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[1] The coherence method, based on the statistical
correlation between gravity and topography, has been
widely used to estimate the effective elastic thickness of
the continental lithosphere and its variations. By far the
majority of studies have assumed an isotropic lithosphere,
but several papers have inferred anisotropy from differences
in the observed coherence (or admittance) functions in
different directions. However, none have used an
anisotropic model to fit the coherence. We show how the
simplest model of elastic anisotropy (an orthotropic thin
plate) can be incorporated into both forward and inverse
modeling algorithms, using an appropriate approximation in
the partial differential equation for the flexure of such a
plate. INDEX TERMS: 1236 Geodesy and Gravity: Rheology
of the lithosphere and mantle (8160); 8110 Tectonophysics:
Continental tectonics—general (0905); 8164 Tectonophysics:
Stresses—crust and lithosphere. Citation: Swain, C. J., and J. F.
Kirby, The coherence method using a thin anisotropic elastic plate
model, Geophys. Res. Lett., 30(19), 2014, doi:10.1029/
2003GL018350, 2003.

1. Introduction

[2] In modern isostatic analysis the lithosphere is often
treated as a thin elastic plate, overlying a fluid astheno-
sphere, and loaded by both surface topography and subsur-
face density anomalies [Watts, 2001]. The resulting flexure
deforms the Moho and can thus be inferred from gravity
anomalies, which also reflect the subsurface loads. The
mechanical strength of the lithosphere can be quantified
by its flexural rigidity (D) or effective elastic thickness (7}),
which can be determined either by modeling the gravity and
topography data together, or by using statistical methods,
based on the FFT, to estimate the admittance or coherence
of the two data sets from their cross-spectra. The utility of 7,
estimates for regional tectonic studies was highlighted by
Lowry and Smith [1995] who showed that the significant
controlling factors are temperature, composition and stress,
so that 7, variations frequently correlate with both tectonic
provinces and seismicity.

[3] In Forsyth’s [1985] method the flexural rigidity D is
estimated by modeling the observed coherence between
Bouguer gravity and topography. Most studies have used
periodogram spectral estimation, after mirroring the data
sets in their edges to remove first order discontinuities.
More recently 2-D multitapers have been used for estimat-
ing the coherence; Simons et al. [2000] noted that this
resulted in much lower 7, estimates. In a study similar to
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that of Macario et al. [1995], Swain and Kirby [2003]
showed that use of multitapers causes a systematic down-
ward bias in 7, estimation by Forsyth’s method which we
suggested could be corrected by means of ‘““calibration
curves” based on synthetic model results. We found that
the bias increases with increasing multitaper parameters N
(resolution bandwidth) and K (number of tapers along each
axis) and with decreasing window size.

[4] Only a few studies of anisotropic 7, have been
published. Stephenson and Lambeck [1985] divided the
2-D admittance Q(k) for central Australia into NS and
EW subsets (+45°) prior to azimuthal averaging and found
clear evidence for anisotropy in their Qpp{k) and Ons(k)
despite their rather large error estimates due to the use of a
single data taper (which was conventional practice at the
time). Lowry and Smith [1995] used a somewhat similar
technique based on inverting the 1-D functions formed by
averaging over subsets of 2-D coherence centered at
different azimuths to generate estimates of 7, as a function
of azimuth for the western U.S. The anisotropy of central
Australia was further investigated by Simons et al. [2000]
who took advantage of the multitaper method to generate a
2-D coherence function v*(k) which is also clearly
anisotropic. Simons et al. [2003] used Hermite functions
as data tapers for estimating y*(k) and its spatial variation;
they found that at long wavelengths, corresponding to the
transition from high to low coherence, the weak directions
are approximately NW-SE in central Australia.

[s] None of the papers cited uses an anisotropic plate
model to interpret their data. In the next section we
describe such a model and show how to generate synthetic
data from it.

2. An Anisotropic Thin Plate Model

[6] The differential equation for bending of a thin ortho-
tropic plate is given in several engineering texts [e.g.
Szilard, 1974]. Taking the 3 planes of symmetry as the
coordinate planes, and using the model of Banks et al
[2001] for a thin plate with both surface (¢7) and subsurface
(¢p) initial loads and overlying an inviscid fluid (density p,,)
the deflection w is given by:

M*w
Ox2dy?

*w

Ox*4 -

W

where H = 1/2(0ny + o.D,) + 2D, for an intrinsically
orthotropic material (i.e., one with anisotropic elastic
constants), o being Poisson’s ratio and D, the torsional
rigidity. For such a material it is shown by Szilard [1974]
that 0,.D, = 0, D, = \/(0,0,D,D,), and that H ~ \/(D,D,)
so when D, = D, equation (1) reduces to the standard
isotropic 2-D biharmonic equation. We have tried using H =

D,— +2H +D, ~lr —Llp —pugw (1)
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Figure 1. Observed (upper) and best-fitting predicted (lower) multitaper 2-D coherences for 4 of the 100 anisotropic
models, each with T}, = 100 km, 7}, = 50 km, 0 = 0, and random fractal surface and subsurface loads. N =3 and K = 3.
Grey scale interval is 0.2 and darkest tone is >0.8. The model parameter estimates ((7;) km, (7}) km, (6)°) are: (a) (72, 35,

14); (b) (98, 41, —4); (c) (52, 41, —54); (d) (59, 43, 0).

aw/(D,D,) in place of the above approximation and found
only small changes to the observed coherence generated
from our models for different values of « less than about 3,
so we have assumed o = 1.

