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ABSTRACT

Despite the advances in water shutoff technologies, the 
lack of an efficient diagnostic technique to identify excess 
water production mechanisms in oil wells is preventing 
these technologies being applied to deliver the desired 
results, which costs oil companies a lot of time and money. 

This paper presents a novel integrated approach for 
diagnosing water production mechanisms by extracting 
hidden predictive information from water-oil ratio (WOR) 
graphs and integrating it with static reservoir parameters. 
Two common types of excess water production mechanism 
(coning and channelling) were simulated where a wide 
range of cases were generated by varying a number of 
reservoir parameters. Plots of WOR against oil recovery 
factor were used to extract the key features of the WOR 
data. Tree-based ensemble classifiers were then applied 
to integrate these features with the reservoir parameters 
and build classification models for predicting the water 
production mechanism.

Our results show high rates of prediction accuracy for 
the range of WOR variables and reservoir parameters ex-
plored, which demonstrate the efficiency of the proposed 
ensemble classifiers. Proactive water control procedures 
based on proper diagnosis obtained by the proposed tech-
nique would greatly optimise oil productivity and reduce 
the environmental impacts of the unwanted water.

KEYWORDS
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INTRODUCTION 

In recent years, unconventional mathematical tech-
niques and soft computing methodologies have gained 
more and more popularity in the oil and gas industry. The 
complex nature of the oil fields combined with staggering 
volume and diversity of data and resulting uncertainties 
calls for more sophisticated techniques to integrate vari-
ous types of data, quantify uncertainties, identify hidden 
patterns and extract useful information. Data mining is 
one of the promising methodologies that can offer great 
benefits to the oil industry by extracting hidden predictive 
information from the large and/or complex databases. This 
technique uses past and present information to discover 
previously unknown patterns in the data, and then train 
and build models to predict future trends and behavior 
(Kantardzic, 2002). Classification trees are one of the most 
popular classification algorithms used in data mining. 
Classification trees are powerful knowledge models that 
predict the value of a target variable based on several in-
put variables. They are easy to use, simple to understand 
and interpret, and require little data preparation (Tomei, 
2008). Nevertheless, they do not always provide the most 
accurate result. A simple and effective procedure to tackle 
this deficiency is to use an ensemble of classifiers instead 
of using a single, large and less accurate tree classifier 
(Kuncheva, 2004). Classifier ensembles are aggregations 
of several classifiers (either different types of classifiers 
or different instants of the same classifier), whose indi-
vidual predictions are combined in some manner (e.g., 
averaging or voting) to form a final prediction (Oza and 
Tumer, 2008). Because they use all the available classifier 
information, ensembles generally provide better and more 
robust solutions in most applications. 

In this paper we investigate the application of such en-
semble techniques to the classification and prediction of 
excess water production mechanisms in vertical oil wells. 
Excess water production is a serious economic and envi-
ronmental problem in most mature oil fields. Accurate and 
timely diagnosis of the water production mechanism is 
critical in the success of the applied well treatment meth-
odology. Incorrect, inadequate, or lack of proper diagnosis 
usually leads to ineffective water control treatments that 
cost a lot of time and money (Seright et al, 2001). Many em-
pirical techniques such as decline curve plots, and water-oil 
ratio (WOR) versus cumulative oil production or time have 
traditionally been used in production data analysis (Poe 
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et al, 1999; Mohaghegh et al, 2005; Anderson et al, 2006). 
Typically, these plots have been used to determine whether 
the well is experiencing or likely to experience a water 
production problem; however, the significance of WOR in 
proper identification of the type of the water production 
problem in oil wells has not yet been fully investigated. 
Nevertheless, many oil companies to date apply the WOR 
diagnostic plots (Chan, 1995) for water production studies 
and problem diagnosis (Al Hasani et al, 2008; Sanchez et 
al, 2007). Although, in specific circumstances, these plots 
might help in diagnosing between two more common types 
of excess water production problems—namely coning and 
channelling—they are by no means general and applicable 
in all conditions (Seright, 1998). Without taking into ac-
count other important reservoir parameters, the WOR 
diagnostic plots could easily be misinterpreted.  Studies 
conducted by our group on a series of simulated coning 
and channelling models also demonstrates deficiency of 
the WOR diagnostic method (Rabiei et al, 2009). 

