
Applied Mathematical Sciences, Vol. 7, 2013, no. 119, 5901 - 5925
HIKARI Ltd, www.m-hikari.com

http://dx.doi.org/10.12988/ams.2013.37361

Inverse Optimal Filtering of

Linear Distributed Parameter Systems

K.D. Do

Department of Mechanical Engineering
Curtin University, Perth, WA 6845, Australia

Copyright c⃝ 2013 K.D. Do. This is an open access article distributed under the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

Abstract

A constructive method is developed to design inverse optimal filters to
estimate the states of a class of linear distributed parameter systems (DPSs)
based on the calculus of variation approach. Inverse optimality guarantees
that the cost functional to be minimized is meaningful in the sense that the
symmetric and positive definite weighting kernel matrix on the states is chosen
after the filter design instead of being specified at the start of the filter design.
Inverse optimal design enables that the Riccati nonlinear partial differential
equation (PDE) can be simplified to a Bernoulli PDE, which can be solved
analytically. The filter design is based on a new Green matrix formula, a
new unique and bounded solution of a linear PDE, and analytical solution of
a Bernoulli PDE. The inverse optimal filter design is first developed for the
case where the measurements are spatially available, then is extended to the
practical case where only a finite number of measurements is available.

Keywords: Distributed parameter systems, Inverse optimal filter, Bernoulli
PDE, Riccati PDE

1 Introduction
In many physical processes, the dynamical system one wishes to estimate is described
by PDEs such as chemical reactors, heat exchangers, transmission lines, vibrating
beams and electrical, optical or acoustic waves. All of these are DPSs, which may
be subject to bounded disturbances, and the problem of estimating the state from
noisy observations is an important engineering one. The optimal filtering design
techniques of these systems can be roughly classified into two main approaches.

The first approach referred to as the model approach, see for example [19], [15],
[17], [6], to this problem is to obtain an approximate lumped parameter model for
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a DPS and then to apply the well-known finite-dimensional techniques [1], [8], [10].
The modal approach can only observe a finite number of modes of a DPS and has
a significant drawback of computing appropriate gain matrices.

The second approach applies semigroup theory to represent PDEs as ODEs in
Hilbert spaces. From here the classical optimal filtering results are extended into
infinite-dimensional systems [22], [3], [11], [2]. This approach eventually results
in operator Riccati equations which have similarities to the results presented here.
The operator Riccati equations are nonlinear and are to be solved backward in time.
These operator Riccati equations are equivalent to Riccati nonlinear PDEs in the
Euclidean space. Solutions to the Riccati nonlinear PDEs are extremely rare and
are only available for some very simple systems such as in [14], [20], and approximate
solutions by an eigenfuncion expansion in [18], [21]. The eigenfunction expansion
is usually appropriate for linear PDEs but not for nonlinear PDEs like the Riccati
nonlinear PDEs. Moreover, there have no formal proof of existence and uniqueness
of the symmetric and positive definite solution of these Riccati nonlinear PDEs for a
sufficiently large class of linear DPSs, which cover the important practical processes.

Difficulties arisen in solving the Riccati nonlinear PDEs and two-point-boundary
value problems, which are resulted from the classical design of optimal filters for
distributed parameter systems, motivate the approach of designing inverse optimal
filters in this paper. The difference between the direct and the inverse optimal
filtering problems is that the former designs a filter that minimizes a given cost,
while the latter seeks a filter that minimizes a “meaningful” cost functional, which is
a part of the solution of the Bernoulli PDE. The proposed development of the inverse
optimal filter design in this paper is related to the development of inverse optimal
controllers for systems governed by nonlinear ODEs in [12], [9]. The inverse approach
in [12], [9] uses a control Lyapunov function, which is a solution of Hamilton-Jacobi-
Bellman with a meaningful cost, for systems governed by nonlinear ODEs obtained
by solving a stabilization problem.

The rest of the paper is organized as follows. The inverse optimal filtering
problem is formulated in Section 2. In Section 3, we derive preliminary results that
will be used in the filter design. The calculus of variation approach is utilized to
derive the inverse optimal filters in Section 4. Section 5 presents an extension of
the filter designed in Section 4 to the practical case where only a finite number of
measurements is available. Proof of results are given in Appendices A, B, C, and D.

Notations: For a r × r positive definite matrix A(x,y), the notation A+(x,y)
denotes its generalized inverse such that

∫
D
A(x,y)A+(y,x′)dy = Iδ(x− x′) with

I being the r × r identity matrix, and δ(x − x′) being the Dirac delta function of
(x−x′). For two vectors a and b with the same size, the notation < a, b > denotes
their inner product. For a matrix operator Ax, the notation A

∗
x denotes its adjoint.

2 Problem formulation

Let D be a open bounded set in Euclidean n-space En with piecewise smooth bound-
ary S, and let t denote time defined on an interval T = [t0, tf ] with tf > t0. In this
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paper, we consider a class of DPSs governed by the following linear PDE:

∂χ(x, t)

∂t
= Axχ(x, t) +wd(x, t), ∀x ∈ D,

χ(x, t0) = χ0(x) +w0(x), ∀x ∈ D,

βξχ(ξ, t) = wb(ξ, t), ∀ ξ ∈ S,

(1)

where x = col(x1, ..., xn) ∈ D is the n-dimensional spatial coordinate vector; χ(x, t) =
col(χ1(x, t), ..., χr(x, t)) is the r-dimensional vector state; wd(x, t) and w0(x) are r-
dimensional bounded disturbance vectors distributed over the interior; and wb(ξ, t)
is a r-dimensional bounded disturbance vector distributed over the boundary.

We assume in addition that the md-dimensional measurement vector zd(x, t)
distributed over the interior and the mb-dimensional measurement vector zb(x, t)
distributed over the boundary are available in the form

zd(x, t) =Hd(x, t)χ(x, t) + εd(x, t),

zb(ξ, t) =Hb(ξ, t)χ(ξ, t) + εb(ξ, t),
(2)

where Hd(x, t) is a md × r matrix defined for all x ∈ D and t ∈ T , Hb(ξ, t) is a
mb × r matrix defined for all ξ ∈ S and t ∈ T , and εd(x, t) and εb(ξ, t) are the
md-dimensional and mb-dimensional vectors of bounded measurement disturbances,
respectively. In this paper, we impose the following assumption.

Assumption 2.1

1. The matrix operators Ax and βξ are given by

Ax[•] =
n∑

i,j=1

Aij(x, t)
∂2[•]
∂xi∂xj

+
n∑

i=1

Bi(x, t)
∂[•]
∂xi

+C(x, t)[•],

βξ[•] =
n∑

j=1

Aj(ξ, t)
∂[•]
∂xj

+ F (ξ, t)[•],
(3)

where the Aij(x, t), Bi(x, t), C(x, t), and F (ξ, t) are r × r matrices, and

Aj(ξ, t) =
n∑

i=1

Aij(ξ, t) cos(nξ, xi), (4)

with nξ being the outward normal to the boundary S at the point ξ ∈ S,
and (nξ, xi) being the angle between the outward normal nξ and the xi-axis.
Furthermore, the matrix Aij(x, t) is symmetric, i.e., Aij(x, t) = Aji(x, t). In

the second equation of (3), we have denoted the notation ∂[•]
∂xj

= ∂[•(x,t)]
∂xj

∣∣
x=ξ

.