[7] In the wavenumber domain the equation becomes:

(Duk? + 2HIZE + D! +0,8) W = ~Lr — Ly (2)

where W, Ly, Ly are the Fourier transforms of the plate
deflection and loads. Note that with the approximation for #
given above, this is the same as equation (16) of Banks et al.
[2001] with their Dk* replaced by (v/Dik: + +/Dyk;)%, so
calculating the deflection of such an anisotropic plate is
hardly more difficult than for the isotropic case. If the
direction of anisotropy is not aligned along one of the axes,
a rotation of (k,, k,) through angle 6 is required, i.e. k/ =
kycosb — kysinb, k, = k,sind + k,cos6. The topography can be
calculated as the sum of the initial topography Lz/(py g) and
the flexure W, and the resulting Bouguer gravity anomaly as
the sum of the effects of the internal load and Moho
deflection [Banks et al., 2001; Equations 17, 18]. Note that
in this model Lg takes the form of a thin sheet of variable
density. In this study we have used random fractal loads
[Macario et al., 1995; Swain and Kirby, 2003].

3. Parameter Estimation

[8] The essence of Forsyth’s [1985] coherence method is
to invert the above process and estimate the initial loads
from the observed topography and Bouguer gravity
assuming a value for D, and hence calculate a predicted
coherence. D can then be estimated as the value that
minimizes the misfit between observed and predicted
coherence. For isotropic D, coherence estimates and their
errors are generally made in 1-D by averaging between
annuli. The “load deconvolution” equations, for calculating
the loads from the observed gravity/topography for the thin
sheet model, were given by Banks et al. [2001], with a
correction by Swain and Kirby [2003].

[o9] With the anisotropic model described above the only
change required to the load deconvolution equations is (as
before) to replace Dk* by (/D.ki + +/D,k;)*. There are now
3 parameters to be estimated: D,, D, and the azimuth 0. The
2-D coherence estimates that are required were made using
multitapers. Jackknifed error estimates [Thomson and
Chave, 1991] were used in calculating a misfit € [Tarantola,
1987]. We have found it useful to include only the low
wavenumbers (e.g., <3k, where k&, is the transition
wavenumber). We also weight the observations by 1/k* so
that the results are compatible with those that assume an
isotropic plate and perform annular averaging with equal
increments of log k. We have found that (T, 7,, 0) is almost
always a very smooth function with a single minimum, so
the problem is quasi-linear and parameter estimation by
means of an iterative least-squares algorithm works well
[Tarantola, 1987, equation 1.100]. Speed of convergence
depends on the starting model but usually requires
4 iterations. Although damping is often not required, we
include it by means of a priori parameter variances
[Tarantola, 1987]; the values we typically use are
equivalent to uncertainties of 100 km in 7., 7, and 10°
in 0. This means that 6 is more strongly damped than 7 and
T, which takes care of the fact that if anisotropy is small
then 0 is poorly determined.

[10] It is worth noting that we also tried averaging the
coherences within elliptical annular rings. Our motivation
for this was the observation that 1-D misfit as a function of
D for the isotropic case gives quite narrow minima when
calculated by averaging multitaper coherence between
annuli, whereas the 2-D misfit, calculated as described
above, gives broad minima. However, we found that (D,,
D,) for a given azimuth then has the form of a long narrow
trough, with D, and D, highly correlated, so we abandoned
this approach.

4. Some Model Results

[11] We present results from a run of 100 models
with random fractal loads and D, = 8.9 x 10** N/m
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Figure 2. Observed (a) and best-fitting predicted (b)
multitaper 2-D coherences for central Australia. NW = 3,
K = 3. Grey scale interval is 0.2 and darkest tone is >0.8.
Coherence is predicted by an anisotropic model with 7, =
79 km, T, = 54 km, 6 = —50°.

(T, =100 km), D, = 1.1 x 10** N/m (7, = 50 km) and 0 = 0.
The surface and subsurface loads were made equal at all
wavenumbers (f = 1). We assumed D to be related to
effective elastic thickness 7,, Young’s modulus E, (10'' Pa)
and Poisson’s ratio ¢(0.25) by the isotropic formula: D =
ET’/[12(1 — 6%)] = ~8.9 x 10"*72 Nm, with 7, in km. We
used a window size of 256 x 256 with a 10 km cell size, a
resolution bandwidth NW = 3 and number of tapers K = 3
for all spectral estimates. [We found that although use of
NW = 2 and K = 2 [Swain and Kirby, 2003] may be
adequate for 1-D coherence with annular averaging, with
2-D coherence larger values are required even for synthetic
data.]