Considering the widespread use of water and oil produc-
tion data in various reservoir investigations, it is plausible 
to assume that valuable information could be extracted 
from these data using modern mathematical and intelli-
gent techniques. Production data are routinely collected 
and the accuracy of these data is usually reliable as most 
governmental regulatory agencies require accurate report-
ing of these values and also because these data represent 
revenue for oil companies. 

In this paper we demonstrate the successful application 
of a sophisticated intelligent ensemble classifier, called 
random forest (Breiman, 2001), in classifying a number of 
excess water production mechanisms—namely channelling, 
coning and gravity segregation—based on WOR data. This 
classifier integrates various static reservoir parameters 
into production data (WOR) to reveal how the hidden pre-
dictive information in these data can be used to identify 
water production mechanisms with high accuracy rates. 
Unlike conventional WOR diagnostic studies that focus on 
the trends of log/log plots of WOR and the derivative of 
WOR against time, this study adopts a different approach 
to using WOR data. 

Instead of plotting the WOR against time, we explore 
plots of WOR against the oil recovery factor (a dimension-
less time, which is a ratio of cumulative oil being produced 
versus oil in-place with a maximum of unity) and extract 
predictive data points from these plots to be used in the 
ensemble classifier along with other reservoir parameters. 
Dimensionless groups are commonly used to generalise 
problems or plots (Seright, 1998). Yortsos et al (1999) ap-
plied a dimensionless time (fraction of pore volumes in-
jected) for interpreting water/oil ratio in water floods. The 
use of dimensionless time will enable better analyses and 
comparisons of the WOR curves between models with a 
wide range of drainage areas and well operational histo-
ries, etc. The best estimate from a deterministic method 
or the P50 value from a probabilistic method can be used 
to estimate the oil recovery factor for the WOR plots. Al-
ternatively, when the oil in-place estimate is not available, 
the conventional plots of WOR against time can be used 

to extract time-dependant predictive WOR points to be 
used in the ensemble classifiers; however, because of the 
above mentioned reasons, the use of oil recovery factor 
is preferred. 

When reservoir parameters are not available, informa-
tion from WOR data can be used alone. The frequency 
of high classification accuracy of more than 90% in our 
results demonstrates the significance of the use of produc-
tion data in classifying the mechanisms of excess water 
production problem and proves that ensemble classifiers 
could be efficiently used to reveal the valid association 
between WOR data and the water production mechanism.

The rest of the paper is organised as follows: in the 
next section we briefly explain various reservoir models 
simulated for this study and describe how these models 
are used to generate a database to be used in the random 
forests algorithm. Next we give details on the predictor 
and target variables and the process of building pre- and 
post-production classifier models. Finally, we present the 
result and draw some conclusions.

METHODOLOGY

Classification algorithm 

Ensemble classifiers are widely used in various fields 
and have been reported to improve the classification ac-
curacy (Breiman, 1996, 2001; Bauer and Kohavi, 1999). 
Ensemble methods create a collection of prediction/classifi-
cation models by applying the same algorithm on different 
samples generated from the original training sample, then 
make final predictions by aggregating (voting) over the 
ensembles (Pham, 2006). The random forests technique, 
developed by Brieman (2001), is a combination of tree-
structured classifiers, in which each tree is grown in ac-
cordance with a random selection of input variables of a 
random sample drawn from the original training data by 
replacement. The output of the classifier is determined by 
a majority vote of the trees. The pseudo code for random 
forests is as follows:
•	 Suppose there are K cases in the training data; sample 