2. There exist symmetric and positive definite matricesQ+
d (x,y, t) andQ

+
b (ξ,α, t)

such that the matrices Q̄d(x,y, t) and Q̄b(ξ,α, t) defined by

Q̄d(x,y, t) =H
T
d (x, t)Q

+
d (x,y, t)Hd(y, t),

Q̄b(ξ,α, t) =H
T
b (ξ, t)Q

+
b (ξ,α, t)Hb(α, t)

(5)

are bounded and symmetric and positive definite.
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3. Let the boundary S be represented locally by the equation

col(ψ1(x), ..., ψr(x)) = 0 (6)

in the neighborhood of the point ξ ∈ S and let ψi(x) ≥ 0, i = 1, ..., r, if x ∈ D̄
where D̄ is the closure of D, i.e., D̄ = D ∪ S. Moreover, let δ(ψi(x)) be a
generalized function concentrated on the boundary S, an (n − 1)-dimensional
manifold [7]. Then we have the formula [7]∫

D

δ(ψ(x))ϕ(x)dx =

∫
S

ϕ(ξ)dSξ, (7)

where δ(ψ(x)) = diag(δ(ψ1(x)), ..., δ(ψr(x))). There exist symmetric and pos-
itive definite matrices Ld(x,y, t) and Lb(ξ, t) such that the system

∂Z(x,y, t)

∂t
= −Z(x,y, t)Āy − [Āx]

TZ(x,y, t),

Z(x,y, t0) = Z0(x,y),

β̄ξZ(ξ,y, t) = 0

(8)

is exponentially stable at the origin, where

Āx[•] = Ax[•] +Ld(x,y, t)[•],
β̄ξ[•] = βξ[•]− δ(ψ(x))Lb(ξ, t)[•]

(9)

In this paper, we consider the following filter design objective.

Filter Design Objective 2.1 Subject to the constraints defined by (1), design an
estimate χ̂(x, t) for χ(x, t) so as to minimize the following cost functional:

J =

∫ tf

t0

Ldt+ J0, (10)

where

L =
1

2

∫
D2

⟨(
∂χ(x, t)

∂t
−Axχ(x, t)

)
,R+

d (x,y, t)

(
∂χ(y, t)

∂t
−Ayχ(y, t)

)⟩
dxdy

+
1

2

∫
S2

⟨
βξχ(ξ, t),R

+
b (ξ,α, t)βαχ(α, t)

⟩
dSξdSα

+
1

2

∫
D2

⟨
[zd(x, t)−Hd(x, t)χ(x, t)],Q

+
d (x,y, t)[zd(y, t)−Hd(y, t)χ(y, t)]

⟩
dxdy

+
1

2

∫
S2

⟨
[zb(ξ, t)−Hb(ξ, t)χ(ξ, t)],Q

+
b (ξ,α, t)[zb(α, t)−Hb(α, t)χ(α, t)]

⟩
dSξdSα,

J0 =
1

2

∫
D2

⟨[
χ(x, t0)− χ0(x)

]
,P+

0 (x,y)
[
χ(y, t)− χ0(y)

]⟩
dxdy,

(11)

with the symmetric and positive definite matrices Qd(x,y, t) and Qb(ξ,α, t) being
defined in Item 2) of Assumption 2.1, and P0(x,y), Rd(x,y, t) and Rb(ξ,α, t) being
symmetric and positive definite matrices.
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3 Preliminaries

In this section, we derive a matrix Green’s formula, a formula for differentiation of
a generalized inverse matrix, a derivation of the unique and bounded solution of a
linear PDE, and an analytical solution of a Bernoulli nonlinear PDE. These results
will be used in the filter design.

3.1 Matrix Green’s Formula

Lemma 3.1 Consider the matrix differential operators Ax and βξ defined in (3).
Then∫

D

[⟨
Axγ(x, t),λ(x, t)

⟩
−

⟨
γ(x, t),A∗

xλ(x, t)
⟩]
dx =∫

S

[⟨
βξγ(ξ, t),λ(ξ, t)

⟩
−
⟨
γ(ξ, t),β∗

ξλ(ξ, t)
⟩]
dSξ,

(12)

where dx = dx1dx2...dxn and dSξ is the surface element of S at the point ξ. The
adjoint operators A∗

x and β∗
ξ are given by

A∗
x[•] =

n∑
i,j=1

∂2(Aij(x, t)[•])
∂xi∂xj

−
n∑

i=1

∂(Bi(x, t)[•])
∂xi

+C(x, t)[•],

β∗
ξ[•] =

n∑
j=1

Aj(ξ, t)
∂[•]
∂xj

−K(ξ, t)[•] + F (ξ, t)[•],
(13)

with

K(ξ, t) =
n∑

i=1

[
Bi(ξ, t)−

n∑
j=1

∂Aij(ξ, t)

∂xj

]
cos(nξ, xi). (14)

We have denoted the notation ∂[•]
∂xj

= ∂[•(x,t)]
∂xj

∣∣
x=ξ

in (13) and (14).

Proof. See Appendix A.

3.2 Time derivative of the generalized inverse of a matrix

Lemma 3.2 LetA+(x,y, t) denote the generalized inverse of a matrixA(x,y, t),
i.e, ∫

D

A(x′,y′, t)A+(y′,y, t)dy′ = Iδ(x′ − y). (15)

The time derivative of the generalized inverse of A+(x,y, t) is given by

∂A+(x,y, t)

∂t
= −

∫
D2

A+(x,x′, t)
∂A(x,y′, t)

∂t
A+(y′,y, t)dx′dy′. (16)

Proof. See Appendix B.
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3.3 Existence and uniqueness of the solution of a PDE

Lemma 3.3 Consider the following matrix linear PDE:

∂N (x,y, t)

∂t
= −ĀxN (x,y, t)−N (x,y, t)ĀT

y +R(x,y, t),

N (x,y, t0) =N0(x,y),

β̄ξN (ξ,y, t) = 0, ξ ∈ S,y ∈ D,

(17)

where Āx and β̄ξ are defined in (9), R(x,y, t) and N0(x,y) are bounded and sym-
metric matrices. Then there exists a unique bounded solution N (x,y, t) given by

N(x,y, t) =

∫
D2

G(x, t;x′, t0)N0(x
′,y′)GT (y, t;y′, t0)dx

′dy′+∫ t

t0

∫
D2

G(x, t− τ + t0;x
′, t0)R(x′,y′, τ)GT (y, t− τ + t0;y

′, t0)dx
′dy′dτ,

(18)

where the Green function G(x, t;x′, t0) satisfies

∂G(x, t;x′, t0)

∂t
= −ĀxG(x, t;x′, t0),

G(x, t0;x
′, t0) = Iδ(x− x′),

β̄ξG(ξ, t;x′, t0) = 0.

(19)

Proof. See Appendix C.

3.4 Analytical solution of a Bernoulli nonlinear PDE

Lemma 3.4 Consider the following Bernoulli nonlinear PDE

∂P (x,y, t)

∂t
= ĀxP (x,y, t)−

∫
D2

P (x,x′, t)R̄d(x
′,x′′, t)P (x′′,y, t)dx′dx′′

+ P (x,y, t)[Āy]
T−

∫
S2

P (x, ξ, t)R̄b(ξ,γ, t)P (γ,y, t)dSξdSγ ; (x,y) ∈ D,

P (x,y, t0) = P0(x,y); (x,y) ∈ D,

β̄ξP (ξ,y, t) = 0; ξ ∈ S,y ∈ D

(20)

where R̄d(x,y, t), R̄b(ξ,γ, t), and P0(x,y) are a symmetric and positive definite
matrices, and Āx and β̄ξ are defined in (9). Then, there exists a unique bounded
solution P (x,y, t) of (20), and P (x,y, t) is given by

P (x,y, t) =

∫
D2

G(x, t;x′, t0)
[
P+

0 (x′,y′) +M (x′,y′, t)
]+
GT (y, t;y′, t0)dx

′dy′,

(21)
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where

M (x,y, t) =

∫ t

t0

∫
D2

GT (η, τ ;x, t0)R̄d(η,α, τ)G(α, τ ;y, t0)dη dα dτ

+

∫ t

t0

∫
S2

GT (ξ, τ ;x, t0)R̄b(ξ,γ, τ)G(γ, τ ;y, t0)dSη dSγ dτ

(22)

and the Green function G(x, t;x′, t′) satisfies

∂G(x, t;x′, t′)

∂t̄
= ĀxG(x, t;x′, t′),

G(x, t′;x′, t′) = Iδ(x− x′),

β̄ξG(ξ, t;x′, t′) = 0.

(23)

Proof. See Appendix D.

4 Optimal Observer Design
4.1 Distributed measurements

We reformulate the filter design problem as an optimal control to avoid statisti-
cal assumptions on the disturbance vectors wd(x, t), w0(x), wb(ξ, t), εd(x, t), and
εb(ξ, t), and to avoid a probabilistic treatment. As such, we desire to minimize the
following cost functional J defined in (10) with respect to χ(x, t), ud(x, t), and
ub(ξ, t) where we recast the functional L to

L=
1

2

∫
D2

⟨
ud(x, t),R

+
d (x,y, t)ud(y, t)

⟩
dxdy+

1

2

∫
S2

⟨
ub(ξ, t),R

+
b (ξ,α, t)ub(α, t)

⟩
dSξdSα

+
1

2

∫
D2

⟨
[zd(x, t)−Hd(x, t)χ(x, t)],Q

+
d (x,y, t)[zd(y, t)−Hd(y, t)χ(y, t)]

⟩
dxdy

+
1

2

∫
S2

⟨
[zb(ξ, t)−Hb(ξ, t)χ(ξ, t)],Q

+
b (ξ,α, t)[zb(α, t)−Hb(α, t)χ(α, t)]

⟩
dSξdSα,

(24)

subject to the constraints

∂χ(x, t)

∂t
= Axχ(x, t) + ud(x, t), ∀x ∈ D,

χ(x, t0) = χ0(x) +w0(x), ∀x ∈ D,

βξχ(ξ, t) = ub(ξ, t), ∀ ξ ∈ S.

(25)

To remove the above constraints, we introduce the Lagrange multiplier λ(w, t) with
w ∈ D or w ∈ S and construct the following extended functional

L1 =L+

∫
D

⟨
λ(x, t),

∂χ(x, t)

∂t
−Axχ(x, t)− ud(x, t)

⟩
dx

+

∫
S

⟨
λ(ξ, t),−βξχ(ξ, t) + ub(ξ, t)

⟩
dSξ.

(26)
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Thus, the problem of minimizing the cost functional (10) with L given in (24) subject
to the constraints (25) is equivalent to the one of minimizing the cost functional

J1 =

∫ tf

t0

L1dt+ J0 (27)

without any constraints. Deriving and setting the weak variation δJ1, see Appendix
E, with respect to χ(x, t), λ(x, t), ud(x, t), and ub(ξ, t) to zero result in the following
necessary conditions referred to as the set of Euler-Lagrange equations for the cost
functional J1 to be minimized:

∂χ(x, t)

∂t
= Axχ(x, t)−

∫
D

Rd(x,y, t)λ(y, t)dy,

βξχ(ξ, t) = −
∫
S

Rb(ξ,α, t)λ(α, t)dSα, ∀ ξ ∈ S,

∂λ(x, t)

∂t
=−A∗

xλ(x, t)+

∫
D

HT
d (x, t)Q

+
d (x,y, t)

[
zd(y, t)−Hd(y, t)χ(y, t)

]
dy,

β∗
ξλ(ξ, t) = −

∫
S

HT
b (ξ, t)Q

+
b (ξ,α, t)

[
zb(α, t)−Hb(α, t)χ(α, t)

]
dSα,

λ(x, t0) = −
∫
D

P+
0 (x,y)[χ(y, t0)− χ0(y)]dy,

λ(x, tf ) = 0.

(28)

The whole system (28) is coupled and is not of two initial-value problems but con-
stitutes a single two-point boundary value (TPBV) problem in the time interval T .
Thus, we will convert the TPBV problem to an initial value problem. We define

χ̃(x, t) = χ(x, t)− χ̂(x, t),
χ̃(ξ, t) = χ(ξ, t)− χ̂(ξ, t),

(29)

where χ(x, t) and χ(ξ, t) are the state vectors of the system (28) (not of the original
system (1)). Substituting (29) into (28) results in

∂χ̃(x, t)

∂t
= −∂χ̂(x, t)

∂t
+Axχ̂(x, t) +Axχ̃(x, t)−

∫
D

Rd(x,y, t)λ(y, t)dy,

βξχ̃(ξ, t) = −βξχ̂(x, t)−
∫
S

Rb(ξ,α, t)λ(α, t)dSα, ∀ ξ ∈ S,

(30)

and

∂λ(x, t)

∂t
=−A∗

xλ(x, t)+

∫
D

HT
d (x, t)Q

+
d (x,y, t)

[
zd(y, t)−Hd(y, t)χ̂(y, t)

]
dy

−
∫
D

Q̄d(x,y, t)χ̃(y, t)dy,

β∗
ξλ(ξ, t) = −

∫
S

HT
b (ξ, t)Q

+
b (ξ,α, t)

[
zb(α, t)−Hb(α, t)χ̂(α, t)

]
dSα

+

∫
S

Q̄b(ξ,α, t)χ̃(α, t)dSα,
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λ(x, t0) = −
∫
D

P+
0 (x,y)[χ̂(y, t0)− χ0(y)]dy −

∫
D

P+
0 (x,y)χ̃(y, t0)dy,

λ(x, tf ) = 0,

(31)

where Q̄d(x,y, t) and Q̄b(ξ,α, t) are defined in (5). The set of equations (30)
suggests that we choose

∂χ̂(x, t)

∂t
= Axχ̂(x, t) +Ω(x, t),

βξχ̂(ξ, t) = 0, ∀ ξ ∈ S,

χ̂(x, t0) = χ0(x),

(32)

where Ω(x, t) is a vector function to be determined later. The reason of introducing
Ω(x, t) is that χ(x, t) and λ(x, t) are not independent so as χ̃(x, t) and λ(x, t). As
such, substituting (32) into (30) results in

∂χ̃(x, t)

∂t
= Axχ̃(x, t)−

∫
D

Rd(x,y, t)λ(y, t)dy −Ω(x, t),

βξχ̃(ξ, t) = −
∫
S

Rb(ξ,α, t)λ(α, t)dSα, ∀ ξ ∈ S.

(33)

We now convert (33) and (31) to an initial value problem. As such, the third
equation of (31) suggests that we introduce the following coordinate transformation

χ̃(x, t) = −
∫
D

P (x,y, t)λ(y, t)dy, (34)

where P (x,y, t) is symmetric and positive semidefinite to be determined so that
λ(x, t) satisfies the last four equations of (33).

4.1.1 Determination of P (x,y, t0)

The fifth equation of (33) and (34) suggest that we choose the initial condition for
P (x,y, t) as:

P (x,y, t0) = P0(x,y). (35)

It is seen from (35) that λ(x,y, t) satisfies the initial condition specified by the fifth
equation of (33). At t = tf , substituting λ(x, tf ) = 0, see the last equation of (33),
to (34) results in χ̃(x, tf ) = 0. This implies that χ̂(x, tf ) = χ(x, tf ), i.e., χ̂(x, t) is
the exact estimate of χ(x, t) at t = tf .

4.1.2 Determination of βξP (ξ,y, t)

We need to determine the condition for βξP (ξ,y, t) so that the second equation of
(33) satisfies. As such, substituting x by ξ into (34) then applying the operator βξ

to the resulting equation yields

βξχ̃(ξ, t) = −
∫
D

βξP (ξ,y, t)λ(y, t)dy. (36)
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Next, applying the formula (7) to the term
∫
S
Rb(ξ,α, t)λ(α, t)dSα in the second

equation of (33) yields∫
D

σ(ψ(y))Rb(ξ,y, t)λ(y, t)dy =

∫
S

Rb(ξ,α, t)λ(α, t)dSα. (37)

Now substituting (37) into the second equation of (33) gives

βξχ̃(ξ, t) = −
∫
D

σ(ψ(y))Rb(ξ,y, t)λ(y, t)dy. (38)

Comparing (38) with (36) suggests that we choose the condition for βξP (ξ,y, t) as

βξP (ξ,y, t) = σ(ψ(y))Rb(ξ,y, t). (39)

4.1.3 Determination of P (x,y, t)

We now determine P (x,y, t) so that λ(x, t) satisfies (33) and (31). Differentiating
both sides of (34) along the solutions of (33) and (31) gives

∂χ̃(x, t)

∂t
= −

∫
D

∂P (x,y, t)

∂t
λ(y, t)dy +

∫
D

P (x,y, t)A∗
yλ(y, t)dy

−
∫
D2

P (x,y, t)HT
d (y, t)Q

+
d (y,y

′, t)[zd(y
′, t)−Hd(y

′, t)χ̂(y′, t)]dy′dy

−
∫
D3

P (x,y′, t)Q̄d(y
′,y′′, t)P (y′′,y, t)λ(y, t)dy′′dy′dy,

(40)

where we have used (34). Taking inner product both sides of (40) with λ(x, t) then
integrating over D yields∫

D

⟨
λ(x, t),

∂χ̃(x, t)

∂t

⟩
dx = −

∫
D2

⟨
λ(x, t),

∂P (x,y, t)

∂t
λ(y, t)

⟩
dxdy

+

∫
D2

⟨
λ(x, t),P (x,y, t)A∗

yλ(y, t)
⟩
dxdy

−
∫
D2

⟨
λ(x, t),

∫
D

P (x,y, t)HT
d (y, t)Q

+
d (y,y

′, t)[zd(y
′, t)−Hd(y

′, t)χ̂(y′, t)]dy′
⟩
dxdy

−
∫
D2

⟨
λ(x, t),

∫
D2

P (x,y′, t)Q̄d(y
′,y′′, t)P (y′′,y, t)λ(y, t)dy′′dy′

⟩
dxdy.

(41)

Applying Lemma 3.1 to the second integral term in the right hand side of (41) gives∫
D2

⟨
λ(x, t),P (x,y, t)A∗

yλ(y, t)
⟩
dxdy =

∫
D2

⟨
λ(x, t),

[
P (x,y, t)AT

y

]
λ(y, t)

⟩
dydx

−
∫
D

∫
S

⟨
λ(x, t), [βξP (ξ,x, t)]Tλ(ξ, t)

⟩
dxdSξ

+

∫
D

∫
S

⟨
λ(x, t),P (x, ξ, t)β∗

ξλ(x, t)
⟩
dxdSξ.

(42)
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Substituting the third equation of (33) and (39) into (42) gives∫
D2

⟨
λ(x, t),P (x,y, t)A∗

yλ(y, t)
⟩
dxdy =

∫
D2

⟨
λ(x, t),

[
P (x,y, t)AT

y

]
λ(y, t)

⟩
dydx

−
∫
D

⟨
λ(x, t),

∫
S

[
σ(ψ(x))Rb(ξ,x, t)

]T
λ(ξ, t)dSξ

⟩
dx

−
∫
D

⟨
λ(x, t),

∫
S2

P (x, ξ, t)HT
b (ξ, t)Q

+
b (ξ,α, t)

[
zb(α, t)

−Hb(α, t)χ̂(α, t)
]
dSαdSξ

⟩
dx

−
∫
D2

⟨
λ(x, t),

∫
S2

P (x, ξ, t)Q̄b(ξ,α, t)P (α,y, t)λ(y, t)dSαdSξ

⟩
dxdy.

(43)

Applying the formula (7) to the second term in the right hand side of (43) yields∫
D2

⟨
λ(x, t),P (x,y, t)A∗

yλ(y, t)
⟩
dxdy =

∫
D2

⟨
λ(x, t),

[
P (x,y, t)AT

y

]
λ(y, t)

⟩
dydx

−
∫
D2

⟨
λ(x, t),σ(ψ(y))Rb(x,y, t)σ(ψ(x))λ(y, t)

⟩
dxdy

−
∫
D

⟨
λ(x, t),

∫
S2

P (x, ξ, t)HT
b (ξ, t)Q

+
b (ξ,α, t)

[
zb(α, t)−Hb(α, t)χ̂(α, t)

]
dSαdSξ

⟩
dx

−
∫
D2

⟨
λ(x, t),

∫
S2

P (x, ξ, t)Q̄b(ξ,α, t)P (α,y, t)λ(y, t)dSαdSξ

⟩
dxdy,

(44)

On the other hand, substituting (34) into the right hand side of the first equation
of (33) then taking inner product with λ(x, t) and integrating over D yields

∫
D

⟨
λ(x, t),

∂χ̃(x, t)

∂t

⟩
dx = −

∫
D2

⟨
λ(x, t),AxP (x,y, t)λ(y, t)

⟩
dxdy

−
∫
D2

⟨
λ(x, t),Rd(x,y, t)λ(y, t)

⟩
dxdy −

∫
D

⟨
λ(x, t),Ω(x, t)

⟩
dx.

(45)

Since λ(x, t) is a nontrivial solution of the third equation of (33), comparing (45)
with substitution of (44) into (41) suggests that we choose the term Ω(x, t) as

Ω(x, t) =

∫
D2

P (x,y, t)HT
d (y, t)Q

+
d (y,y

′, t)
[
zd(y

′, t)−Hd(y
′, t)χ̂(y′, t)

]
dy′dy

+

∫
S2

P (x, ξ, t)HT
b (ξ, t)Q

+
b (ξ,α, t)

[
zb(α, t)−Hb(α, t)χ̂(α, t)

]
dSαdSξ,

(46)
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and the equation for P (x,y, t) as

∂P (x,y, t)

∂t
=AxP (x,y, t)+P (x,y, t)AT

y+Rd(x,y, t)−σ(ψ(y))Rb(x,y, t)σ(ψ(x))

−
∫
D2

P (x,y′, t)Q̄d(y
′,y′′, t)P (y′′,y, t)dy′′dy′−

∫
S2

P (x, ξ, t)Q̄b(ξ,α, t)P (α,y, t)dSαdSξ,

(47)

which is a Riccati nonlinear PDE. Since solving this PDE is extremely difficult, we
propose a special choice of the matrices Rd(x,y, t) and Rb(ξ,y, t) to simplify the
Riccati nonlinear PDE (47) to a Bernoulli nonlinear PDE, of which an analytical
solution can be found. So, we choose the matrices Rd(x,y, t) and Rb(ξ,y, t) as

Rd(x,y, t)=Ld(x,y,t)P (x,y, t)+P (x,y,t)LT
d (x,y,t)+σ(ψ(y))Rb(x,y, t)σ(ψ(x)),

Rb(ξ,y, t) = Lb(ξ, t)P (ξ,y, t),

(48)

where the matrices Ld(x,y, t) and Lb(ξ, t) are defined in Item 3) of Assumption 2.1.
The observer is given by substituting Ω(x, t) defined in (46) into (32) as

∂χ̂(x, t)

∂t
= Axχ̂(x, t)

+

∫
D2

P (x,y, t)HT
d (y, t)Q

+
d (y,y

′, t)
[
zd(y

′, t)−Hd(y
′, t)χ̂(y′, t)

]
dy′dy

+

∫
S2

P (x, ξ, t)HT
b (ξ, t)Q

+
b (ξ,α, t)

[
zb(α, t)−Hb(α, t)χ̂(α, t)

]
dSαdSξ,

χ̂(x, t0) = χ0(x),

βξχ̂(ξ, t) = 0,

(49)

and P (x,y, t) generated by substituting (48) into (47) and (39) with the initial
condition (35) as

∂P (x,y, t)

∂t
= ĀxP (x,y, t)−

∫
D2

P (x,y′, t)Q̄d(y
′,y′′, t)P (y′′,y, t)dy′′dy′

+ P (x,y, t)ĀT
y −

∫
S2

P (x, ξ, t)Q̄b(ξ,α, t)P (α,y, t)dSαdSξ,

P (x,y, t0) = P0(x,y),

β̄ξP (ξ,y, t) = 0,

(50)

where Āx and β̄ξ are defined in (9). Note that (49) is an initial value problem.

4.2 Observer error dynamics and stability analysis

4.2.1 Observer error dynamics

Define the original observer error

χe(x, t) = χ(x, t)− χ̂(x, t),
χe(ξ, t) = χ(ξ, t)− χ̂(ξ, t),

(51)
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where χ(x, t) and χ(ξ, t) are now the state vector of the original system (1). It is
noted that in (51), χ(x, t) and χ(ξ, t) are the state vectors of the original system
(1) (not of the system (28)). Differentiating both sides of the first equation of (51)
with respect to t along the solutions of the observer system (49), the original system
(1), and the measurement system (2) yields

∂χe(x, t)

∂t
=Axχe(x, t)−

∫
D2

P (x,y, t)Q̄d(y,y
′, t)χe(y

′, t)dy′dy

−
∫
S2

P (x, ξ, t)Q̄b(ξ,α, t)χe(α, t)dSαdSξ+wd(x, t)

−
∫
D2

P (x,y, t)HT
d (y, t)Q

+
d (y,y

′, t)εd(y
′, t)dy′dy

−
∫
S2

P (x, ξ, t)HT
b (ξ, t)Q

+
b (ξ,α, t)εb(α, t)dSαdSξ,

χe(x, t0) = w0(x),

βξχe(ξ, t) = wb(ξ, t).

(52)

4.2.2 Lyapunov stability analysis

To analyze stability of the observer error system (52) at the origin, we consider the
following Lyapunov functional candidate

V (t) =

∫
D2

⟨
χe(x, t),P

+(x,y, t)χe(y, t)
⟩
dxdy, (53)

where P (x,y, t) is the symmetric and positive definite solution of the third equation
of (52). A calculation shows that differentiating both sides of (53) with respect time
t results in

dV (t)

dt
= −

∫
D2

⟨
χe(x, t),

(
Q̄d(x,y, t) + R̄d(x,y, t)

)
χe(y, t)

⟩
dxdy

−
∫
S2

[⟨
χe(ξ, t), Q̄b(ξ,α, t)χe(α, t)

⟩
+ 2

⟨
εb(ξ, t),Q

+
b (ξ,α, t)Hb(α, t)χe(α, t)

⟩]
dαdSξ

−2

∫
D2

[⟨
εd(x, t),Q

+
d (x,y, t)Hd(y, t)χe(y, t)

⟩
−
⟨
wd(x, t),P

+(x,y, t)χe(y, t)
⟩]
dxdy,

(54)

where

R̄d(x,y, t) =

∫
D2

P+(x,x′, t)
(
Ld(x

′,y′, t)P (x′,y′, t)+P (x′,y′, t)LT
d (x

′,y′, t)
)

× P+(y′,y, t)dx′dy′,

(55)

which is symmetric and positive definite. Since εd(x, t) ∈ Lmd
2 (D × T ), wd(x, t) ∈

Lr
2(D × T ), and εb(x, t) ∈ Lmb

2 (S × T ), an the matrices P+(x,y, t), Q̄d(x,y, t),
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Q̄b(ξ,α, t), and R̄d(x,y, t) are symmetric and positive definite, we conclude from
(53) and (54) that the observer error vector χe(x, t) exponentially converges in L2

norm to a ball centered the origin. The radius of the ball can be made arbitrar-
ily small by a choice of sufficiently large Q̄d(x,y, t), Q̄b(ξ,α, t), and Rd(x,y, t).
Moreover, convergence of χe(x, t) also implies that of χe(ξ, t). This can be seen by
applying the formula (7) to (53).

5 Discrete measurements

We now address the problem of Md measurements taken at x1,x2, ....,xMd
discrete

locations over D and Mb measurements taken at ξ1, ξ2, ...., ξMb
discrete locations

over S. As such, the measurement equation (2) is changed to

zd(xi, t) =Hd(xi, t)χ(xi, t) + εd(xi, t), i = 1, ...,Md

zb(ξi, t) =Hb(ξi, t)χ(ξi, t) + εb(ξi, t), i = 1, ...,Mb.
(56)

Thus, by setting

zd(x, t) =

Md∑
i=1

z(xi, t)Iδ(x− xi), Hd(x, t)χ(x, t) =

Md∑
i=1

Hd(xi, t)χ(xi, t)Iδ(x− xi),

zb(ξ, t) =

Mb∑
i=1

z(ξi, t)Iδ(ξ − ξi), Hb(ξ, t)χ(ξ, t) =

Md∑
i=1

Hd(ξi, t)χ(ξi, t)Iδ(ξ − ξi)

(57)

the cost functional L defined in (11) is changed to

L =
1

2

∫
D2

⟨(
∂χ(x, t)

∂t
−Axχ(x, t)

)
,R+

d (x,y, t)

(
∂χ(y, t)

∂t
−Ayχ(y, t)

)⟩
dxdy

+
1

2

∫
S2

⟨
βξχ(ξ, t),R

+
b (ξ,α, t)βαχ(α, t)

⟩
dSξdSα

+
1

2

∫
D2

⟨ Md∑
i,j=1

[zd(xi, t)−Hd(xi, t)χ(xi, t)],Q
+
d (xi,yj, t)

× [zd(yj, t)−Hd(yj, t)χ(yj, t)]
⟩
Iδ(x− xi)Iδ(y − yj)dxdy

+
1

2

∫
S2

⟨ Mb∑
i,j=1

[zb(ξi, t)−Hb(ξi, t)χ(ξi, t)],Q
+
b (ξi,αj, t)

× [zb(αj, t)−Hb(αj, t)χ(αj, t)]
⟩
Iδ(ξ − ξi)Iδ(α−αj)dSξdSα,

(58)
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Following the same procedure as in the previous subsection with the cost functional
L given in (58) yields the following observer

∂χ̂(x, t)

∂t
= Axχ̂(x, t)

+

Md∑
i,j=1

P (x,yi, t)H
T
d (yi, t)Q

+
d (yi,yj, t)

[
zd(yj, t)−Hd(yj, t)χ̂(yj, t)

]

+

Mb∑
i,j=1

P (x, ξi, t)H
T
b (ξi, t)Q

+
b (ξi,αj, t)

[
zb(αj, t)−Hb(αj, t)χ̂(αj, t)

]
,

χ̂(x, t0) = χ0(x), βξχ̂(ξ, t) = 0,

(59)

where P (x,y, t) is generated by

∂P (x,y, t)

∂t
= ĀxP (x,y, t)−

Md∑
i,j=1

P (x,yi, t)Q̄d(yi,yj, t)P (yj,y, t)

+ P (x,y, t)ĀT
y −

Mb∑
i,j=1

P (x, ξi, t)Q̄b(ξi,αj, t)P (αj,y, t),

P (x,y, t0) = P0(x,y), β̄ξP (ξ,y, t) = 0,

(60)

which has a very similar structure with the observer (49) and (50) but the distributed
measurements are replaced by the spatial discrete ones.

The observer error dynamics are obtained by differentiating both sides of the
first equation of (51) with respect to t along the solutions of the observer system
(59), the original system (1), and the measurement system (56) as follows

∂χe(x, t)

∂t
=Axχe(x, t)+wd(x, t)

−
Md∑
i,j=1

P (x,yi, t)
(
Q̄d(yi,yj, t)χe(yj, t) +H

T
d (yi, t)Q

+
d (yi,yj, t)εd(yj, t)

)
−

Mb∑
i,j=1

P (x, ξi, t)
(
Q̄b(ξi,αj, t)χe(αj, t) +H

T
b (ξi, t)Q

+
b (ξi,αj, t)εb(αj, t)

)
,

χe(x, t0) = w0(x), βξχe(ξ, t) = wb(ξ, t).

