
Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 20XX pp. X–XX

OPTIMAL FLEET COMPOSITION VIA DYNAMIC

PROGRAMMING AND GOLDEN SECTION SEARCH

Ryan Loxton

Department of Mathematics and Statistics
Curtin University

GPO Box U1987 Perth, Western Australia 6845

Qun Lin

Department of Mathematics and Statistics
Curtin University

GPO Box U1987 Perth, Western Australia 6845

(Communicated by the associate editor name)

Abstract. In this paper, we consider an optimization problem arising in vehi-
cle fleet management. The problem is to construct a heterogeneous vehicle fleet
in such a way that cost is minimized subject to a constraint on the overall fleet
size. The cost function incorporates fixed and variable costs associated with
the fleet, as well as hiring costs that are incurred when vehicle requirements
exceed fleet capacity. We first consider the simple case when there is only one
type of vehicle. We show that in this case the cost function is convex, and
thus the problem can be solved efficiently using the well-known golden section
method. We then devise an algorithm, based on dynamic programming and
the golden section method, for solving the general problem in which there are
multiple vehicle types. We conclude the paper with some simulation results.

1. Introduction. Purchasing a vehicle fleet is one of the most expensive capital
investments a company or organization can make. Accordingly, both the size and
composition of such a fleet need to be carefully considered. Purchasing too few
vehicles will result in excessive hiring costs, as additional vehicles will need to be
hired whenever vehicle requirements exceed fleet capacity. On the other hand,
purchasing too many vehicles will result in a massive opportunity cost.

Many optimization problems related to fleet composition have been discussed
in the literature; see, for example, [3, 6, 7, 8, 11] and the references cited therein.
A recent survey of optimization models combining fleet composition with vehicle
routing is given in [5]. These combined models typically assume that the vehicle
fleet is homogeneous—that is, the fleet contains only one type of vehicle. However,
this assumption is unrealistic, as heterogenous fleets are usually preferred in practice
because of their flexibility. In this paper, we consider a generalization of the fleet
composition problem formulated in [4]. This problem does not incorporate vehicle
routing, but it does allow for heterogeneous fleets consisting of different types of
vehicles.

2000 Mathematics Subject Classification. Primary: 90B06, 90C25, 90C39; Secondary: 90C10.
Key words and phrases. Fleet Composition, Convex Optimization, Dynamic Programming,

Golden Section Method.

1

2 RYAN LOXTON AND QUN LIN

We formulate the problem as follows. First, define the following quantities:

m = number of vehicle types.

n = number of periods in the planning horizon.

vit = number of type-i vehicles required during period t ∈ {1, . . . , n}.
pmax = maximum fleet size.

αi = fixed cost per period of a type-i vehicle.

βi = variable cost per period of a type-i vehicle.

γi = hiring cost per period of a type-i vehicle.

A vehicle’s fixed cost includes the initial cost of purchasing the vehicle, as well as
other costs such as insurance premiums and registration fees. Variable costs are
generally due to maintenance (servicing, replacing tires, etc.).

We assume that the cost of operating an owned vehicle for one period is less than
the cost of hiring the same vehicle for one period—otherwise, there would be no
reason to own a vehicle fleet. Hence,

αi + βi < γi.

Let pi denote the number of type-i vehicles in the fleet. Then

p1 + · · ·+ pm ≤ pmax.

Furthermore,

Total fixed cost for type-i vehicles = nαipi.

Now, if vit > pi, then during period t all pi of the fleet’s type-i vehicles will be
used, and an additional vit − pi type-i vehicles will need to be hired to meet the
vehicle requirements. On the other hand, when vit ≤ pi only vit of the fleet’s type-i
vehicles will be used, and no type-i vehicles will be hired. Thus,

Number of (owned) type-i vehicles used during period t = min{vit, pi}
and

Number of type-i vehicles hired during period t = max{vit − pi, 0}.
Consequently,

Total variable cost for type-i vehicles = βi

n∑

t=1

min{vit, pi}

and

Total hiring cost for type-i vehicles = γi

n∑

t=1

max{vit − pi, 0}.

Therefore, the total cost associated with purchasing pi vehicles of type i is:

Ci(pi) = nαipi
︸ ︷︷ ︸

Fixed cost

+ βi

n∑

t=1

min{vit, pi}
︸ ︷︷ ︸

Variable cost

+ γi

n∑

t=1

max{vit − pi, 0}
︸ ︷︷ ︸

Hiring cost

. (1)

The key question that now arises is: what values of pi, i = 1, . . . ,m minimize the
overall cost? We formulate this question mathematically as follows.

OPTIMAL FLEET COMPOSITION 3

Problem P. Choose non-negative integers p1, . . . , pm to minimize the cost function

C(p1, . . . , pm) =

m∑

i=1

Ci(pi)

subject to the inequality constraint

m∑

i=1

pi ≤ pmax.

When m = 1, Problem P is the same as the one-dimensional fleet composition prob-
lem described in reference [4]. According to [4], the optimal number of vehicles p∗

satisfies the following equation:

|R(p∗)| = nα1

γ1 − β1
, (2)

where R(p∗) = { t : v1t > p∗ } and | · | denotes set cardinality. Since R(p∗) is a
discrete set, equation (2) is only valid when nα1 is divisible by γ1 − β1. This is
often not the case. For example, if n = 52, α1 = 50, β1 = 40, and γ1 = 100, then
equation (2) gives |R(p∗)| = 43.3333, which is impossible. In this case, equation (2)
cannot be used to solve Problem P. The purpose of this paper is to develop a new
method for solving Problem P that does not rely on equation (2). Our new method
is applicable to Problem P of any dimension, not just m = 1.

2. Preliminary Results. Throughout this section, we assume that i ∈ {1, . . . ,m}
is arbitrary but fixed.

For each p ∈ R, let

Ri(p) , { t : vit > p },
Si(p) , { t : vit < p },
Ti(p) , { t : vit = p }.

It’s clear that Ri(p), Si(p), and Ti(p) constitute a partition of {1, . . . , n}.
Recall that Ci(pi) is the total cost of purchasing pi vehicles of type i. Although

in this context pi is an integer, the formula for Ci(pi) in equation (1) still makes
sense when pi ∈ R \ Z. Thus, we can extend the domain of Ci to R. The following
result then follows immediately.

Theorem 2.1. The cost function Ci is continuous on R.

We now show that Ci is differentiable from the left.

Theorem 2.2. The left derivative of Ci at p ∈ R is given by

D−Ci(p) = nαi + (βi − γi)|Ri(p)|+ (βi − γi)|Ti(p)|,
where | · | denotes set cardinality.

Proof. Define

ǫ′ ,

{

max{ vit − p : t ∈ Si(p) }, if Si(p) 6= ∅,
−∞, if Si(p) = ∅.

Since vit < p for each t ∈ Si(p), we have ǫ′ < 0.

4 RYAN LOXTON AND QUN LIN

Now, let ǫ ∈ (ǫ′, 0). Then

Ci(p+ ǫ) = nαip+ nαiǫ+ βi

n∑

t=1

min{vit, p+ ǫ}+ γi

n∑

t=1

max{vit − p− ǫ, 0}. (3)

If t ∈ Ri(p) ∪ Ti(p), then vit ≥ p > p+ ǫ. Hence,

min{vit, p+ ǫ} = p+ ǫ, t ∈ Ri(p) ∪ Ti(p), (4)

and

max{vit − p− ǫ, 0} = vit − p− ǫ, t ∈ Ri(p) ∪ Ti(p). (5)

On the other hand, if t ∈ Si(p) then

p+ ǫ > p+ ǫ′ ≥ p+ vit − p = vit.

Hence,

min{vit, p+ ǫ} = vit, t ∈ Si(p), (6)

and

max{vit − p− ǫ, 0} = 0, t ∈ Si(p). (7)

By equations (4) and (6),

n∑

t=1

min{vit, p+ ǫ} =
∑

t∈Ri(p)∪Ti(p)

min{vit, p+ ǫ}+
∑

t∈Si(p)

min{vit, p+ ǫ}

=
∑

t∈Ri(p)∪Ti(p)

(p+ ǫ) +
∑

t∈Si(p)

vit

= ǫ|Ri(p)|+ ǫ|Ti(p)|+
∑

t∈Ri(p)∪Ti(p)

p+
∑

t∈Si(p)

vit

= ǫ|Ri(p)|+ ǫ|Ti(p)|+
n∑

t=1

min{vit, p}. (8)

Similarly, by equations (5) and (7),

n∑

t=1

max{vit − p− ǫ, 0} =
∑

t∈Ri(p)∪Ti(p)

max{vit − p− ǫ, 0}

+
∑

t∈Si(p)

max{vit − p− ǫ, 0}

=
∑

t∈Ri(p)∪Ti(p)

(vit − p− ǫ)

= −ǫ|Ri(p)| − ǫ|Ti(p)|+
∑

t∈Ri(p)∪Ti(p)

(vit − p)

= −ǫ|Ri(p)| − ǫ|Ti(p)|+
n∑

t=1

max{vit − p, 0}. (9)

Substituting equations (8) and (9) into equation (3) yields

Ci(p+ ǫ) = nαip+ nαiǫ+ ǫ(βi − γi)|Ri(p)|+ ǫ(βi − γi)|Ti(p)|

+ βi

n∑

t=1

min{vit, p}+ γi

n∑

t=1

max{vit − p, 0}.

OPTIMAL FLEET COMPOSITION 5

Thus,

Ci(p+ ǫ) = Ci(p) + nαiǫ+ ǫ(βi − γi)|Ri(p)|+ ǫ(βi − γi)|Ti(p)|.
Rearranging and then dividing both sides by ǫ gives

Ci(p+ ǫ)− Ci(p)

ǫ
= nαi + (βi − γi)|Ri(p)|+ (βi − γi)|Ti(p)|.

This equation holds for all ǫ ∈ (ǫ′, 0). By taking the limit as ǫ → 0− we obtain

D−Ci(p) = lim
ǫ→0−

Ci(p+ ǫ)− Ci(p)

ǫ
= nαi + (βi − γi)|Ri(p)|+ (βi − γi)|Ti(p)|,

which completes the proof.

We now show that Ci is also differentiable from the right.

Theorem 2.3. The right derivative of Ci at p ∈ R is given by

D+Ci(p) = nαi + (βi − γi)|Ri(p)|.
Proof. Define

ǫ′ ,

{

min{ vit − p : t ∈ Ri(p) }, if Ri(p) 6= ∅,
+∞, if Ri(p) = ∅.

Since vit > p for each t ∈ Ri(p), we have ǫ′ > 0.
Let ǫ ∈ (0, ǫ′). Then

Ci(p+ ǫ) = nαip+ nαiǫ+ βi

n∑

t=1

min{vit, p+ ǫ}+ γi

n∑

t=1

max{vit − p− ǫ, 0}. (10)

If t ∈ Ri(p), then

p+ ǫ < p+ ǫ′ ≤ p+ vit − p = vit.

Therefore,

min{vit, p+ ǫ} = p+ ǫ, t ∈ Ri(p), (11)

and

max{vit − p− ǫ, 0} = vit − p− ǫ, t ∈ Ri(p). (12)

On the other hand, if t ∈ Si(p) ∪ Ti(p) then vit ≤ p < p+ ǫ. Thus,

min{vit, p+ ǫ} = vit, t ∈ Si(p) ∪ Ti(p), (13)

and

max{vit − p− ǫ, 0} = 0, t ∈ Si(p) ∪ Ti(p). (14)

By equations (11) and (13),
n∑

t=1

min{vit, p+ ǫ} =
∑

t∈Ri(p)

min{vit, p+ ǫ}+
∑

t∈Si(p)∪Ti(p)

min{vit, p+ ǫ}

=
∑

t∈Ri(p)

(p+ ǫ) +
∑

t∈Si(p)∪Ti(p)

vit

= ǫ|Ri(p)|+
∑

t∈Ri(p)

p+
∑

t∈Si(p)∪Ti(p)

vit

= ǫ|Ri(p)|+
n∑

t=1

min{vit, p}. (15)

6 RYAN LOXTON AND QUN LIN

By equations (12) and (14),
n∑

t=1

max{vit − p− ǫ, 0} =
∑

t∈Ri(p)

max{vit − p− ǫ, 0}

+
∑

t∈Si(p)∪Ti(p)

max{vit − p− ǫ, 0}

=
∑

t∈Ri(p)

(vit − p− ǫ)

= −ǫ|Ri(p)|+
∑

t∈Ri(p)

(vit − p)

= −ǫ|Ri(p)|+
n∑

t=1

max{vit − p, 0}. (16)

Substituting equations (15) and (16) into equation (10) gives

Ci(p+ ǫ) = nαip+ nαiǫ+ ǫ(βi − γi)|Ri(p)|

+ βi

n∑

t=1

min{vit, p}+ γi

n∑

t=1

max{vit − p, 0}.

Therefore,

Ci(p+ ǫ)− Ci(p) = nαiǫ+ ǫ(βi − γi)|Ri(p)|.
Dividing both sides by ǫ gives

Ci(p+ ǫ)− Ci(p)

ǫ
= nαi + (βi − γi)|Ri(p)|.

Hence,

D+Ci(p) = lim
ǫ→0+

Ci(p+ ǫ)− Ci(p)

ǫ
= nαi + (βi − γi)|Ri(p)|,

as required.

Now, by Theorems 2.2 and 2.3,

D+Ci(p)−D−Ci(p) = −(βi − γi)|Ti(p)|.
Hence, since βi − γi < 0 (recall that αi + βi < γi), the left and right derivatives
of Ci differ when Ti(p) 6= ∅. It follows that Ci is not differentiable at points p = vit,
t = 1, . . . , n.

The following result is proved in Chapter 5 of [10].

Lemma 2.4. Let f : R → R be a continuous function with right derivative D+f .
If D+f is non-decreasing, then f is convex.

We now use Lemma 2.4 to prove that Ci is a convex function.

Theorem 2.5. The cost function Ci is convex.

Proof. We already know that Ci is continuous and right differentiable (Theorems 2.1
and 2.3). We will now prove that D+Ci is non-decreasing (the convexity of Ci then
follows immediately from Lemma 2.4).

Let x < y. Then obviously

Ri(y) ⊂ Ri(x).

OPTIMAL FLEET COMPOSITION 7

Thus,
|Ri(y)| ≤ |Ri(x)|.

Since βi − γi < 0,
(βi − γi)|Ri(y)| ≥ (βi − γi)|Ri(x)|.

Combining this inequality with the formula in Theorem 2.3 gives

D+Ci(x) = nαi + (βi − γi)|Ri(x)| ≤ nαi + (βi − γi)|Ri(y)| = D+Ci(y).

Since x and y were chosen arbitrarily, this argument shows that D+Ci is non-
decreasing.

3. Special Case: One Vehicle Type. Suppose that we only consider vehicles of
one type (say type i). Then Problem P takes the following form.

Problem Pi. Choose an integer pi ∈ {0, . . . , pmax} to minimize the cost function

Ci(pi) = nαipi + βi

n∑

t=1

min{vit, pi}+ γi

n∑

t=1

max{vit − pi, 0}.

By discarding the integer constraint on pi, we obtain the following continuous re-

laxation of Problem Pi.

Problem P̃i. Choose a real number pi ∈ [0, pmax] to minimize the cost function

Ci(pi) = nαipi + βi

n∑

t=1

min{vit, pi}+ γi

n∑

t=1

max{vit − pi, 0}.

Since Ci is continuous and [0, pmax] is compact, Problem P̃i always has a solution.

In fact, it turns out that Problem P̃i always has an integer solution. This suggests
that the integer constraint in Problem Pi is actually redundant.

To prove that Problem P̃i has an integer solution, we need the following result.

Lemma 3.1. Let p∗ be a solution of Problem P̃i. If p∗ /∈ Z, then

|Ri(p
∗)| = nαi

γi − βi

.

Proof. Since p∗ /∈ Z, we must have Ti(p∗) = ∅. Hence, by Theorems 2.2 and 2.3,

D−Ci(p
∗) = nαi + (βi − γi)|Ri(p

∗)|+ (βi − γi)|Ti(p∗)|
= nαi + (βi − γi)|Ri(p

∗)|
= D+Ci(p

∗).

This shows that Ci is differentiable at p = p∗. Thus, since p∗ is a minimal point,

dCi(p
∗)

dp
= nαi + (βi − γi)|Ri(p

∗)| = 0.

Rearranging this equation gives

|Ri(p
∗)| = nαi

γi − βi

,

which completes the proof.

We now show that Problem P̃i always has at least one integer solution.

Theorem 3.2. If p∗ is a solution of Problem P̃i, then ⌊p∗⌋ and ⌈p∗⌉ are also

solutions of Problem P̃i.

8 RYAN LOXTON AND QUN LIN

Proof. If p∗ ∈ Z, then p∗ = ⌊p∗⌋ = ⌈p∗⌉ and the result is immediate. Thus, assume
that p∗ /∈ Z. Then by Lemma 3.1,

|Ri(p
∗)| = nαi

γi − βi

. (17)

Now,

Ci(⌊p∗⌋) = nαi⌊p∗⌋+ βi

n∑

t=1

min{vit, ⌊p∗⌋}+ γi

n∑

t=1

max{vit − ⌊p∗⌋, 0}

= nαi⌊p∗⌋+ βi

∑

t∈Ri(⌊p∗⌋)

⌊p∗⌋+ βi

∑

t∈Si(⌊p∗⌋)∪Ti(⌊p∗⌋)

vit

+ γi
∑

t∈Ri(⌊p∗⌋)

(vit − ⌊p∗⌋).

Clearly,

Ri(⌊p∗⌋) = Ri(p
∗)

and

Si(⌊p∗⌋) ∪ Ti(⌊p∗⌋) = Si(p
∗).

Hence,

Ci(⌊p∗⌋) = nαi⌊p∗⌋+ βi · ⌊p∗⌋ · |Ri(p
∗)|+ βi

∑

t∈Si(p∗)

vit + γi
∑

t∈Ri(p∗)

(vit − ⌊p∗⌋)

= nαip
∗ − nαi(p

∗ − ⌊p∗⌋) + βip
∗|Ri(p

∗)| − βi · (p∗ − ⌊p∗⌋) · |Ri(p
∗)|

+ βi

∑

t∈Si(p∗)

vit + γi
∑

t∈Ri(p∗)

(vit − p∗) + γi · (p∗ − ⌊p∗⌋) · |Ri(p
∗)|. (18)

Since p∗ /∈ Z, we have Ti(p∗) = ∅. Thus,

Ci(p
∗) = nαip

∗ + βi

n∑

t=1

min{vit, p∗}+ γi

n∑

t=1

max{vit − p∗, 0}

= nαip
∗ + βi

∑

t∈Ri(p∗)

min{vit, p∗}+ βi

∑

t∈Si(p∗)

min{vit, p∗}

+ γi
∑

t∈Ri(p∗)

max{vit − p∗, 0}+ γi
∑

t∈Si(p∗)

max{vit − p∗, 0}

= nαip
∗ + βip

∗|Ri(p
∗)|+ βi

∑

t∈Si(p∗)

vit + γi
∑

t∈Ri(p∗)

(vit − p∗). (19)

Substituting (19) into (18) yields

Ci(⌊p∗⌋) = Ci(p
∗)− nαi(p

∗ − ⌊p∗⌋) + (γi − βi) · (p∗ − ⌊p∗⌋) · |Ri(p
∗)|.

Thus, by using (17) we obtain

Ci(⌊p∗⌋) = Ci(p
∗),

which shows that ⌊p∗⌋ is optimal for Problem P̃i. A similar proof shows that ⌈p∗⌉
is also optimal.

Obviously, any integer solution of Problem P̃i is also a solution of Problem Pi.
Thus, it follows from Theorem 3.2 that if p∗ is a solution of Problem P̃i, then both
⌊p∗⌋ and ⌈p∗⌉ are solutions of Problem Pi.

OPTIMAL FLEET COMPOSITION 9

Problem P̃i is just a one-dimensional convex optimization problem that can be
solved efficiently using the golden section method (see [1, 9]). The golden section
method works by successively reducing the interval of uncertainty—a known inter-
val that is guaranteed to contain at least one optimal solution. This is done by
evaluating the cost function at certain test points and then exploiting convexity.

The initial interval of uncertainty for Problem P̃i is

I0 = [a0, b0] = [0, pmax].

The initial test points q11 and q12 are

q11 = b0 − r(b0 − a0) = pmax − rpmax

and

q12 = a0 + r(b0 − a0) = rpmax,

where

r =

√
5− 1

2
≈ 0.618.

Suppose that we are given the (k− 1)th interval of uncertainty Ik−1 = [ak−1, bk−1]
and the corresponding test points qk1 and qk2 . If Ci(q

k
1) < Ci(q

k
2), then the optimal

solution must lie in [ak−1, q
k
2] because Ci is a convex function. Hence, the new

interval of uncertainty is

Ik = [ak, bk] = [ak−1, q
k
2].

On the other hand, if Ci(q
k
1) ≥ Ci(q

k
2), then the optimal solution must lie in the

interval [qk1 , bk−1]. Hence, the new interval of uncertainty is

Ik = [ak, bk] = [qk1 , bk−1].

The new test points are

qk+1
1 =

{

qk2 − r|Ik|, if Ik = [ak−1, q
k
2],

qk2 , if Ik = [qk1 , bk−1],

and

qk+1
2 =

{

qk1 , if Ik = [ak−1, q
k
2],

qk1 + r|Ik|, if Ik = [qk1 , bk−1].

Since one of the new test points coincides with an old test point, each subsequent
iteration of the golden section method requires only one extra cost function evalu-
ation. Furthermore,

|Ik| = r|Ik−1| < |Ik−1|.
Consequently,

|Ik| = bk − ak = rkpmax.

We now prove a key result.

Theorem 3.3. Let N be an integer such that

N > − ln pmax

ln r
. (20)

Suppose that the golden section method is applied to Problem P̃i for N iterations,

and let IN = [aN , bN] denote the final interval of uncertainty. Then ⌈aN⌉ is a

solution of both Problem P̃i and Problem Pi.

10 RYAN LOXTON AND QUN LIN

Proof. From (20), we obtain

rN <
1

pmax
.

Thus,

bN − aN = rNpmax < 1. (21)

Now, the interval of uncertainty IN must contain at least one solution of Problem P̃i.
Let p∗ denote such a solution. We know from Theorem 3.2 that both ⌊p∗⌋ and ⌈p∗⌉
are integer solutions of Problem P̃i. Thus, to complete the proof, it is sufficient to
show that either ⌈aN⌉ = ⌊p∗⌋ or ⌈aN⌉ = ⌈p∗⌉.

Since p∗ ∈ IN , we have

⌈aN⌉ ≤ ⌈p∗⌉.
Thus, either ⌈aN⌉ = ⌈p∗⌉ or ⌈aN⌉ < ⌈p∗⌉. If ⌈aN⌉ = ⌈p∗⌉, then the proof is
complete. Therefore, we assume that ⌈aN⌉ < ⌈p∗⌉. By (21),

p∗ ≤ bN < aN + 1 ≤ ⌈aN⌉+ 1, (22)

which implies that

⌈aN⌉ < ⌈p∗⌉ ≤ ⌈aN⌉+ 1.

Hence, we must have

⌈p∗⌉ = ⌈aN⌉+ 1. (23)

Now, if p∗ is an integer, then

p∗ = ⌈p∗⌉ = ⌈aN⌉+ 1,

which contradicts (22). Thus, p∗ cannot be an integer, and so

⌈p∗⌉ = ⌊p∗⌋+ 1. (24)

Combining (23) and (24) yields ⌈aN⌉ = ⌊p∗⌋.

By virtue of Theorem 3.3, we can solve Problem Pi using the following simple
algorithm.

Algorithm 3.1. (Finds a solution p∗i of Problem Pi)

1. Compute

N =

⌈

− ln pmax

ln r

⌉

. (25)

2. Apply the golden section method to Problem P̃i for N iterations. Let [aN , bN]
denote the final interval of uncertainty.

3. Stop: p∗i = ⌈aN⌉ is a solution of Problem Pi.

Note that Algorithm 3.1 performs N +1 cost function evaluations—a small number
even when pmax is extremely large (see Table 1).

4. Solving Problem P: A Dynamic Programming Approach. In Section 3
we considered Problem P for m = 1 (only one vehicle type). We now focus on the
general case when m > 1 (multiple vehicle types).

For each k = 1, . . . ,m and θ = 0, ..., pmax, consider the following subproblem of
Problem P.

OPTIMAL FLEET COMPOSITION 11

pmax N + 1

10 6
102 11
103 16
104 21
105 25
106 30

Table 1. Algorithm 3.1 performs N +1 cost function evaluations,
where N is given by equation (25).

Problem Q
k
(θ). Choose non-negative integers p1, . . . , pk to minimize

k∑

i=1

Ci(pi)

subject to the inequality constraint

k∑

i=1

pi ≤ θ.

Let fk(θ) denote the optimal cost of Problem Qk(θ). Furthermore, let p̂∗1 denote a
solution of Problem P1 (which can be computed efficiently using Algorithm 3.1).
We have the following result.

Theorem 4.1. For each θ = 0, . . . , pmax, the value of f1(θ) is given by

f1(θ) =

{

C1(θ), if θ < p̂∗1,

C1(p̂
∗
1), if θ ≥ p̂∗1.

Proof. Since p̂∗1 is a solution of Problem P1,

C1(p̂
∗
1) ≤ C1(p1), p1 = 0, . . . , pmax. (26)

Suppose that θ ≥ p̂∗1. Then p̂∗1 ∈ {0, . . . , θ} and thus it follows from (26) that

f1(θ) = min
p1∈{0,...,θ}

C1(p1) = C1(p̂
∗
1),

as required.
Now, suppose that θ < p̂∗1. If p1 = θ is not optimal for Problem Q1(θ), then

there exists an integer p′ ∈ {0, . . . , θ} such that

C1(p
′) < C1(θ). (27)

Clearly, θ ∈ (p′, p̂∗1). Hence, there exists a λ ∈ (0, 1) such that

θ = λp′ + (1− λ)p̂∗1.

Since C1 is convex,

C1(θ) = C1(λp
′ + (1− λ)p̂∗1) ≤ λC1(p

′) + (1− λ)C1(p̂
∗
1).

Thus, from (26) and (27),

C1(θ) < λC1(θ) + (1− λ)C1(θ) = C1(θ),

12 RYAN LOXTON AND QUN LIN

which is an obvious contradiction. Hence, θ must be optimal for Problem Q1(θ).
That is,

f1(θ) = min
p1∈{0,...,θ}

C1(p1) = C1(θ),

as required.

Theorem 4.1 gives a simple formula for computing f1(θ). We will now use the
principle of optimality, also called the principle of dynamic programming (see [2]),
to derive a recurrence equation for computing the remaining fk. The principle of
optimality states that if p∗1, . . . , p

∗
k are optimal for Problem Qk(θ), then p∗1, . . . , p

∗
k−1

are optimal for Problem Qk−1(θ − p∗k). Mathematically,

fk(θ) = min
p1,...,pk∈Z

+∪{0}
p1+···+pk≤θ

{ k∑

i=1

Ci(pi)

}

= min
pk∈{0,...,θ}

min
p1,...,pk−1∈Z

+∪{0}
p1+···+pk−1≤θ−pk

{

Ck(pk) +

k−1∑

i=1

Ci(pi)

}

= min
pk∈{0,...,θ}

{

Ck(pk) + min
p1,...,pk−1∈Z

+∪{0}
p1+···+pk−1≤θ−pk

k−1∑

i=1

Ci(pi)

}

= min
pk∈{0,...,θ}

{
Ck(pk) + fk−1(θ − pk)

}
, (28)

where f0 , 0. Equation (28) and the formula in Theorem 4.1 define a recurrence
relationship for fk, k ≥ 1.

Now, let zk(θ) denote the element of {0, . . . , θ} that achieves the minimum in
equation (28). That is,

zk(θ) = argmin
pk∈{0,...,θ}

{
Ck(pk) + fk−1(θ − pk)

}
.

By Theorem 4.1,

z1(θ) =

{

θ, if θ < p̂∗1,

p̂∗1, if θ ≥ p̂∗1.

Problem Qm(pmax) is the same as Problem P. Thus, fm(pmax) is the optimal cost
of Problem P, and p∗m = zm(pmax) is the optimal number of type-m vehicles in
Problem P. It then follows from the principle of optimality that the optimal number
of type-(m−1) vehicles is p∗m−1 = zm−1(pmax−p∗m). Similarly, the optimal number
of type-(m−2) vehicles is p∗m−2 = zm−2(pmax−p∗m−p∗m−1), and so on. The following
algorithm for solving Problem P is based on this dynamic programming approach.

Algorithm 4.1. (Finds a solution p∗1, . . . , p
∗
m of Problem P)

1. Use Algorithm 3.1 to solve Problem P1. Let p̂
∗
1 denote the solution obtained.

2. If m = 1, then stop: p∗1 = p̂∗1 is the solution of Problem P. Otherwise, go to
Step 3.

3. Compute C1(p̂
∗
1).

4. Use the formula in Theorem 4.1 to compute f1(θ), θ = 0, . . . , pmax.
5. For each k = 2, . . . ,m− 1, compute

fk(θ) = min
pk∈{0,...,θ}

{
Ck(pk) + fk−1(θ − pk)

}
, θ = 0, . . . , pmax.

Let zk(θ) denote the pk that achieves the minimum in this equation.

OPTIMAL FLEET COMPOSITION 13

6. Compute

fm(pmax) = min
pm∈{0,...,pmax}

{
Cm(pm) + fm−1(pmax − pm)

}
.

Let zm(pmax) denote the pm that achieves the minimum in this equation.
7. For each k = m, . . . , 1, compute

θk = pmax −
m∑

j=k+1

p∗j

and

p∗k = zk(θk).

8. Stop: p∗1, . . . , p
∗
m is a solution of Problem P.

Note that Step 1 and Steps 3-6 of Algorithm 4.1 involve evaluating Ci. The cost
function evaluations1 required in these steps are:

• N + 1 cost function evaluations in Step 1 (see Section 3).
• 1 cost function evaluation in Step 3.
• p̂∗1 ≤ pmax cost function evaluations in Step 4.
• Less than (m− 2)× (pmax + 1)2 cost function evaluations in Step 5.
• pmax + 1 cost function evaluations in Step 6.

Thus, an upper bound for the total number of cost function evaluations performed
by Algorithm 4.1 is:

N̂ , N + 1 + ςm
[
2pmax + (m− 2)(pmax + 1)2 + 2

]
, (29)

where N is defined by equation (25) and

ςm =

{

1, if m ≥ 2,

0, if m = 1.

We will see in the next section that N̂ is much smaller than the total number of
feasible points in Problem P. Thus, Algorithm 4.1 is very efficient.

5. Numerical Results. For numerical testing, we wrote a Fortran program that
uses Algorithm 4.1 to solve random instances of Problem P. This program verifies
the solution from Algorithm 4.1 by complete enumeration—that is, by evaluating
the cost function C at every feasible point.

The number of random problems solved during each run of the program is selected
by the user. During each run, the problem dimensions m, n, and pmax are fixed,
but the other parameters are chosen randomly to generate the different instances
of Problem P. The random parameters are selected from the following sets:

• αi ∈ [0, 50]
• βi ∈ [0, 50]
• γi ∈ (αi + βi, 2αi + 2βi]

2

• vit ∈ {0, . . . , pmax}

1“Cost function evaluation” refers to a single evaluation of Ci.
2Recall that αi, βi, and γi must satisfy αi + βi < γi.

14 RYAN LOXTON AND QUN LIN

Dimensions

m n pmax AC N̂ FP ρ

1 50 300 13 13 301 0.0432
1 100 500 14 14 501 0.0279
2 20 50 86 112 1,326 0.0324
2 50 100 161 213 5,151 0.0156
3 30 80 3,453 6,734 91,881 0.0125
3 50 100 5,313 10,414 176,851 0.0100
4 50 30 1,048 1,993 46,376 0.0056
4 50 50 2,739 5,314 316,251 0.0022
5 60 20 733 1,373 53,130 0.0028
5 100 30 1,543 2,954 324,632 0.0010

Table 2. Results from using Algorithm 4.1 to solve 1000 random
instances of Problem P.

Note that the inequality constraint in Problem P doesn’t depend on αi, βi, γi, or vit
(it only depends on pmax). Thus, the random problems generated by our program
all have the same number of feasible points.

To test Algorithm 4.1, we ran the program with 10 different sets of problem
dimensions. During each run, the program generated and solved 1000 random
instances of Problem P. Each random problem was solved twice: once using Algo-
rithm 4.1 and once using complete enumeration. For each problem, the solution
obtained by Algorithm 4.1 agreed with the solution obtained by complete enumer-
ation.

Table 2 provides a summary of our numerical results. The notation in this table
is explained below:

• AC is the average number of cost function evaluations used by Algorithm 4.1
(rounded up to the nearest integer).

• N̂ is an upper bound for the number of cost function evaluations used by
Algorithm 4.1 (see equation (29)).

• FP is the number of feasible points in each random problem (recall that the
problem dimensions are fixed during each run of the program).

As expected, AC is always less than or equal to N̂ in Table 2.
In the last column of Table 2, we give the ratio ρ of the number of cost evalu-

ations used by Algorithm 4.1 to the number of cost evaluations used by complete
enumeration. This ratio is calculated according to the following formula:

ρ =
AC

m× FP
.

The values of ρ in Table 2 are very small; the highest is 0.0432. This suggests that
Algorithm 4.1 needs significantly fewer cost function evaluations than complete
enumeration. Furthermore, Table 2 shows that ρ decreases as m increases, so it
seems that Algorithm 4.1 becomes more efficient as the problem dimensions increase.

OPTIMAL FLEET COMPOSITION 15

Dimensions

m n pmax AC N̂ Time (secs)

10 20 20 1,887 3,578 0.1818
10 50 50 10,694 20,920 2.6277
20 20 20 4,197 7,988 0.4058
20 50 50 23,954 46,930 5.8588
30 20 20 6,507 12,398 0.5936
30 50 50 37,213 72,940 9.1121
40 20 20 8,818 16,808 0.8042
40 50 50 50,473 98,950 12.3617
50 20 20 11,127 21,218 1.0093
50 50 50 63,734 124,960 15.5507

Table 3. Time taken for Algorithm 4.1 to solve 1000 random in-
stances of Problem P.

Since the problem dimensions in Table 2 are reasonably small, the solution ob-
tained by Algorithm 4.1 could be easily verified by complete enumeration. This is
not possible, however, for problems with large dimensions. To test Algorithm 4.1’s
performance on large-scale problems, we ran our program with 10 sets of “large”
problem dimensions, each of which has m ≥ 10. As before, the program gener-
ated and solved 1000 random instances of Problem P, but this time we did not
use the program to verify the solution by complete enumeration. Table 3 records
the program’s running times on a MacBook Pro (2.66GHz Intel Core i7 processor).
The efficiency of Algorithm 4.1 is clearly evident here: solving 1000 random prob-
lems with m = 50 takes only 15 seconds. Solving just one of these problems using
complete enumeration would take hours, if not days.

Acknowledgements. We would like to thank the anonymous reviewers for their
kind comments.

REFERENCES

[1] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, “Nonlinear Programming: Theory and Algo-
rithms,” 3rd edition, John Wiley, New Jersey, 2006.

[2] R. Bellman, “Dynamic Programming,” Dover Publications, New York, 2003.
[3] J. Couillard, A decision support system for vehicle fleet planning, Decision Support Systems,

9 (1993), 149-159.
[4] G. Ghiani, G. Laporte and R. Musmanno, “Introduction to Logistics Systems Planning and

Control,” John Wiley, Chichester, 2004.
[5] A. Hoff, H. Andersson, M. Christiansen, G. Hasle and A. Løkketangen, Industrial aspects

and literature survey: Fleet composition and routing, Computers & Operations Research, 37
(2010), 2041-2061.

[6] A. Imai and F. Rivera, Strategic fleet size planning for maritime refrigerated containers,
Maritime Policy & Management, 28 (2001), 361-374.

[7] D. Kirby, Is your fleet the right size?, Operational Research Quarterly, 10 (1959), 252.
[8] M. Y. Lai, C. S. Liu and X. J. Tong, A two-stage hybrid meta-heuristic for pickup and

delivery vehicle routing problem with time windows, Journal of Industrial & Management
Optimization, 6 (2010), 435-451.

[9] D. G. Luenberger and Y. Ye, “Linear and Nonlinear Programming,” 3rd edition, Springer,
New York, 2008.

16 RYAN LOXTON AND QUN LIN

[10] H. L. Royden, “Real Analysis,” 3rd edition, Prentice Hall, New Jersey, 1988.
[11] I. F. A. Vis, R. B. M. de Koster and M. W. P. Savelsbergh, Minimum vehicle fleet size under

time-window constraints at a container terminal, Transportation Science, 39 (2005), 249-260.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: R.Loxton@curtin.edu.au

E-mail address: Q.Lin@curtin.edu.au

	1. Introduction
	2. Preliminary Results
	3. Special Case: One Vehicle Type
	4. Solving Problem P: A Dynamic Programming Approach
	5. Numerical Results
	Acknowledgements
	REFERENCES