K cases at random by replacement from the original data;
•	 If there are M input variables, a number m<<M is speci-

fied such that at each node of the tree, m variables are 
selected at random out of the M and the best split on 
these m variables is used to split the node;

•	 Each tree is grown to the largest extent possible; and,
•	 Make predictions according to majority vote of the set 

of K trees.
The random forests technique not only has a very good 

predictive performance but also has a number of other in-
teresting features that make it worthwhile to investigate its 
applicability in various fields of science and engineering. 
It gives an estimate importance measure for each variable 
indicating the impact of each variable on the dependant 
variable. This technique also gives information about the 
relation between the variables and the classification and 
offers an experimental method for detecting variable in-
teractions. Furthermore, random forests methodology is 
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tolerant of missing values, is easy to use and has a reason-
able computing time (Lariviere and Poel, 2005).

Reservoir models

Random forests classifier requires a training dataset 
from which random trees are grown. To provide this training 
dataset, synthetic reservoir models were built to simulate 
excess water production due to coning, channelling and 
gravity segregated flows. Water coning occurs when the 
water/oil contact locally rises toward the completed inter-
val of a well that normally produces from an oil column 
lying on top of an active aquifer (Seright, 1998). Water 
channelling is common when high permeability layers or 
fractures allow early water breakthrough during water 
flooding (Seright, 1998). These models were simulated using 
a commercial reservoir simulation software (Roxar, 2007). 

BOTTOM WATER DRIVE (WATER CONING)

A radial model with a drainage area of 160 acres was 
built to simulate an oil reservoir with a water coning prob-
lem (Fig. 1). The radius of this sector model is 1,490 ft with 
a total thickness of 300 ft. The oil column is 100 ft thick 
with a 200 ft water column. This model is populated with 
a constant porosity of 0.2 and a constant permeability of 
1,000 mD. A vertical well is perforated at the top 20% 
of the 100 ft oil column with a wellbore radius of 0.25 ft. 
To model a strong aquifer, the radial grids of the bottom 
five layers (100 ft in thickness) that are farthest from the 
vertical well have a porosity value of 2,000. The resulting 
aquifer is ~12 times the oil pore volume.

EDGE WATER DRIVE (WATER CONING)

A 3D Cartesian grid, with an area of 1,500 ft x 1,700 ft, a 
true vertical thickness of 100 ft and a dip angle of ~5°, was 
built to simulate water coning caused by an edge aquifer 
drive (Fig. 2). It is a homogeneous model with a constant 
porosity of 0.2 and a constant permeability of 1,000 mD. 
A vertical well is perforated to a true vertical depth of 50 
ft above the oil-water contact (OWC). 

WATER INJECTION (WATER CHANNELLING)

To simulate water channelling due to water flooding, 
three scenarios for small and large drainage area with 
different combinations of flow units are considered. The 
first scenario consists of a 3D Cartesian grid of 1,000 ft 
x 1,000 ft with a reservoir thickness of 100 ft (Fig. 3). An 
injector and producer pair is placed at both ends of this 
sector model for a direct line-drive water flooding pattern. 
To simulate models with little cross-flow between layers, 
the flow units are separated by low permeability layers of 
10 mD and 5 mD. For models with cross-flow or high Kv/
Kh ratios, these low permeability layers are removed, so a 
gravity dominated flow is observed between the injector 
and the producer. Despite a difference in permeability, 
this model has a constant porosity of 0.2 for all flow units. 

The second scenario has the same settings as the first 
scenario except for the drainage area. A Cartesian grid 
with a larger drainage area of 1,500 ft x 1,700 ft was built 
to simulate a water injection scenario with a larger sweep 
area. 

The same grid as in second scenario was used to simulate  
a third scenario with a different combination of the flow 
units. This model has four flow units of 3,000 mD, 1,000 mD, 
500 mD and 2,500 mD from top to bottom layers. Similar 
to the first scenario and to represent little cross-flow be-
tween layers, the four flow units were separated by two 
magnitude lower permeability layers. A constant porosity 
of 0.2 is used, although the permeability is not constant.

EDGE WATER DRIVE (WATER CHANNELLING)

The 3D Cartesian grid is the same as the water coning 
(edge water drive) model, but the vertical well is placed 
farther up dip (Fig. 4). The grid dimension is also differ-
ent, as the grid blocks are refined around the well and 
coarsened in the aquifer and farther away from the well. 
The strong down-dip aquifer provides the energy to sweep 

Drainage radius = 1,490 ft 

Porosity 

0.2 1,000 2,000 

Water saturation 

0.2 0.6 1.0 

Very strong aquifer represented 

by large porosity value 

100 ft Oil 

Column 

200 ft Water 
Column 

Figure 1. Symmetrical water coning by strong bottom aquifer.
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the oil toward the up-dip producer. Three flow units of 
6,000 mD, 1,500 mD and 500 mD from top to bottom are 
modelled as shown in Figure 4. The difference in perme-
ability is set to allow the high permeability flow units to 
have a distinct water breakthrough. A constant porosity 
of 0.2 is used throughout this model.

Another scenario with four flow units of 6,000 mD, 
500 mD, 2,000 mD and 200 mD from top to bottom is also 
simulated.

BOTTOM WATER DRIVE WITH BAFFLES
IN VERTICAL DIRECTION 

A 3D Cartesian model was built to simulate the water 
production from a reservoir with baffles in the vertical 
direction (Fig. 5). In this model spherical thin imperme-
able layers (800 ft in diameter) were randomly populated 
to act as zero transmissibility in the vertical direction. 

As shown in Figure 5, the thin impermeable zero vertical 
transmissibility spheres were modelled to provide baffles 
for the encroaching bottom water. It was observed that 
cone forming is minimal and this model exhibits a chan-
nelling behavior. 

Dataset generation 

A total of 716 cases of the aforementioned models were 
generated by varying a number of input parameters in each 
model. We observed that some of the water injection and 
edge water drive models with high Kv/Kh ratio and low 
permeability layers showed the gravity dominated flow or 
water under-run problem (Bailey et al, 2000). These cases 
are labelled GravityDominated in our study. Those cases 
where water production rate does not reach the defined 
critical point of WOR equal to 0.1 (or 9% water cut) in our 
analysis are labelled NoWater cases. These cases are used 

Porosity 
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Water saturation 
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Very strong edge aquifer 
drive represented by large 
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1,5
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Figure 2. Asymmetrical water coning by edge aquifer drive from 
down-dip.
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as the control cases for investigating the efficiency of the 
classifier in identifying risk free situations. 

A training subset containing roughly two thirds of the 
cases in this dataset was randomly chosen for building 
classifiers. The remaining cases were used for evaluating 
the performance of the trained classifiers.

Static and dynamic predictor variables

Each case in the database is defined by a set of static and 
dynamic variables. The static variables represent reservoir 
characteristics commonly available and are chosen from 
the input parameters used for generating various cases 
from the simulation models (Table 1). 

We are also introducing new dynamic predictor vari-
ables to be used in water production problem analyses, 

Water saturation 
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Permeability 

15 6,000 

Producer 

Producer 
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Producer 
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Figure 4. Water channelling caused by edge water drive.

Figure 5. Water channelling through baffles in vertical direction 
from bottom aquifer.
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which are obtained from the WOR versus the oil recov-
ery factor (RF) plots. Using heuristic studies, some pilot 
points representing the characteristics of the WOR data 
are extracted by segmenting these plots at certain intervals 
where gradient remained constant (Fig. 6). These points 
are denoted as RFWOR(0.1 to 40) (e.g. RFWOR0.1 represents the 
value of RF at WOR equal to 0.1). The RF values below 
the point of WOR 0.1 are too small to yield any helpful 
information and hence are discarded. The cut off value 
point is at WOR equal to 40, which represents 97.5% water 
cut. A total of 14 RFWOR variables were selected in this 
manner as dynamic variables. The analysis of variance 
(ANOVA) technique was used to assess the significance 
of the chosen variables with respect to identifying water 
production mechanism/problem type. 

Random forests models 

Classification algorithms were generated using a pack-
age in R software (R Development Core Team, 2009) called 
randomForests. The cases in the training subset were used 
to build and train the randomForests classifier. The first 
model is a control model in which only static variables 

are incorporated without including any dynamic produc-
tion data. Such a model could be used before the start of 
production to get a rough estimation of the possibility of 
excess water production in the well. This model will be 
referred to as Model #0 throughout this paper.
•	 Model #0: static variables only

Additional models were also generated by integrating 
production data into Model #0. To be able to thoroughly 
examine the effect of the proposed dynamic variables, it 
was decided to implement a separate classifier for each 
dynamic predictor variable while taking into account the 
history of WOR trends before that specific point; i.e., 14 
models were trained in the manner summarised below:
•	 Model #1: all static variables + RFWOR0.1 + RFWOR0.5

•	 Model #2: all static variables + RFWOR0.1 + RFWOR0.5 + 
RFWOR1

•	 Model #3: all static variables + RFWOR0.1 + RFWOR0.5 + 
RFWOR1 + RFWOR2

•

•

•

•	 Model #14: all static variables + RFWOR0.1 + RFWOR0.5 + 
RFWOR1 + RFWOR2 + … + RFWOR40

Another set of models were also built using dynamic 
RFWOR values alone without any static parameter. 
•	 Model #1*: RFWOR0.1 + RFWOR0.5

•	 Model #2*: RFWOR0.1 + RFWOR0.5 + RFWOR1

•	 Model #3*: RFWOR0.1 + RFWOR0.5 + RFWOR1 + RFWOR2

•

•

•

•	 Model #14*: RFWOR0.1 + RFWOR0.5 + RFWOR1 + RFWOR2 + … 
+ RFWOR40

These models will be used to demonstrate whether 
production data (WOR) alone can reveal any helpful in-
formation in identifying water production mechanisms.

It is worth mentioning that the WOR ratios for some of 
the cases in our synthetic database do not reach to RFWOR40. 
Depending on the strength of the water injector or aquifer, 
the maximum WOR values can be far less than 1 (50% 
water cut). In other words, it means that there are fewer 
cases with higher WOR points in our database.

VALIDATION DATA

The learnt patterns from the cases in the training dataset 
are applied to the remaining cases in the database to evalu-
ate the efficiency of the trained classifier in classifying each 
case into one of Coning, Channelling, GravityDominated 
or NoWater categories. The performance of each imple-
mented model is evaluated by applying it to the validation 
dataset and predicting the type of the water production 
problem for each case. The efficiency of each model is 
evaluated based on the percentage of correctly classified 
cases, which is calculated by dividing the total number of 
correctly classified cases by the number of cases tested in 
each model. We also use kappa coefficient (Cohen, 1960) 
to evaluate the efficiency of the models. Cohen’s kappa 
measures the classifier’s performance while taking into 

Variable Name Abbreviation

Vertical to horizontal permeability Kv/Kh

API API

Wettability WET

Initial oil flow rate (normalised using the 
oil in-place) IOFR

Plateau period for the initial oil flow rate PP

Drainage area DA

Aquifer strength—water/oil volume AQWOV

Water injection rate WIR

Table 1. Input parameters for dataset generation.
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Figure 6. Sample plots of WOR against oil recovery factor for dif-
ferent simulated reservoir models.
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account those successfully classified cases that might be 
attributed to chance alone.

