϕk,j(s)ds

+
∫ k/p

(k−1)/p
θk

∂Li(y(s|σ,θ),σk)
∂uj

ds

for k = 1, . . . , p, j = 1, . . . , r; and

∂Gi(σ,θ)
∂θk

=
∑m

l=1
∂Φi(y(ζ1|σ,θ),...,y(ζm|σ,θ))

∂x(τl)
ψk(ζl)

+
∑p

l=1

∫ l/p

(l−1)/p θl
∂Li(y(s|σ,θ),σl)

∂x ψk(s)ds

+
∫ k/p

(k−1)/p Li(y(s|σ, θ),σ
k)ds

for k = 1, . . . , p.
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Proof. Note that equation (12) can be written as

Gi(σ, θ) = Φi(y(ζ1|σ, θ), . . . ,y(ζm|σ, θ))

+

p
∑

l=1

∫ l/p

(l−1)/p

θlLi

(

y(s|σ, θ),σl
)

ds. (17)

For any k = 1, . . . , p and j = 1, . . . , r, applying the chain
rule in conjunction with the Leibniz rule to (17) yields

∂Gi(σ,θ)

∂σk
j

=
∑m

l=1
∂Φi(y(ζ1|σ,θ),...,y(ζm|σ,θ))

∂ x(τl)
∂y(ζl|σ,θ)

∂σk
j

+
∑p

l=1

∫ l/p

(l−1)/p θl
∂Li(y(s|σ,θ),σl)

∂ x

∂y(s|σ,θ)

∂σk
j

ds

+
∫ k/p

(k−1)/p θk
∂Li(y(s|σ,θ),σk)

∂uj
ds.

(18)
Now, given a (σ, θ) ∈ Ξ × Θ, it follows from (10) that,

for any s ∈
[

q−1
p , q

p

]

,

y(s|σ, θ) = y ((q − 1)/p |σ, θ)

+
∫ s

(q−1)/p
θqf(y(η|σ, θ),σ

q)dη.
(19)

Using the Leibniz rule to differentiate (19) with respect
to σk

j , k = 1, . . . , q − 1 and j = 1, . . . , r, gives

∂y(s|σ,θ)

∂σk
j

= ∂y((q−1)/p |σ,θ)

∂σk
j

+
∫ s

(q−1)/p
θq

∂f(y(η|σ,θ),σq)
∂x

∂y(η|σ,θ)

∂σk
j

dη.

(20)
For k = q, following the same procedure furnishes

∂y(s|σ,θ)

∂σk
j

= ∂y((q−1)/p |σ,θ)

∂σk
j

+
∫ s

(q−1)/p θq
∂f(y(η|σ,θ),σq)

∂x
∂y(η|σ,θ)

∂σk
j

dη

+
∫ s

(q−1)/p θq
∂f(y(η|σ,θ),σq)

∂uj
dη.

(21)
Clearly, we have

∂y(s|σ, θ)

∂σk
j

= 0 (22)

for all k > q, j = 1, . . . , r. Now, by differentiating (20),

(21) and (22), it is evident that ∂y(s|σ,θ)

∂σk
j

satisfies the

system of differential equations (13) with the initial con-
ditions (14). From the theory of differential equations,
the solution to the system (13) endowed with the initial
condition (14) is unique. On this basis, equation (18) is
identical to the first formula in the statement of the the-
orem. The derivation of the other formula is similar. �

On the basis of Theorem 3, we present an algorithm for
computing the objective and constraint functions as well
as their respective gradients as follows.

Algorithm 1. Input (σ0, θ0) ∈ Ξ×Θ.

(1) Solve the system of differential equations consisting
of (10), (13) and (15) with the initial conditions
(11), (14) and (16) using any numerical integration
scheme.

(2) Use y(·|σ0, θ0) with equation (17) to calculate
Gi(σ

0, θ0), i = 0, . . . , N .
(3) Use y(·|σ0, θ0), ϕj,k(·|σ

0, θ0) and ψk(·|σ
0, θ0)

with the formulae in Theorem 3 to compute the
gradients of Gi, i = 0, . . . , N , at (σ0, θ0).