[12] Figure 1 shows observed and best-fitting predicted
coherences for 4 of the models, selected to illustrate the
large variation between results for models with identical
elastic parameters, rather than typical results. Since the
models only differ in their loads, these results clearly
illustrate the important fact that anisotropy of the 2-D
coherence can arise from anisotropy of the loading ratio
f(k) as well as from anisotropy of D. Figure 1d shows that
the inversion can correctly estimate the anisotropy direction
even when the azimuth indicated by the coherence is >20°
in error.

[13] Histograms of the model parameters for the 100
models look reasonably Gaussian but we have noticed that
outliers sometimes occur at >3 SDs above (7,), so we prefer
to use medians (this is referred to again in the next
paragraph). The median flexural rigidity estimates and SDs
for all 100 models are: (D,) =2.8 (+1.8 — 1.1) x 10** Nm,
(D,) = 6.6 (+4.1 — 2.5) x 10 Nm ((T,) = 68 + 11 km,
(T,) =43 + 7 km) and (0) = —1 + 17°. The results for 2 sets
of 100 isotropic models with 7, = 100 km and 50 km were
(T,) = 68 + 7 km and (7,) = 42 + 3 km, respectively,
indicating a similar bias for isotropic and anisotropic 7,
estimates made with the same multitaper parameters. This
means that we can use an error curve for isotropic models,
as in Swain and Kirby [2003], to make approximate
corrections for the downward bias.

[14] We have noticed that the outliers referred to above
are associated with the 1/k* weighting of the observed
coherences in the inversion, particularly where 7, is large,
and tend not to occur where there is no weighting, or where
the weight is an inverse function of a smaller power of £.
We have also noticed their occurrence when annular
averaging is used with equal increments of log k&, when
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the plate is assumed to be isotropic: as noted above, this
corresponds to 1/k* weighting. For example, Figure lc of
Macario et al. [1995] shows several estimates at ~140 km
for a true 7, of 80 km. Using the median, rather than the
mean, for their data gives (7,) = 86 km (the mean is given
as 95 +29 km). This calls into question their conclusion that
“there is a strong likelihood of an upward bias in T,
estimates if the dimensions of the study area are not
adequate to fully resolve the longest wavelengths”. We
think that a more justified conclusion would be that small
window sizes, relative to the flexural wavelength, give an
increased likelihood of spuriously high 7, estimates. It
would probably be better to use a weighting that reduces the
likelihood of such outliers, but we use the 1/k* weighting
here purely for compatibility between isotropic and
(average) anisotropic results.

5. Anisotropic Elastic Plate Model for Central
Australia

[15] We used this model to fit the coherence between
Bouguer gravity and topography data from a 2200 X
2200 km area of central Australia, centred at 23.5°S,
133°E. This is the same data set studied by Swain and
Kirby [2003]. Figure 2 shows the observed and best-fitting
predicted coherences. The parameter estimates for this
model are D, = 4.4 x 10** Nm, D, = 1.4 x 10** Nm (7, =
79 km, T, = 54 km) and 0 = —50°, i.e. the azimuth of the
weak direction is —50°N. This direction is similar to the
“long-wavelength weak directions” for 3 points in central
Australia shown in Figure 12a of Simons et al. [2003].

[16] In order to correct our 7, estimates for multitaper
bias [Swain and Kirby, 2003], we have constructed error
(or calibration) curves for the multitaper parameters NW =
3, K =3 and a window size of 2200 x 2200 km. Figure 3
shows the results for isotropic models with low S/N ratio, as
defined in Swain and Kirby [2003] and appropriate for
central Australia. Comparison with Figure 2 of Swain and
Kirby [2003] clearly shows the increase in bias resulting
from the larger resolution bandwidth (NW) and number of
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Figure 3. Error curves for multitaper coherence T,
estimates (with K = 3, NW = 3) for a square window of
width 2200 km. Each point is the result of applying the 7.
estimation program to a set of 100 pairs of synthetic
topography and gravity grids. The curve is a second degree
polynomial. The error bars show both standard errors and
standard deviations.
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tapers (K). From this curve we estimate that the apparent 7,
values of 79 and 54 km correspond to true values of about
T, = 120 km, T, = 70 km. To make error estimates we
inverted 100 data sets created from an anisotropic model
with these T, and T}, values, 0 = 0, and with low S/N ratio.
The results were (7,) = 80 £ 17 km, (7,) = 55 = 11 km,
(8) = 0 = 23°. From these results we can estimate the
corrected values as 7, = 120 — 30/+40 km, 7, = 70 = 15 km
(with errors estimated by reading off from Figure 3 the
“True 7,” values corresponding to the errors given for each
uncorrected estimate). The corrected flexural rigidities for
central Australia are D, = 1.5 (+2.1 — 0.9) x 10* Nm, D, =
3.0 (+2.5 — 1.5) x 10°* Nm, and the azimuth of the weak
direction is —50°N + 23°,

6. Comparison With the Isotropic Result for
Australia

[17] The isotropic T, estimate for central Australia given
in Swain and Kirby [2003] was 115 + 25 km (corrected for
multitaper bias). We would expect the average of the T, 7,
estimates for an anisotropic model (or perhaps their
geometric mean) to approximate this, and the fact that it
is somewhat lower (95 km), though within the error
estimates, requires comment.

[18] