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Abstract 

 

The paper discusses GNSS statistical-testing methods for 

detection and identifications of observation outliers at 

the estimation “current” epoch, defined here as local 

testing. First, detection methods are discussed including 

testing the probability distribution (likelihood) of the 

residuals, testing using dynamic control limits of the 

range, the mean and standard deviation of the residuals. 

A method is proposed examining the difference between 

the mean and the median of the residuals. To identify the 

satellites with faulty measurements, several methods 

were investigated, including checking the likelihood of 

the residuals at the present epoch, and in a time series. A 

test is presented utilizing the control limits of the 

residuals' moving range for each satellite. Testing of the 

proposed methods was carried out using only GPS phase 

measurements in the kinematic mode. Results show that 

the proposed methods are efficient for detection and 

identification of large errors/outliers. However, the 

performance degrades with error values less than 5 

cycles and when using small significance levels. 

 

Keywords: Quality Control, Statistical Testing, 

Positioning, GNSS. 

_____________________________________________ 

 

1. Introduction 

 

Quality control (QC) of a system generally refers to 

checking that the system can deliver outputs that meet 

application requirements. This comprises many aspects 

such as QC of observations, QC of system mathematical 

model, system functionality, reliability (integrity), 

capabilities, accuracy, precision, robustness, response 

time, etc. In practice, positioning by GNSS is based on 

computing the user location from satellite-to-user range 

observations, which are biased and contain random 

errors. Thus, quality control of the observations should 

be performed whenever a new set of observations are 

used.  

 

Quality control of observations in positioning by GNSS 

is needed to attain optimality of the solution, where 

errors such as outliers or blunders, e.g. receiver clock 

jumps or ionospheric scintillation, which are not 

specified in the functional and stochastic models, must 

be correctly detected and removed. Detection and 

identification methods can also be formulated for testing 

other error forms, such as slips or errors in the dynamic 

state modelling. However, this study only addresses 

detection and identification of outliers. This process can 

be performed based on statistical hypothesis testing 

(Kim and Langley, 2001). One should note that 

validation through hypothesis testing relies on 

redundancy and the use of good known or well-

approximated stochastic models. The presence of 

redundant observations allows us to assess whether the 

model and observed data are statistically consistent. In 

principle, statistical observation testing allows us to 

decide on the basis of the collected observations and 

used model, whether or not an anomaly is present 

(Teunissen and Kleusberg, 1998). However, due to the 

finiteness of the available samples in GNSS positioning, 

no definite statistical decision can be made in some cases 

(Kuang, 1996).   

 

Statistical observation testing involves three tasks. 

Firstly, detection of the presence of outliers. Secondly, 

identification of individual observations that carry these 

outliers. Finally, once outliers are captured; one should 

either exclude the observations associated with them or 

modify modelling of the system parameters to adopt 

these errors.  

 

In this paper, statistical testing is discussed for the case 

of testing measurements at the current epoch. This 

testing procedure is defined here as local testing. 

Parameters from measurements from previous epochs 

may be used according to the type of test under 

consideration, but under the assumption that these 

measurements were previously tested in the same 

manner and are error free. One should not confuse this 

procedure with “global” testing presented in the 

literature (see for instance, Teunissen and Salzmann, 

1989, Teunissen 1990, Teunissen and Kleusberg, 1998). 

The former case tries to detect outliers that may take 

place in the current epoch, while in the latter case of 

“global” testing, it is assumed that outliers take place or 
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started in an earlier epoch and testing is performed at a 

later epoch (the present epoch).  

 

Local testing can be applied in Kalman filtering or in 

epoch-by-epoch or sequential least squares estimation. In 

this study, several tests are presented. The set of the 

presented tests include traditional tests used in geodesy, 

in addition to quality control tests that are used in the 

industry, formulated for testing GNSS observations. In 

addition, newly developed simple tests are presented. 

 

2. Local Detection Testing 

 

Local testing of observations for the presence of outliers 

can be performed by examining the statistical behaviour 

of the observational residuals. These are defined as the 

discrepancy between measured values of the observables 

and their “modelled” values computed from the 

estimated unknowns. The observational residuals 

indicate the extent to which the measurements agree with 

the model. Measurement residuals can be statistically 

tested epoch-by-epoch. In traditional statistical testing, a 

test statistic is formed and the null-hypothesis H0 is 

proposed to form a reference level, which is tested 

against an alternative-hypothesis Ha. The null-hypothesis 

H0 indicates a fault-free situation, i.e. no 

 

outliers exist in the measurements or no missmodelling, 

and the distributional assumptions meet the reality. The 

alternative-hypothesis Ha indicates the presence of 

outliers, and can be used to describe the type of 

misspecifications in the models (Baarda, 1968; 

Teunissen and Kleusberg, 1998; Leick, 2004, Hwang 

and Brown, 2008). Assuming the use of a correct 

measurement model, a 'detection' test can be applied to 

check for the presence of outliers in the whole data set at 

the estimation epoch. Detection testing requires the 

presence of at least one degree of freedom. Several 

detection tests are presented in the following 

subsections. A traditional detection test is given first 

followed by the contribution of this paper in presenting 

additional statistical tests and analysing their 

performance.  

 

2.1  Likelihood testing  

Using the Gauss-Markov observation model, the 

measurement yi can be modelled as a function (h) of the 

unknowns (x). The measurement residuals can be 

computed from the estimated unknowns as: 

 

ri = yi - h(x)  (1) 

 

A local 'detection' test statistic can be formulated 

including all measurements at the epoch of estimation as 

follows (Teunissen et al., 2008): 

 

T = r
T 1

yC  r  (2) 

Where Cy is the covariance matrix of the observations, 

and r is the vector of residuals.  

 

When no outliers are present in the measurements, the 

residuals can be assumed normally distributed with a 

zero mean, which underline the null hypothesis (H0). In 

this case, the weighted sum of their squares should have 

a central Chi-square distribution assuming a known 

standard deviation. In the case of experiencing outliers, 

the residuals grow dramatically and the sum of their 

squares does not follow a central Chi-square distribution. 

This can be formulated as the alternative hypothesis Ha. 

Thus, the outliers detection test can then be given as 

(Vaniček and Krakwski, 1986): 

 

H0:    T  ≤ 2

1 df, 
  (3) 

Ha:    T  > 2

1 df, 
 (4) 

  

Where 2

1 df, 
 is the Chi-square value for 1- where  

is the significance level, i.e. probability of Type I error, 

representing false alarm and df degrees of freedom, 

which equals (n-u), where n is the number of 

observations and u denotes the number of unknowns.  

 

In addition to the likelihood test, simple detection tests 

can be formed. In the following tests, it is assumed that 

the residuals of phase observations at one epoch are of 

the same type, and under H0, have an expected value 

(equals zero) and follow a normal distribution. Thus, 

uni-variant statistical testing methods can be applied. 

Clearly, this is also applicable when considering the 

residuals of phase observations for the same satellite 

between epochs.   

 
2.2 Testing the mean of residuals between the 

current and previous epochs  

Assume that at the computation epoch we have n2 phase 

residuals with a mean value (
2r ) and a standard deviation 

(S2), and for the previous epoch, the phase residuals of 

the same set of satellites has a mean value (
1r ) and 

standard deviation (S2). We wish to test the assumption 

that the residuals unknown population means 1 and 2 

do not exceed a threshold value 0. In the absence of 

outliers, this threshold can be assumed based on the 

expected value of the combined random and quasi-

random errors. However, at subsequent epochs, the 

differences due to ionospheric and tropospheric errors, 

and multipath, should be minimal, leaving only errors 

due to noise. Thus, 0 can be selected as a few 

millimetres. In one approach, we can consider that the 

two samples come from similar populations of equal 

variance, i.e. 2

1  = 2

2 , with a pooled estimator of 2
, 

denoted by  2

pS  computed as (Montgomery, 2005): 
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nn

S)n(S)n(  (5) 

 

The test statistic can then be formulated as: 

           t0  = |
21 rr  | - 0 (6) 

 

and the detection test criterion will be: 

 

for H0:    | 1 - 2  | = |0|,       

 -

21

11

nn
SP  22 21 nn,/t  <  t0  ≤ 

21

11

nn
SP  22 21 nn,/t    

 (7) 

and for Ha:    | 1 - 2  |  > |0|,                                 

 t0 > 

21

11

nn
SP  22 21 nn,/t    (8) 

 

where 
22 21 nn,/t  is the t-distribution value with (n1 + n2 

-2) degrees of freedom. The alternative hypothesis, if 

proven, will indicate the presence of large errors or 

outliers in the data. Since this test is applied sequentially 

in time, moving from one error-free epoch to a next 

epoch will indicate that the suspected data are from the 

latter. However, it should be noted that the presence of 

outliers in the tested data set would amplify the value of 

SP, which may result in Type II error i.e. accepting H0 

when it is false. To rectify this shortcoming, a population 

standard deviation () can be used, which can be 

selected from experience or by studying a large number 

of data sets and based on the expected level of noise, 

quasi-random errors, and dynamics. The test criterion in 

this case can be formulated as:  

 

H0:    | 21 rr  | = 0,       

 -
22 21 nn,/Z

<  t0  ≤ 
22 21 nn,/Z

    (9) 

 

Ha:    | 21 rr  | > 0,                            

 t0 >   
22 21 nn,/Z
      (10) 

 

where Z/2, n-1 denotes the upper /2 percentile point of 

the standardized normal distribution (Z) with (n1+n2-2) 

degrees of freedom. 

 

2.3  Testing Using Control Limits 

For data collected for a time window of m epochs, where 

the last epoch is the current one, r and R can be 

computed, where r  is the average value of the mean of 

the residuals ( r ) and R is the range of residuals, which 

is computed at epoch k from: 

Rk = (rmax – rmin)k (11) 

 

where (rmax)k and (rmin)k are the maximum and minimum 

residuals at epoch k, and: 

 

r  = 









m

k

k

m

k

kk

n

rn

1

1
 (12) 

 

Assuming that the residuals are uncorrelated and 

stationary (i.e. vary around a fixed mean, e.g. zero, in a 

stable or predictable manner and its stochastic properties 

does not significantly change over time), observations 

may contain outliers if: 

 

Rk < D3 R     or      Rk > D4 R  (13) 

    

and/or  if 

  

kr < r - A2 R   or   kr > r + A2 R  (14) 

 

where A2, D3, and D4 are control constants that vary 

with the size of the sample n. These control constants are 

tabulated in quality control references, e.g. Montgomery, 

2005. R denotes the mean value of the ranges within the 

selected time window. Here (D3 R ) and ( r - A2 R ) are 

defined as the lower control limits (LCL), (D4 R ) and 

( r + A2 R ) are defined as the upper control limits 

(UCL) for  testing Rk and kr , respectively.  

 

The r  test monitors between-sample variability, and the 

R test measures within-sample variability. The r and R  

are computed within a pre-set window, e.g. 5-10 epochs. 

For post-mission applications, the data within the 

specified window is examined and the test is performed 

rolling the selected window between epochs such that 

the current epoch's data are included as the last data set. 

If an out-of-control value for r or R is detected, the 

presence of large errors/outliers in the data of this epoch 

is suspected.  

 

The control limits defined in Eq. 13 and 14 assume that 

the standard deviation for different samples is 

approximately the same. However, if this assumption is 

not proven, use of standardized R and r  can handle this 

situation. For instance, for m number of samples, the 

standardized 
s

kR and s

kr   values at epoch k will read: 

m

ks

k
R

R
R




1

 (15) 
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s

kr  = 

m

)m(nomk

R

rr






1

1  (16) 

 

Where 
mR 1

 and 
)m(nomr 1
are the average range and 

nominal value for r ; respectively, for the samples under 

consideration. The observations may contain outliers if: 

 
s

kR  < D3         or         s

kR  > D4  (17) 

 

and for the r  test, the outliers are expected if: 

  
s

kr < - A2        or        
s

kr > + A2  (18) 

 

When using the r  test, usually large shifts can be 

detected with small sample sizes, e.g. 4-5 observations 

per epoch, whereas small shifts need large sample sizes 

to be detected. Therefore, by using only GPS, where the 

number of observed satellites is usually less than 10, we 

expect the test to be effective only for detection of large 

outliers. When measurements from other GNSS are used 

in addition to GPS, e.g. GLONASS, Galileo and QZSS, 

the efficiency of this test for detection of small biases 

will significantly improve. On the other hand, the 

efficiency of the range method ( R test) drops 

dramatically with the increase of the sample size. 

Therefore, for samples that have more than 10 

measurements, the R test can be replaced by testing the 

sample standard deviation (S). In this test, a set of data 

can be considered affected by large errors/outliers if for 

epoch k: 

 

Sk < B3 S        or        Sk > B4 S   (19) 

 

and/or if 

  

kr < r - A3 S       or        
kr > r + A3 S  (20) 

 

where for measurements from m epochs, with variable 

sample size (nk), and k varies from 1 to m, the tested 

standard deviation would be: 

 

2

1

1

1

21

































m

k

k

m
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kk

mn

S)n(

S
 (21) 

 

where B3, B4 and A3 are the tabulated control factors 

that vary with the size of the sample (Montgomery, 

2005). These factors can be determined as follows: 

consider S /c4 is an unbiased estimator of  for the 

residuals population, where: 

 

c4  ≈ 
34

14





n

)n(
  (22) 

 

then:           

 B3 = 1 - 2

4

4

1
3

c
c

   (23) 

B4 = 1 + 2

4

4

1
3

c
c

   (24) 

A3 = 
nc

3

4

  (25) 

 

2.4 Testing the difference between the mean and the 

median  

For outlier detection in positioning using GNSS, the 

number of observations is usually limited at a single 

epoch. If no outliers are present, the mean value should 

be very close to the median. In case of the presence of an 

outlier in one satellite observation (or more up to n-u), 

the mean of the absolute values of residuals will be 

biased, with a value at the decimetre to metre level. On 

the other hand, the median of the absolute values of the 

residuals of phase data should be small and unaffected 

by the presence of these outliers. Therefore, a 

comparison between the mean and the median of the 

absolute values of the residuals can give a quick 

indication about the existence of outliers. The test static, 

at each epoch, can be formulated with a null hypothesis 

H0 stating: absr  ≈  MDr, where absr  denotes the mean of 

the absolute values of the residuals, and MDr is their 

median. The test reads: 

 

H0:    │ absr  -  MDr │ ≤ Z/2, n-1  
n

dr
    (26) 

Ha:    │ absr  -  MDr │ > Z/2, n-1  
n

dr
 (27) 

 

The null hypothesis, with outlier-free observations, 

assumes the difference (
absr  -  MDr) to have a noise-like 

behaviour with normal distribution and zero mean. Z/2, n-

1 denotes the upper /2 percentage point of the 

standardized normal distribution with (n-1) degrees of 

freedom and dr is the standard deviation of the 

population of the difference (
absr  -  MDr) that can be 

selected based on studying several data sets of a large 

number of outlier-free observations. Alternatively,     Z/2, 

n-1 and dr in Eq. 26 and 27 can be replaced with the t/2, 

n-1 value and the standard deviation of the above 

difference (sdr); respectively, where sdr is computed from 

the collected observations.  If the difference between the 

mean and the median does not pass the test, this implies 

the presence of large errors. The test works efficiently 
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when the errors in phase measurements are larger than 

two cycles. When it is only one cycle, the test might not 

be conclusive and further testing will be needed. 

 

3.   Identification Testing 

 

If the detection test fails, an identification test with more 

specific alternative hypotheses needs to be performed for 

failure identification of individual observations. This 

requires the presence of at least two degrees of freedom.  

 

3.1 Testing individual observations  

We start here by briefly describing the method given by 

Teunissen et al., 2008. With a known covariance matrix 

of the observations (
yC  ), the null hypothesis based on 

Gauss-Markov model and assuming residuals of normal 

distribution and zero expectation, can be formulated as: 

              

              H0 :   E(y) = h(x) (28) 

 

If outliers, represented as the vector , are present, the 

alternative hypothesis will read: 

 

              Ha:    E(y) = h(x) + Wy  (29) 

 

where Wy is a matrix with columns comprising the 

canonical unit vector aligning errors with their 

observations. For instance, if an outliers i in observation 

i exist, where i=1 to n, then: 

 

yiw  = [0, 0, 1i, 0 ,......., 0]
T 

(30)    

 

If no more outliers are described, the remaining elements 

of the Wy matrix will be populated with zeros. The test 

statistic can be formed as:  

 

Tk  (31)

  

The null hypothesis describes a central Chi-square 

distribution, whereas, an alternative hypothesis would 

describe a non-central Chi-square distribution, with an 

offset  that can be determined from the value of the 

error The test is formed as: 

 

H0:   Tdf ~
2
(df, 0),             Ha:   Tdf ~

2
(df, )   (32) 

 

Thus, reject H0    if   Tdf > 2
, where (1  ≤  df  ≤  n-u).  

When df=1, the data snooping procedure (Baarda, 1968) 

can be applied, where the observations are checked one-

by-one, and the matrix Wy becomes a vector wy. The test 

statistic then reads (Teunissen et al., 2008):  

 

Tk (33)   

             

The above test can be further simplified by formulating 

the test statistic using the standardized residual (ri/i), 

assuming that the unbiased standardized residuals are 

normally distributed. The test can be formed as 

(Kuusniemi, 2005): 

H0 :    ri/i  ≤  

2
1



Z    (34) 

Ha :    ri /i >  

2
1



Z  (35) 

 

where i denotes the standard deviation of residuals, 

which can be estimated from the covariance matrix 
rC  , 

and 

2
1



Z

 is the standard normal distribution with N(0,1).  

 
3.2  Testing of individual satellite residuals between 

epochs using MR 

This proposed simple test is performed by computing the 

moving range of residuals MR of phase observations for 

each satellite individually. The MR of residuals between 

the epochs k (the present epoch) and k-1 for the satellite 

under consideration can be computed as: 

 

MRi = | rk – rk-1 | (36) 

 

The mean value of MR within a pre-set time window, e.g. 

5-10 epochs, defined as RM , is used in forming the test 

statistic such that: 

 

H0:     0 < MRk < D4 RM  (37) 

 

Ha:      MRk > D4 RM  (38) 

 

 

Where D4 is a control factor that varies with the size of 

the sample and it is tabulated in quality control 

references, e.g. Montgomery, 2005. Since two residuals 

are considered when computing MR, the number of 

samples reduces to 2 and D4 is 3.267. If MRk does not 

pass the test and the alternative hypothesis is accepted, 

then the satellite residual at the present epoch (k) is 

suspected of having an outlier. 

 

3.3 Testing the time series of individual residuals  

In this test, the phase residual for each satellite can be 

screened over a number of epochs. Since one observable 

is considered in this case, the 2
 distribution converts to 

the Gaussian distribution. The standard deviation of the 

tested sample (s) is used and the test becomes equivalent 

to the Student’s t test. Thus, for a residual ri of satellite 

observation i computed at the current epoch, the failure 

identification test statistic can read: 

 

H0:    
s

rri   ≤ tdf  (39) 

rCWWCCCWWCr y

T

yyyry

T

yyy

T 11111 )(  

rCwwCCCw y

T

yyyry

T

y

1111 )( 
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Ha:   
s

rri  > tdf (40) 

  

Where r  is the residual mean value computed over the 

selected window, and tdf is computed based on df 

degrees of freedom extracted from the length of the data 

used and equals m-1.  

 

Before excluding a specific observation, one has to 

consider the correlation between a possible blunder that 

appears in the residual of one observation with residuals 

from other observations as the adjustment may smooth 

out multiple gross errors across an entire data set. This 

may lead to the possibility of smoothing out a specific 

large error throughout its neighbouring observations. 

Therefore, re-iterating the adjustment process by taking 

out or re-inputting one or more of those observations at a 

time may be necessary in order to locate the right 

observations containing gross errors (Kuang, 1996, 

Kuusniemi, 2005). In one approach, the satellites can be 

ranked in a descending order according to the value of 

their test statistic. The LS or filtering is iterated in a 

recursive manner using a subset of measurements 

excluding the measurement corresponding to the residual 

with the biggest standardized value (ri/i) that does not 

pass the above tests, and detection and identification 

testing is repeated. If the tests still do not pass, re-

selection is carried out, moving the subset along the list. 

The excluded observation has to be reused to account for 

correlation between residuals.  

 

4.   Testing and Results 

 

To evaluate the performance of the presented statistical 

observation testing methods, a test was performed on the 

19 November 2008, in the Edinburgh Oval Park at 

Curtin University of Technology, Perth, Australia. Only 

carrier phase observations were considered. Their 

ambiguities were first estimated from previous epochs 

and considered fixed during testing. The test was carried 

out for 2290 continuous epochs with one-second 

intervals in a walking mode. A Sokkia GSR2700ISX 

dual-frequency receiver was used for data collection and 

data processing was performed using Kalman filtering. 

The number of observed satellites ranged between 9 and 

11. During one part of the test period, the receiver went 

under trees or close to a tree canopy, which resulted in 

experiencing some cycle slips and interruption of data.  

 

To establish a reference for assessment of detection and 

identification capabilities, the data were first cleaned 

from possible outliers. First, cycle slips were detected 

and fixed using the triple difference method presented by 

Kim and Langley, 2002. The data were next screened 

using commercial software and were proven free of 

outliers. Next, some artificial large errors, resembling 

outliers, were implanted into these data at specific 

epochs to test if the presented methods would be able to 

detect them. The implanted errors ranged from 1 to 50 

cycles of phase data of L1 frequency. Out of the total 

2290 epochs, 222 epochs in four discrete periods were 

uploaded with outliers. To test the ability of detection 

and identification of outliers in multiple observations at 

the same epoch, outliers were inserted in the phase 

observations of more than one satellite at a time, where 

the number of ’infected’ satellites ranged from one to 

five. Their distribution along the time series of the data 

is illustrated in Fig. 1.  

 

 
Figure 1: Number of satellites with faulty measurements  

 

4.1   Results of detection testing  

Table 1 summarizes the results of independently running 

different detection tests for the data at hand in the case of 

implementing large errors of 25 and 50 cycles. The Chi-

square test (Eq. 3 & 4) proved to be efficient as the 

observations with the implanted large errors were 

detected at all epochs, as seen in the second column in 

the table. Similarly, the method of testing the difference 

between the mean of the residuals between two 

consecutive epochs (Eq. 8), which is given in the third 

column in Table 1, also proved to perform well. In this 

method, a population standard deviation  of 2 cm was 

used, which was selected based on analysing the outlier-

free residuals. Fig. 1 also shows an error indexing 

system that was used during testing. An index of 1 was 

given if a correct detection of faulty data is made when 

they first spotted, whereas an index of 0 was used to 

indicate if the data were clear of outliers, or if there is no 

change in the error-performance of the satellites detected 

with outliers. As can be seen from Fig. 1, all data with 

the implanted large errors were correctly flagged.  

 

The tests applying the control limits that dynamically 

change according to the data at hand, also performed 

well, as shown in the fourth column of Table 1. This 

include checking whether the range of residuals R and 

the mean values of the residuals kr  lie within the 

dynamic control limits set by the mean value of the 

ranges R  (Eq. 13 and 14). For these tests, a window of 

five epochs was selected for computation of the mean 
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values. One should note that these tests require cleaning 

the data from outliers, once detected, before examining 

data for the following epochs. Fig. 2 and 3 show the 

performance of these tests in detecting the ’faulty’ 

measurements at the start of the four periods that contain 

them. As can be seen, the R and kr values exceeded the 

control limit at the beginning of each of these periods. 

For better illustration, and as an example, the test values 

for the first period that has outliers are shown enlarged 

next to the control chart plot in Fig. 3. The results of the 

test checking the sample standard deviation S against the 

control limit set by the mean value S  (Eq. 19 and 20) 

was shown in the fifth column in Table 1. The test was 

also successful in detecting the data sets containing the 

implanted outliers. Fig. 4 illustrates the control chart for 

this test, which depicts the time sequence of the control 

limits and the tested standard deviations. The figure 

shows that at the beginning of each period containing 

outliers, S was greater than the upper control limit and 

detection of implanted errors was thus possible.  

 

 
Figure 2:  Detection using control limits of the range  

 

When testing the difference between the mean and the 

median of the absolute values of the residuals (Eq. 26 

and 27), the standard deviation of the residuals’ 

population  was taking 2 cm, which was used in setting 

the test threshold. Results demonstrated that the test was 

successful in detecting all epochs that contained data of 

errors larger than two cycles.  

 

To illustrate the performance with smaller errors, e.g. 

errors that range between 1 cycle and 5 cycles (0.2m to 

1m). Results of the likelihood test (Eq. 3 and 4) are 

given as an example. For this test, the covariance matrix 

of the observations plays an important role that may 

change the test output. A zenith direction variance of 

(0.005m)
2 

and uncorrelated observations with variances 

that are satellite elevation angle dependent were used. 

 

 Table 2 shows the percentage of successful detection 

using the likelihood test for different error levels and 

with three significance levels: 0.05, 0.01 and 0.001. The 

latter is of particular interest for safety-of-life 

applications, such as airborne navigation (see El-

Mowafy, 2008). The test was successful for detection of 

all errors that have a magnitude more than 4 cycles, even 

with the critical significance level of 0.001. However, 

the power of detection decreases with the decrease of the 

significance level for small errors that range from one to 

three cycles. It is worth mentioning that the same 

conclusion holds when rerunning the detection test after 

using both phase and code data. Computation of the 

minimal detectable bias, as described by Teunissen and 

Kleusberg (1998) can help in identifying the threshold 

for error detection. 

 

 
 

Figure 3:  Detection using control limits of the mean 

 

 
Figure  4: Detection using control limits of the std. dev. 

(S) 

 

Table 2: Performance of detection testing of phase 

observations at various levels (success percentage%) 

 1 m 0.8 m 0.6 m 0.4 m 0.2 m 

0.05 100 100 100 91.07 41.10 

0.01 100 100 96.43 83.93 21.43 

0.001 100 100 94.64 67.86 8.93 
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Table 1:  Detection methods for all satellite residuals in one epoch (large cycles) 

Method r
T 1

yC  r  > 
2

,1 df   |
21 rr  | - 0 >     

 2,2/ 21 nnZ     

 Rk < D3 R     or       

    Rk > D4 R  

 kr < r - A2 R   or   kr

> r + A2 R  

 Sk < B3 S    or     

   Sk > B4 S  

A* B* C* A B C A B C A B C 

% Ratio 100 0 0 100 0 0 100 0 0 100 0 0 

 
 

*   A: % Detection of faulty satellites 

  B: % Miss detection of faulty satellites 

  C: % False alarm 

 

 

4.2   Results of identification testing  

When a set of data containing large errors are detected at 

a certain epoch, identification testing is performed to 

identify the specific satellites with bad measurements. 

The test employing standardized residuals as the test 

statistic (Eq. 34 and 35) was first performed. For the test 

data at hand, the method performed only well for large 

blunders, e.g. 25 cycles, with a detection rate of almost 

100%. For errors that were 25 cycles or less, there were 

several cases of miss-detection, but there were no 

observed cases of false alarm. The overall performance 

of this method was 90.5% success rate as shown in the 

second column in Table 3. 

 

Results of the moving range test MR (Eq. 37 and 38) 

showed a success in detecting 97.3% of all implanted 

large errors and identifying their specific satellite 

observations. However, there were also several false 

alarms raised, i.e. indicating the existence of an outlier 

while there were none. For the test at hand, where 

measurements of 9 satellites were collected for a period 

of 2290 epochs with 222 cases of implanted large errors, 

216 cases were detected, 6 were missed, and there were 

27 cases of false alarm. The results are given in the third 

column in Table 4. Examples of the results of this test 

are illustrated in Fig. 5 and 6, which show the control 

limits and the MR values during testing of satellite 

number 2 and satellite number 27. The former was 

outlier free since MR values were always less than the 

dynamically changing UCL values, whereas the latter 

satellite had several outliers that were successfully 

detected as the MR values exceeded the UCL.   

Table 3: Results of Identification tests for all satellites  
Method ri/i  ≤  

2
1



Z  MRi > D4 RM  

s

rri   ≤ t 

    
A* 

B* C* A* B* C*    
A* 

B* C* 

% 

Ratio 
90.5 9.4 0 97.3 2.7 0. 7 99.0 1.0 0 

No. of 

cases 
201 21 0 216 6 27 220 2 0 

 

 
Figure 5: MR test for a satellite free from 

blunders/outliers 

 

 
Figure 6: MR test for a satellite with multiple blunders 

 

When examining the time sequence of individual 

standardized residuals (Eq. 39 and 40), a standard 

deviation of 2 cm was used with a mean value of the 

residuals assumed 0. The length of data included in 

computation of the test statistic was selected as 10 

epochs. Results of the test at hand, checking each 

satellite observation individually in its time series, show 

that all observations containing large errors were 

identified except the data of two epochs, with no false 

alarms, which means a success rate of 99% as shown in 

the last columns in Table 3.  

 

Results of checking individual phase observations using 

the data snooping test statistic given in Eq. 33 and the 

test in Eq. 32 are shown in Table 4. The table shows the 

success of identification of outliers as a percentage of all 

observations containing outliers. Errors from 1 cycle up 

to 50 cycle (0.2m to 10m) were tested with three 

significance levels, which are 0.05, 0.01 and 0.001. In 

each test case, the same error level was implanted to all 

selected epochs. The elevation-angle dependent model 

was used to create the observation covariance matrix. 
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Fig. 7 and 8 show the results for  and , 

respectively. In all tests, there were no cases of false 

alarm. As can be seen from Table 4 and the figures, the 

success of identification for the data at hand is high with 

large errors, and it decreases with smaller errors. This 

also has a direct relation with the chosen significance 

level as it sets the test threshold. For instance, with  = 

0.05, which corresponds to a confidence interval of 95%, 

the success rate was 100% when the blunders were 4m 

(approximately 21 cycles) or higher. When  = 0.01, the 

100% success rate was reached when the error was 6 m 

(32 cycle) or higher. For  = 0.001, which is needed for 

critical applications, the 100% was only reached with 10 

m errors. Table 4 also shows that with  = 0.05 and 0.01, 

the test was unable to detect errors of less than 5 cycles 

and 15 cycles, respectively. With  = 0.001, errors 

below 27 cycles were never detected.  

 

As can be seen from Eq. 33, the test is also dependent on 

the model of the observation covariance matrix used. To 

investigate this, the test was repeated using an equal-

weight observation covariance matrix and results from 

the two covariance models were compared. Results of 

using equal-weight covariance matrix are given in Table 

5. When comparing the identification performance listed 

in Table 4 with that of Table 5, some differences can be 

seen. Unexpectedly, results of identification testing when 

using an equal-weight covariance model outperforms the 

elevation-angle dependent model for the test data at 

hand. This can be partially explained by noting that large 

errors in our test were not necessarily implanted at 

satellites of low elevation angles rather randomly 

distributed to mimic a case of unusual or untraditional 

fault occurrence. Nevertheless, the conclusion is that the 

performance of identification of individual faulty 

observations can significantly change according to the 

observation covariance model used.  

 

Table 4: Identification testing with elevation-angle dependent variances (Success %) 


10 

m 

9   

m 

8   

m 

7   

m 

6   

m 

5   

m 

4     

m 

3   

m 

2   

m 

1   

m 

0.8 

m 

0.6 

m 

0.4 

m 

0.2 

m 

0.05 100 100 100 100 100 100 100 98.1 20.4 0 0 0 0 0 

0.01 100 100 100 100 100 88.9 22.3 0 0 0 0 0 0 0 

0.001 100 98.1 88.9 27.8 20.4 0 0 0 0 0 0 0 0 0 

 

Table 5: Identification testing with equal weight variances (Success %)  


10 

m 

9   

m 

8   

m 

7   

m 

6   

m 

5   

m 

4     

m 

3   

m 

2   

m 

1   

m 

0.8 

m 

0.6 

m 

0.4 

m 

0.2 

m 

0.05 100 100 100 100 100 100 100 100 20.4 0 0 0 0 0 

0.01 100 100 100 100 100 94.4 47.2 4.6 0 0 0 0 0 0 

0.001 100 100 94.4 73.1 23.1 4.6 0 0 0 0 0 0 0 0 

 

 

 
Figure 7: Success of detection (=0.05) 

 

 
Figure 8: Success of detection (=0.001) 
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5. Conclusions 

 

The paper presents a wide range of local statistical tests 

that can be applied for detection and identification of 

outliers in GNSS measurements. Results showed that all 

detection methods that screen all satellite measurements 

performed well for large errors. This includes likelihood 

testing, testing the difference between the mean of the 

residuals for subsequent epochs, testing the difference 

between the mean and the median, and testing using 

control limits on the range, the mean and the standard 

deviation of the residuals.  

 

For the identification testing, presented methods include 

testing the likelihood of the standardized residuals, 

checking individual observations in a data snooping 

approach, or using the control limits on the moving 

range of residuals of each satellite, and checking the time 

series of individual residuals. For these tests, the 

identification ratio was very high with large errors, but 

the success rate drops rapidly when the blunders get 

smaller. In the Moving Range test, there were cases of 

false alarm. The performance is also dependent on the 

selected significance level, as the success of detection is 

decreased with the decrease in the significant level. 

Finally, it was shown that the identification performance 

can significantly change with the observation-covariance 

matrix model used, and thus accurate models should 

always be used. 
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