RESULTS AND DISCUSSION

In this section, classification results of the implemented 
models are presented for three stages: the pre production 
stage which uses Model #0 and post-production stage which 
uses Models #(1–14) and Models #(1*–14*).

Pre-production stage 

The model implemented with only static variables, was 
tested on the validation data to evaluate how effective 
reservoir characterisations alone can be used for classifi-
cation purposes. As explained earlier, the random forests 
technique produces a combination of tree-structured clas-
sifiers, and a majority vote from these classifiers is the 
final output of the random forests classifier. One of these 
tree-structured classifiers used in the static model is shown 
in Figure 7 as an example. In Figure 7, each node represents 
a variable with a split value written below the variable 
name. At each node, cases that have variables with lower 
values than the split value go to the left of that node and 
the rest go to the right. For categorical variables, the split 
value is a level in each category; if a case has a categori-
cal variable, which has the same value as the split value, 
it goes to the left, and otherwise it goes to the right side.  
This process continues until all cases are allocated to one 
of the terminal nodes highlighted in blue, which denote 
the predicted category for that case. 

The overall classification accuracy rate for this model is 
88% (see Table 2). Although, the classifier performs well 
in identifying channelling and coning cases individually 
with accuracy rates of 88% and 93% respectively, we see a 
less impressive result for risk free cases and an even lower 
accuracy rate for gravity segregated cases.

Post-production stage: production data plus 
reservoir parameters 

The overall accuracy rates of the post-production models 
are presented in Figure 8. Detailed classification rates for 
each category are shown in Table 2. Our results demonstrate 
that once the production data is introduced to the models 
we start to see improvements in problem identifications. 
This improvement for the GravityDominated category is 
gradual, while we see instant enhancement in the accu-
racy rates for the Coning and NoWater categories with 
6% and 16% increase respectively. It is observed that ac-
curacy rates for the Channelling cases start to decrease at 
the earlier stages of water production; however, as more 
water production data becomes available, the classifica-
tion rates start to increase and reach a level comparable 
to the static model and higher (91%). The relatively low 
percentage of correctly classified GravityDominated cases 
could be because of the similar behavior to the channelling 
problem and we anticipate that including more reservoir 

parameters might improve the result. As shown in Table 2, 
by including production data in the classifier, the coning 
problem can be identified with a staggering confidence 
level of more than 98%. Similarly, all cases with no excess 
water production are correctly identified, which means 
compared to the static model we observe 16% improve-
ment in diagnosis. 

Post-production stage: production data without 
reservoir rarameters

Another set of models developed in this study are 
classifiers generated using only production data without 
knowing any reservoir parameters. As shown in Table 2, 
although the overall accuracy rates of these models are not 
comparable to the models discussed earlier, with at least 
85% accuracy rate, they can still provide a valuable tool 
for preliminary investigations for production engineers. 
They can be applied when an immediate assessment of 
the situation at hand is required and/or where none or 
little reservoir information is available.  

Discussions 

The results from various models implemented in this 
study corroborate the general idea that knowing the res-
ervoir characterisation would help to some extent in de-
termining whether the well is likely to experience water 
production or not, but when it comes to identifying spe-
cific problems such as gravity segregation, it is clear that 
reservoir characteristics alone are not very helpful. It has 
been shown that including the proposed dynamic produc-
tion variables greatly enhances the diagnosis accuracy 
especially in identifying risk free situations.

The results summarised in Figure 8 represent the overall 
percentage of correctly classified cases in our validation 
subset. A more robust measure to show the efficiency of 
the proposed classification technique is the kappa coeffi-
cient. Kappa values higher than 0.8 are usually considered 
as very good agreement, disproving the role of chance. 
As can be seen in Figure 9, kappa coefficients for all the 
dynamic models with reservoir parameters are very high, 
which confirms the efficiency of the proposed classification 
algorithm. Dynamic models without reservoir parameters 
have slightly lower kappa coefficients but they are still in 
a range considered as good agreement. The static model 
also shows good agreement with a kappa of 0.8 (not shown 
in Figure 9).  

The consistency of the proposed models in allocating 
each validating case to one of the classification categories 
is also explored by producing a bar-plot of the predicted 
class of each case with regard to the model used (Fig. 10). 
It is observed that the outputs of Models #(1–14) for each 
case are comparable and we see a consistency in the pre-
dicted class for most of the cases regardless of the model 
being used. It is clear that as more water production data 
is used in models, most of the misclassified cases are cor-
rectly classified. 



574—50th ANNIVERSARY ISSUE  APPEA Journal 2010

M. Rabiei, R. Gupta, Y.P. Cheong and G.A. Sanchez Soto

 

IOFR 
IOFR 

IOFR 

IOFR 

IOFR 

IOFR 
IOFR 

IOFR 
0.001065 

Kv/Kh 
0.55 

PP 
297.5 

API 
35 

DA 
2 

AQWOV 
1875.5 

IOFR 
0.00045 

WIR 
3596.98 

Kv/Kh 
0.55 

Kv/Kh 
0.55 

Kv/Kh 
0.55 

Kv/Kh 
0.55 

Kv/Kh 
0.55 

Kv/Kh 
0.55 

PP 
143.5 

PP 
220.5 

PP 
101.5 

PP 
399 

PP 
73.5 

PP 
87.5 

PP 
45.5 

PP 
38.5 

PP 
17.5 

PP 
3.5 

API 
35 

API 
35 

API 
28.5 

API 
23.5 

API 
23.5 

WIR 
1330.5 

WIR 
1344.5 

DA 
1 

DA 
2 

DA 
3 

IOFR 
0.00101 

IOFR 
0.000225 

IOFR 
0.00116 

IOFR 
0.001285 

IOFR 
0.001075 

IOFR 
0.001085 

AQWOV 
268.5 

AQWOV 
71 AQWOV 

9.5 AQWOV 
6.5 

AQWOV 
28.5 

AQWOV 
22.5 

AQWOV 
22 

AQWOV 
951 

WET 
3 

WET 
3 

Channelling 

Channelling 

Channelling 

Channelling 

Channelling 

Channelling Channelling 

Channelling 
Channelling 

Channelling 

Channelling 

Channelling 

Channelling 

Channelling 

Channelling 

Channelling 

Channelling 

Channelling 

Channelling 

Channelling 

GravityDominated 

GravityDominated 

GravityDominated 

GravityDominated 

NoWater 

NoWater 

NoWater 

NoWater 

NoWater 

NoWater 

NoWater 

NoWater 

NoWater 

Coning 

Coning 
Coning 

Coning 

Coning 

Coning 

Coning 

Coning 

Coning 

Coning 

Coning 

Coning 

Coning Coning 

Coning 

Coning 

Coning 

Coning 

Figure 7. A schematic of one of the classifiers used in the random forests models.
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Finally, an interesting feature of the random forest algo-
rithm called the variable importance measure, which shows 
the impact of each predictor variable on the dependent 
variable, is explored and the results are shown in Figure 
11. This Figure shows the importance measure for the pre-
production model and two of the post-production models 
with and without static variables. Using this measure we 
find evidence that when dynamic production data is intro-
duced in to the model, they play a more important role in 

identifying problem type, while reservoir characterisation 
data are not disregarded either. Another important finding 
is that as the well produces more water the role of aquifer 
strength becomes more distinctive. On the other hand, the 
distribution of the variable importance values reveals that 
parameters like wettability and API are less powerful in 
terms of predicting excess water production mechanisms, 
although they have significant effects on the amount of 
the produced water. When no static variable is used, it is 

Model Channelling Coning GravityDominated NoWater Total Accuracy (%)

Pre-production model 88% 93% 59% 84% 88%

Model #1 83% 99% 59% 100% 92%

Model #2 78% 99% 59% 100% 90%

Model #3 80% 98% 65% 100% 90%

Model #4 80% 100% 65% 100% 91%

Model #5 85% 98% 65% 100% 91%

Model #6 83% 98% 71% 100% 91%

Model #7 83% 98% 71% 100% 91%

Model #8 83% 98% 71% 100% 91%

Model #9 85% 100% 71% 100% 92%

Model #10 87% 98% 71% 100% 92%

Model #11 87% 98% 71% 100% 92%

Model #12 87% 98% 71% 100% 92%

Model #13 87% 98% 65% 100% 91%

Model #14 91% 100% 65% 100% 93%

Model #1* 81% 93% 18% 100% 85%

Model #2* 87% 96% 24% 100% 88%

Model #3* 85% 95% 24% 100% 86%

Model #4* 83% 95% 29% 100% 86%

Model #5* 80% 96% 29% 100% 85%

Model #6* 83% 96% 35% 100% 87%

Model #7* 85% 96% 35% 100% 87%

Model #8* 85% 98% 35% 100% 88%

Model #9* 85% 98% 35% 100% 88%

Model #10* 87% 96% 35% 100% 88%

Model #11* 87% 96% 35% 100% 88%

Model #12* 87% 96% 47% 100% 89%

Model #13* 84% 93% 47% 100% 87%

Model #14* 93% 97% 47% 100% 90%

Table 2. Individual and total accuracy rates for pre- and post-production classification models.



576—50th ANNIVERSARY ISSUE  APPEA Journal 2010

M. Rabiei, R. Gupta, Y.P. Cheong and G.A. Sanchez Soto

observed that the sequence of larger dynamic variable 
importance slightly changes, while smaller dynamic vari-
ables still have the dominant importance.

Our results demonstrate that dynamic models, which 
integrate static reservoir parameters and dynamic produc-
tion data, outperform other models developed with only 
one of these data groups. While other models are useful 
for situations with limited data availability, we recom-
mend using models with both static and dynamic variables 
to increase the precision of the diagnosis. The proposed 
models can be used at early stages of the problem forming 
with as little water cut as 30% to reasonably diagnose the 
type of the problem that is likely to happen. This means 
remedial actions could be taken before reaching a critical 
state later in the well’s lifecycle. 

The discussed models are not presented in this paper. 
For more information contact the lead author.  

CONCLUSION

In this paper we demonstrated the significance of water 
and oil production data in diagnosing the mechanism of 

excess water production in vertical oil wells. A number of 
featured variables extracted from plots of WOR against oil 
recovery factor were introduced as predictor variables in 
a classification process. Synthetic reservoir models were 
used to generate a database from which a training subset 
was chosen to train random forests classification models. 
These models were then used to identify water production 
mechanisms in new synthetic cases in a validation subset

The findings reported here establish that the proposed 
classification technique could be successfully applied to 
predict water production mechanism based on reservoir 
characterisations with a reasonable accuracy rate. It is 
demonstrated that using the proposed featured WOR values 
would greatly enhance the performance of the classification 
technique. Our results reveal that WOR monitoring could 
also help in predicting the type of the water production 
mechanisms before the actual problem hitting the well, 
which means remedial actions could be taken accordingly 
ahead of time. 

We have also shown that by using the proposed classifi-
cation technique, WOR data alone without other reservoir 
characterisations, could also provide a valuable tool for 
preliminary investigations in oil fields. 

We anticipate that the complete water production di-
agnostic system will be made available to the end user as 
a stand-alone tool in the future. The training data used in 
the present study will be updated as more real field data 
and different types of water production mechanisms are 
made available. Similarly, the classifier models will be 
redeveloped and updated using the new extended training 
dataset and will be validated through a range of techniques. 
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Figure 10. Sequential classification of each case predicted by each model compared to the known classes of cases.
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