Remark 3. Note that costate-based methods for gradi-
ent computation require the solution of N + 1 costate
systems of differential equations. In Algorithm 1, p+ pr
systems of auxiliary differential equations are solved.
Thus, Algorithm 1 is more efficient for problems with
constraints outnumbering the optimization parameters.

Remark 4. Note that the above analysis can be ex-
tended to more general problems with system param-
eters appearing in the dynamical system and/or con-
straint and objective functionals. This is a simple exten-
sion and is not included here for the sake of brevity.

We are now in a position to solve Problem (P1) or (P2)
numerically. To begin, we approximate Problem (P1) or
(P2) by the corresponding optimal parameter selection
Problem (P1(p)) or (P2(p)). By employing Algorithm
1, the approximate problem can be solved numerically
using a conventional gradient-based optimization tech-
nique such as SQP. There are several efficient implemen-
tations of SQP available (see the subroutines NLPQL
and NLPQLP written by Schittkowski (1985, 2004), for
example).

5 Numerical Examples

To illustrate the concepts discussed in the preceding sec-
tions, we consider two examples. Example 1 is a prob-
lem with variable characteristic times. In Example 2, the
characteristic times are fixed.

Example 1. (Optimal Observation Times)
Consider a process that evolves over the time horizon
[0, 10] according to the following dynamical system:

ẋ1(t) = x2(t), (23)

x1(0) = 0, (24)

and

ẋ2(t) =−ζx2(t) + u(t)− x1(t), (25)

x2(0) = 0.2. (26)

Our aim is to choose a control function u(t) and system
parameter ζ so that the system state x1 is steered to-
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wards the target trajectory

w(t) = 4 + sin(2t) + exp(t/5).

Three observation time points are to be chosen when
the distance between the system state and the target
trajectory is minimal. In addition, control effort is to be
conserved and the system state is subject to the following
terminal constraint:

0 ≤ x1(10) ≤ 2. (27)

To reflect these contrasting objectives, we consider a cost
functional of the form

3
∑

i=1

(w(τi)− x1(τi))
2 + 0.2

∫ 10

0

u2(t)dt, (28)

where τ1, τ2 and τ3 are the observation times. Our mul-
tiple characteristic time optimal control problem is to
choose a control function u(t), a system parameter ζ ∈
[−1, 1], and observation times τ1 ∈ [1, 3], τ2 ∈ [4, 7] and
τ3 ∈ [8, 9] so that (28) is minimized subject to the dy-
namics (23)-(26), the terminal state constraint (27), and
u(t) ∈ [−2, 2] for all t ∈ [0, 10].

In applying the parametrization technique of Section 3,
we allowed the control to switch once between each set
of characteristic times and at the characteristic times
themselves. The resulting optimization problem was
solved using the subroutine NLPQLP with the function
values and gradients constructed according to Algo-
rithm 1. The relevant differential equations were solved
using the LSODA solver (see Hindmarsh (1982)). It is
important to note that, in accordance with Algorithm
1, the auxiliary system and state system were solved
together as one expanded system. Such an approach is
not possible using the costate-based methods developed
in Martin (1992) and Teo et al. (2002). Using these
methods, the state system would need to be solved first,
and then the state would need to be interpolated as the
costate system is solved.

The optimal objective function value was found to be
17.3946, with ζ∗ = −0.296 and optimal observation
times τ∗1 = 2.7609, τ∗2 = 4.0000 and τ∗3 = 8.7511. The
optimal system state and optimal control structure are
shown in Figures 1 and 2, respectively.

Example 2. (Optimal Drug Administration)
We consider the optimal control model of cancer
chemotherapy formulated by Martin (1992). There are
two state variables in the model: v(t), the concentration
of anti-cancer drug at the cancer site, and N(t), the
number of tumour cells. If we let u(t) be the delivery
rate of the anti-cancer drug and y(t) = ln(θ/N(t)), then

-6
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Fig. 1. The optimal system state for Example 1.
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Fig. 2. The optimal control for Example 1.

the model dynamics are

ẏ(t) =−λy(t) + k(v(t)− vth)H(v(t) − vth), (29)

y(0) = ln(θ/N0), (30)

and

v̇(t) = u(t)− γv(t), (31)

v(0) = 0, (32)

where H(·) denotes the Heaviside step function. The
treatment starts at t = 0 and ends at t = T . The con-
stants T , k, λ, θ, N0, γ and vth are model parameters.