(61)

5.0.3 Lyapunov stability analysis

To analyze stability of the observer error system (61) at the origin, we still consider
the Lyapunov functional candidate (53). Differentiating both sides of (53) with
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respect time t along the solutions of (61) yields

dV (t)

dt
= −

Md∑
i,j=1

χe(xi, t), Q̄d(xi,yj, t)χe(yj, t)−
Mb∑

i,j=1

χe(ξi, t), Q̄b(ξi,αj, t)χe(yj, t)

−
∫
D2

⟨
χe(x, t), R̄d(x,y, t)χe(y, t)

⟩
dxdy+2

∫
D2

⟨
wd(x, t),P

+(x,y, t)χe(y, t)
⟩
dxdy

−2

Md∑
i,j=1

⟨
εd(xi, t),Q

+
d (xi,yj, t)Hd(yj, t)χe(yj, t)

⟩
−2

∫
S2

⟨
εb(ξ, t),Q

+
b (ξ,α, t)Hb(α, t)χe(α, t)

⟩
dSαdSξ.

(62)

Convergence of χe(x, t) and χe(ξ, t) to a ball centered at the origin can be analyzed
using the same arguments as in Subsection 4.2.2 with a note that one should apply
the formula (7) to the last integral term in the right hand side of (62).

6 Conclusions

The calculus of variation approach was used to propose a constructive method to de-
sign inverse optimal filters for a class of linear distributed parameter systems. The
systems can contain disturbances distributed over the interior and the boundary.
Moreover, both spatial continuous and discrete measurements corrupted by distur-
bances were addressed. The most shining point of the paper is the introduction of
inverse optimality concept that relaxes difficulties in solving the Riccati nonlinear
PDEs. Novel fundamental results, e.g., the Green matrix formula, the derivation
of unique and bounded solution of a linear PDE, and the analytical solution of a
Bernoulli PDE, on linear and nonlinear PDEs developed in this paper can be further
used for solving other filter design problems for distributed parameter systems and
further improve performance of controlling practical distributed parameter systems
as as marine riser systems in [4], [5], [16].

A Proof of Lemma 3.1

From definition of Ax in (3) and A∗
x in (13), we have⟨

λ,Axγ
⟩
−
⟨
γ,A∗

xλ
⟩
=

n∑
i,j=1

[⟨
λ,Aij

∂2γ

∂xi∂xj

⟩
−
⟨
∂2(Aijλ)

∂xi∂xj
,γ

⟩]

+
n∑
i

[⟨
λ,Bi

∂γ

∂xi

⟩
+

⟨
∂(Biλ)

∂xi
,γ

⟩]
=

n∑
i=1

∂

∂xi

[ n∑
j=1

(⟨
∂γ

∂xj
,Aijλ

⟩
−
⟨
γ,
∂(Aijλ)

∂xj

⟩)
+
⟨
γ,Biλ

⟩]
:=

n∑
i=1

∂Hi

∂xi
,

(63)
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where

Hi =
n∑

j=1

(⟨
Aij

∂γ

∂xj
,λ

⟩
−

⟨
γ,Aij

∂λ

∂xj

⟩
−

⟨
γ,
∂Aij

∂xj
λ

⟩)
+
⟨
γ,Biλ

⟩
. (64)

On the other hand, from the Gauss theorem [13] we have∫
D

n∑
i=1

∂Hi

∂xi
dx =

∫
S

n∑
i=1

Hi(ξ, t) cos(nξ, xi)dSξ. (65)

Integrating both sides of (63) over D and using (65) give∫
D

⟨
λ,Axγ

⟩
−
⟨
γ,A∗

xλ
⟩
dx =

∫
D

n∑
i=1

∂Hi

∂xi
dx =

∫
S

n∑
i=1

Hi(ξ, t) cos(nξ, xi)dSξ. (66)

Substituting the expression of Hi(x, t) defined in (64) with x replaced by ξ into
(66) results in∫

D

⟨
λ,Axγ

⟩
−
⟨
γ,A∗

xλ
⟩
dx =

∫
S

n∑
i=1

[ n∑
j=1

(⟨
Aij

∂γ

∂xj
,λ

⟩
−⟨

γ,Aij
∂λ

∂xj

⟩
−

⟨
γ,
∂Aij

∂xj
λ

⟩)
+
⟨
γ,Biλ

⟩]∣∣∣∣
x=ξ

cos(nξ, xi)dSξ

(67)

Expanding the right hand side of (67) gives∫
D

⟨
λ,Axγ

⟩
−
⟨
γ,A∗

xλ
⟩
dx =∫

S

n∑
j=1

[ n∑
i=1

⟨
Aij(ξ, t)

∂γ(ξ, t)

∂xj
cos(nξ, xi),λ(ξ, t)

⟩]
dSξ−∫

S

n∑
j=1

[ n∑
i=1

⟨
γ(ξ, t),Aij(ξ, t)

∂λ(ξ, t)

∂xj
cos(nξ, xi)

⟩]
dSξ+∫

S

n∑
i=1

⟨
γ(ξ, t),

(
Bi(ξ, t)−

n∑
j=1

∂Aij(ξ, t)

∂xj

)
cos(nξ, xi)λ(ξ, t)

⟩
dSξ

(68)

Substituting the definition of Aj(ξ, t) and K(ξ, t) defined in (4) and (14), respec-
tively, into (68)∫

D

⟨
λ,Axγ

⟩
−

⟨
γ,A∗

xλ
⟩
dx =

∫
S

n∑
j=1

⟨
Aj(ξ, t)

∂γ(ξ, t)

∂xj
,λ(ξ, t)

⟩
dSξ

−
∫
S

n∑
j=1

⟨
γ(ξ, t),Aj(ξ, t)

∂λ(ξ, t)

∂xj

⟩
dSξ +

∫
S

n∑
i=1

⟨
γ(ξ, t),K(ξ, t)λ(ξ, t)

⟩
dSξ.

(69)

Adding and subtracting
∫
S

⟨
γ(ξ, t),F (ξ, t)λ(ξ, t)

⟩
dSξ to the right hand side of (69)

yields (12) by interchanging the role of γ(ξ, t) and λ(ξ, t) in βξ(ξ, t)γ(ξ, t) and
β∗
ξ(ξ, t)γ(ξ, t), which are given in (3) and (13), respectively. �
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B Proof of Lemma 3.2

Differentiating both sides of (15) with respect to t gives∫
D

∂A(x′,y′, t)

∂t
A+(y′,y, t)dy′ +

∫
D

A(x′,y′, t)
∂A+(y′,y, t)

∂t
dy′ = 0. (70)

Multiplying both sides of (70) with A+(x,x′, t) then integrating over D yield∫
D2

A+(x,x′, t)
∂A(x′,y′, t)

∂t
A+(y′,y, t)dy′dx′

+

∫
D2

A+(x,x′, t)A(x′,y′, t)
∂A+(y′,y, t)

∂t
dy′dx′ = 0.

(71)

Substituting
∫
D
A+(x,x′, t)A(x′,y′, t)x′ = Iδ(x− y′) into (71) results in∫

D2

A+(x,x′, t)
∂A(x′,y′, t)

∂t
A+(y′,y, t)dy′dx′+

∫
D

Iδ(x− y′)
∂A+(y′,y, t)

∂t
dy′ = 0,

(72)

which is (16) since
∫
D
Iδ(x− y′)∂A

+(y′,y,t)
∂t

dy′ = ∂A+(x,y,t)
∂t

. �

C Proof of Lemma 3.3

C.1 Verification of the solution N (x,y, t)

C.1.1 Verification of the initial condition and boundary condition

From (18), we have

N (x,y, t0) =

∫
D2

G(x, t0;x
′, t0)N0(x

′,y′)GT (y, t0;y
′, t0)dx

′dy′

=

∫
D2

Iδ(x− x′)N0(x
′,y′)Iδ(y − y′)dx′dy′ =N0(x,y),

(73)

where we have used the second equation of (19). Thus the initial condition is verified.
Also, from (18), we have

β̄ξN(ξ,y, t) =

∫
D2

β̄ξG(ξ, t;x′, t0)N0(x
′,y′)GT (y, t;y′, t0)dx

′dy′+∫ t

t0

∫
D2

β̄ξG(ξ, t− τ + t0;x
′, t0)R(x′,y′, τ)GT (y, t− τ + t0;y

′, t0)dx
′dy′dτ = 0,

(74)

where we have used the third equation of (19). Thus the boundary condition is
verified.
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C.1.2 Verification of N (x,y, t) satisfied the first equation of (17)

Differentiating both sides of (18) with respect to t gives

∂N(x,y, t)

∂t
= −

∫
D2

ĀxG(x, t;x′, t0)N0(x
′,y′)GT (y, t;y′, t0)dx

′dy′

−
∫ t

t0

∫
D2

ĀxG(x, t− τ + t0;x
′, t0)R(x′,y′, τ)GT (y, t− τ + t0;y

′, t0)dx
′dy′dτ

−
∫
D2

G(x, t;x′, t0)N0(x
′,y′)GT (y, t;y′, t0)Ā

T
ydx

′dy′

−
∫ t

t0

∫
D2

G(x, t− τ + t0;x
′, t0)R(x′,y′, τ)GT (y, t− τ + t0;y

′, t0)Ā
T
ydx

′dy′dτ

+

∫
D2

Iδ(x− x′)R(x′,y′, t)Iδ(y − y)dx′dy′

=− ĀxN(x,y, t)−N (x,y, t)ĀT
y +R(x,y, t),

(75)

where we have used the first two equations of (19). Thus the solution N (x,y, t)
satisfies the first equation of (17).

C.2 Proof of uniqueness of N(x,y, t)

Assume that there are two solutions N1(x,y, t) and N2(x,y, t) satisfy (17). Let
Ne(x,y, t) =N1(x,y, t)−N2(x,y, t). Then, substitutingN1(x,y, t) andN2(x,y, t)
then subtracting from each other yield

∂Ne(x,y, t)

∂t
= −ĀxNe(x,y, t)−Ne(x,y, t)Ā

T
y ,

Ne(x,y, t0) = 0,

β̄ξNe(ξ,y, t) = 0, ξ ∈ S,y ∈ D.

(76)

Applying (74) to (76) yields Ne(x,y, t) = 0. Hence N1(x,y, t) = N2(x,y, t), i.e.,
the solution N (x,y, t) defined in (18) is the unique solution of (17). �

D Proof of Lemma 3.4

To prove Lemma 3.4, we first verify that P (x,y, t) given in (21) satisfies the Ric-
cati nonlinear partial differential equation (20). Then, we prove that the solution
P (x,y, t) given in (21) is unique and bounded.

D.1 Verification of the solution P (x,y, t)

We proceed by proving that P (x,y, t) satisfies the terminal condition, i.e., the
second equation in (20), the boundary condition i.e., the third equation in (20), and
the first equation (20).
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First, to prove that P (x,y, t) satisfies the terminal condition in (20), from (22)
and (23), we have

M (x,y, t0) = 0, G(x, t0;x
′, t0) = Iδ(x− x′). (77)

Substituting (77) into the third equation of (21) at t = t0 yields

P (x,y, t0) =

∫
D2

Iδ(x− x′)P0(x
′,y′)Iδ(y − y′)dx′dy′ = P0(x,y). (78)

Second, to prove that P (x,y, t) satisfies the boundary condition in (20), from
the third equation of (21), we have

β̄ξP (ξ,y, t)=

∫
D2

β̄ξG(ξ, t;x′, t0)
[
P+

0 (x′,y′) +M (x′,y′, t)
]+
GT (y, t;y′, t0)dx

′dy′ = 0

(79)

where we have used the third equation of (23).
Third, to prove that P (x,y, t) satisfies the first equation of (20), we differenti-

ating both sides of the third equation of (21) with respect to t̄ to obtain

∂P (x,y, t)

∂t
=

∫
D2

∂G(x, t;x′, t0)

∂t

[
P+

0 (x′,y′) +M (x′,y′, t)
]+
GT (y, t;y′, t0)dx

′dy′

+

∫
D2

G(x, t;x′, t0)
[
P+

0 (x′,y′) +M(x′,y′, t)
]+∂GT (y, t;y′, t0)

∂t
dx′dy′ + Ω

=

∫
D2

ĀxG(x, t;x′, t0)
[
P+

0 (x′,y′) +M (x′,y′, t)
]+
GT (y, t;y′, t0)dx

′dy′

+

∫
D2

G(x, t;x′, t0)
[
P+

0 (x′,y′) +M(x′,y′, t)
]+

[ĀyG(y, t;y′, t0)]
Tdx′dy′ + Ω

=ĀxP (x,y, t) + P (x,y, t)[Āy]
T + Ω,

(80)

where we have used the first equation of (23), and

Ω =

∫
D2

G(x, t;x′, t0)
∂
[
P+

0 (x′,y′) +M (x′,y′, t)
]+

∂t
GT (y, t;y′, t0)dx

′dy′. (81)

Applying Lemma 3.2 to (81) arrives at

Ω =−
∫
D4

G(x, t;x′, t0)
[
P+

0 (x′,x′′) +M (x′,x′′, t)
]+∂M (x′′,y′′, t)

∂t
×[

P+
0 (y′′,y′) +M (y′′,y′, t)

]+
GT (y, t;y′, t0)dx

′dy′dx′′dy′′
(82)

Using the expression of M (x,y, t) defined in (22) gives

∂M (x′′,y′′, t)

∂t
=

∫
D2

GT (η, t;x, t0)R̄d(η,α, t)G(α, t;y, t0)dη dα

+

∫
S2

GT (ξ, t;x, t0)R̄b(ξ,γ, t)G(γ, t;y, t0)dSξ dSγ ,

(83)
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which is substituted into (82) yields

Ω = −
∫
D6

G(x, t;x′, t0)
[
P+

0 (x′,x′′) +M (x′,x′′, t)
]+
GT (η, t;x, t0)R̄d(η,α, t)

×G(α, t;y, t0)
[
P+

0 (y′′,y′) +M (y′′,y′, t)
]+
GT (y, t;y′, t0)dx

′dy′dx′′dy′′dη dα

−
∫
D4

∫
S2

G(x, t;x′, t0)
[
P+

0 (x′,x′′) +M(x′,x′′, t)
]+
GT (ξ, t;x, t0)R̄b(ξ,γ, t)

×G(γ, t;y, t0)
[
P+

0 (y′′,y′) +M (y′′,y′, t̄)
]+
GT (y, t;y′, t0)dx

′dy′dx′′dy′′dSξ dSγ .

(84)

Applying the first equation of (20) to the right hand side of (84) yields

Ω =−
∫
D2

P (x,η, t)R̄d(η,α, t)P (α,y, t)dη dα

−
∫
S2

P (x, ξ, t)R̄b(ξ,γ, t)P (γ,y, t)dSξ dSγ .

(85)

Substituting (85) into (80) yields the first equation of (20).

D.2 Proof of uniqueness of P (x,y, t)

It is seen from (20) that a trivial solution is P (x,y, t) = 0 for all (x,y) ∈ D×D and
t ≥ t0. Moreover, since P (x,y, t0) = P0(x,y) is symmetric and positive definite,
we focus on a non-zero solution of (20). As such, we let P+(x,y, t) be the general-
ized inverse of P (x,y, t). An application of Lemma 3.2 results in differentiation of
P (x,y, t) with respect to t along the solutions of (20):

∂P+(x,y, t)

∂t
= −

∫
D2

P+(x,x′, t)
∂P (x′,y′, t)

∂t
P+(y′,y, t)dx′dy′

= −
∫
D2

P+(x,x′, t)Āx′P (x′,y′, t)P+(y′,y, t)dx′dy′

−
∫
D2

P+(x,x′, t)P (x′,y′, t)[Āy′ ]TP+(y′,y, t)dx′dy′

+

∫
D4

P+(x,x′, t)P (x′,η, t)R̄d(η,α, t)P (α,y′, t)P+(y′,y, t)dx′dy′dη dα

+

∫
D2

∫
S2

P+(x,x′, t)P (x′, ξ, t̄)R̄b(ξ,γ, t̄)P̄ (γ,y′, t)P+(y′,y, t)dx′dy′dSξ dSγ

= −
∫
D

P+(x,x′, t)Āx′Iδ(x′ − y)dx′ −
∫
D

Iδ(x− y′)y′[Āy′ ]TP+(y′,y, t)dy′

+

∫
D2

I(x− η)R̄d(η,α, t̄)Iδ(α− y)η dα+

∫
S2

Iδ(x− ξ)R̄b(ξ,γ, t)Iδ(γ − y)dSξ dSγ ,

= −P+(x,y, t)Āy − [Āx]
TP+(x,y, t) + R̄d(x,y, t) + R̄b(ξ,γ, t).

(86)
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An application of Lemma 3.3 to the last equation of (86) shows that there exists a
unique solution P+(x,y, t), which is given in the third equation of (21). Finally,
boundedness and positive definiteness of the unique solution P+(x,y, t) follow from
the item 3) in Assumption 2.1 and (86) since R̄d(x,y, t) and R̄b(ξ,γ, t) are bounded
by the item 2) of Assumption 2.1 and are symmetric and positive definite. �

E Derivation of (28)

Let us introduce an Euler or weak variation δχ(x, t) = εϱ(x, t), where ϱ(x, t) is an
arbitrary twice continuously differentiable function. The necessary conditions for
the cost functional J1 to be minimized are found by setting the weak variation δJ1
of the functional J1 to be equal to zero. Now assuming that the end points t0 and
tf are not fixed so as when the parameter ε varies so do the end points t0 and tf ,
i.e., t0 = t0(ε) and tf = tf (ε). As such, the weak variation δJ1 is given by

δJ1 =

[
∂

∂ε

∫ tf (ε)

t0(ε)

L1dt

]∣∣∣∣
ε→0

+ δJ0

=

[
L1

∣∣
t=tf

dtf (ε)

dε

]∣∣∣∣
ε→0

−
[
L1

∣∣
t=t0

dt0(ε)

dε

]∣∣∣∣
ε→0

+

∫ tf (ε)

t0(ε)

[
∂L1

∂ε

]∣∣∣∣
ε→0

dt+ δJ0,

(87)

where we have used Leibnitz’s differentiation rule. On the other hand, a calculation
shows that[
L1

∣∣
t=tf

dtf (ε)

dε

]∣∣∣∣
ε→0

−
[
L1

∣∣
t=t0

dt0(ε)

dε

]∣∣∣∣
ε→0

= L1δt
∣∣tf
t0
,∫ tf (ε)

t0(ε)

[
∂L1

∂ε

]∣∣∣∣
ε→0

dt =

∫ tf

t0

∫
D

⟨
δL1

δχ(x, t)
− ∂

∂t

[
δL1

δ(∂χ(x, t)/∂t)

]
,ϱ(x, t)

⟩
dxdt

+

∫
S

⟨
δL1

δχ(ξ, t)
,ϱ(ξ, t)

⟩
dSξ −

[ ∫
D

⟨
δL1

δ(∂χ(x, t)/∂t)
,
∂χ(x, t)

∂t

⟩
dx

]
δt

∣∣∣∣tf
t0

+

[ ∫
D

⟨
δL1

δ(∂χ(x, t)/∂t)
, δχ(x, t)

⟩
dx

]∣∣∣∣tf
t0

,

δJ0 =

∫
D

⟨
δJ0

δχ(x, t0)
, δχ(x, t0)

⟩
dx.

(88)

We calculate δL1 as follows:

δL1 =

∫
D

δL1

δε

∣∣∣∣
ε→0

dx+

∫
S

δL1

δε

∣∣∣∣
ε→0

dSξ

=−
∫
D2

⟨
HT

d (x, t)Q
+
d (x,y, t)

[
zd(y, t)−Hd(y, t)χ(y, t)

]
,ϱ(x, t)

⟩
dxdy

+

∫
D

⟨
λ(x, t),Axϱ(x, t)

⟩
dx−

∫
S

⟨
λ(ξ, t),βξϱ(ξ, t)

⟩
dSξ

−
∫
S2

⟨
HT

b (ξ, t)Q
+
b (ξ,α, t)

[
zb(α, t)−Hb(α, t)χ(α, t),ϱ(ξ, t)

⟩
dSξdSα

(89)
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From Lemma 3.1, we have∫
D

⟨
λ(x, t),Axϱ(x, t)

⟩
dx−

∫
S

⟨
βξϱ(ξ, t),λ(ξ, t)

⟩
dSξ =∫

D

⟨
A∗

xλ(x, t),ϱ(x, t)
⟩
dx−

∫
S

⟨
β∗
ξλ(ξ, t),ϱ(ξ, t)

⟩
dSξ

(90)

where A∗
x and β∗

ξ are given in (13). Substituting (90) into (89) results in

δL1 = −
∫
D2

⟨
HT

d (x, t)Q
+
d (x,y, t)

[
zd(y, t)−Hd(y, t)χ(y, t)

]
,ϱ(x, t)

⟩
dxdy

+

∫
D

⟨
A∗

xλ(x, t),ϱ(x, t)
⟩
dx−

∫
S

⟨
β∗
ξλ(ξ, t),ϱ(ξ, t)

⟩
dSξ

−
∫
S2

⟨
HT

b (ξ, t)Q
+
b (ξ,α, t)

[
zb(α, t)−Hb(α, t)χ(α, t)

]
,ϱ(ξ, t)

⟩
dSξdSα.

(91)

Thus, we have

δL1

δχ(x, t)
=A∗

xλ(x, t)−
∫
D

HT
d (x, t)Q

+
d (x,y, t)

[
zd(y, t)−Hd(y, t)χ(y, t)

]
dy,

δL1

δχ(ξ, t)
=−β∗

ξλ(ξ, t)−
∫
S

HT
b (ξ, t)Q

+
b (ξ,α, t)

[
zb(α, t)−Hb(α, t)χ(α, t)

]
dSξ.

(92)

As ϱ(x, t) is arbitrary and ϱ(x, t0) = 0 and ϱ(x, tf ) = 0, setting δJ1 = 0 results in

δL1

δχ(x, t)
− ∂

∂t

[
δL1

δ(∂χ(x, t)/∂t)

]
= 0,

δL1

δχ(ξ, t)
= 0,[

L1 −
∫
D

⟨
δL1

δ(∂χ(x, t)/∂t)
,
∂χ(x, t)

∂t

⟩
dx

]
δt

∣∣∣∣tf
t0

+

[∫
D

⟨
δL1

δ(∂χ(x, t)/∂t)
, δχ(x, t)

⟩
dx

]∣∣∣∣tf
t0

+

∫
D

⟨
δJ0

δχ(x, t0)
, δχ(x, t0)

⟩
dx = 0.

(93)

From the expressions of L1 and J0, see (27) and (11), and t0 and tf are fixed for our
current problem, the equations listed in (93) with the use of (92) are equivalent to
the last four equations of (28). Similarly, we can derive the weak variation δJ1 with
respect to λ(x, t), ud(x, t) and ub(ξ, t) to obtain

δL1

δλ(x, t)
− ∂

∂t

[
δL1

δ(∂λ(x, t)/∂t)

]
= 0 ⇒ ∂χ(x, t)

∂t
= Axχ(x, t) + ud(x, t),

δL1

δλ(ξ, t)
= 0 ⇒ βξχ(ξ, t) = ub(ξ, t),

δL1

δud(x, t)
− ∂

∂t

[
δL1

δ(∂ud(x, t)/∂t)

]
= 0 ⇒ ud(x, t)= −

∫
D

Rd(x,y, t)λ(y, t)dy,

δL1

δub(ξ, t)
− ∂

∂t

[
δL1

δ(∂ub(ξ, t)/∂t)

]
= 0 ⇒ ub(ξ, t)= −

∫
S

Rb(ξ,α, t)λ(α, t)dSα,

(94)

which are the first two equations of the set of EL equations (28). �
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