Since anti-cancer drugs are highly toxic, restrictions are
placed on the amount of drug that can be administered.
These restrictions are expressed mathematically by the
following two constraints on the drug concentration:

0 ≤ v(t) ≤ vmax, for all t ∈ [0, T ], (33)

and
∫ T

0

v(s)ds ≤ vcum, (34)
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where vmax and vcum are constants. In addition, M + 1
characteristic time points 0 = τ0 < τ1 < · · · < τM < T
are selected. The tumour size is required to decrease suf-
ficiently between these characteristic times. This leads
to the following set of multiple characteristic time con-
straints:

y(τi)− y(τi−1) + ln(ε) ≥ 0, i = 1, . . . ,M, (35)

where 0 < ε < 1. For full explanation of the model, see
Martin (1992).We choose n+1 fixed time points {ti}

n
i=0,

where t0 = 0 and tn = T , and approximate the drug
delivery rate by a constant σi on the interval [ti−1, ti),
i = 1, . . . , n. Then, it is shown in Martin (1992) that the
continuous time constraints (33) may be replaced by

v(ti) ≤ vmax, i = 1, . . . , n. (36)

We want to choose the drug delivery rate to minimize
final tumour size. Thus, our multiple characteristic time
optimal parameter selection problem is to choose σ =
[σ1, . . . , σn]

T to minimize −y(T ), subject to the dynam-
ics (29)-(32), the constraints (34) and (36), and the mul-
tiple characteristic time constraints (35). The problem
was solved numerically for different values of n using the
following parameter values: T = 84.0, λ = 9.9 × 10−4,
γ = 0.27, k = 8.4 × 10−3, vth = 10.0, vmax = 50.0,
vcum = 1100.0, ε = 0.5, θ = 1012, N0 = 1010, ti = iT/n,
i = 0, . . . , n, and τi = iT/4, i = 0, . . . , 3. The subrou-
tine NLPQLP was used for this purpose. Again, the re-
quired function values and gradients were constructed
according to Algorithm 1, with LSODA used to solve
the relevant differential equations. Initially, the number
of control parameters was taken as n = 16. This was
subsequently doubled at each step until n = 128. The
tumour cell population after twelve weeks of treatment
for this optimal scheme was N(T ) = 3.2492× 107. The
treatment protocol and drug concentration for the opti-
mal regime are shown in Figures 3 and 4, respectively.
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Fig. 3. The drug concentration for the optimal treatment
protocol in Example 2.
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Fig. 4. The optimal treatment protocol in Example 2.

6 Conclusion

In this paper we have presented a computational proce-
dure for solving optimal control problems with objective
and constraint functionals depending on two or more
characteristic times. Control parametrization and a time
scaling transformation were applied to approximate this
type of optimal control problem by a sequence of optimal
parameter selection problems. Each of these optimal pa-
rameter selection problems can be viewed as a non-linear
optimization problem and a new scheme for calculating
the cost and constraint gradients was proposed. Using
this scheme, standard gradient-based optimization tech-
niques can be used to solve each approximate problem.

Interestingly and in contrast to the existing methods de-
veloped in Martin (1992), Martin & Teo (1994) and Teo
et al. (2003), the auxiliary system of differential equa-
tions used here does not contain any jump conditions.
Moreover, as we discussed in the examples, this auxil-
iary system can be solved simultaneously with the state
system. Thus, no interpolation of the state is necessary
if a variable step size integration method is used to solve
this expanded system. Efficiency, accuracy and simplic-
ity are therefore enhanced. It is also worth recalling that
the method proposed here is more efficient than than
the costate-based method for problems with constraints
outnumbering the optimization parameters. The cancer
chemotherapy problem considered in Example 2 is of this
type.
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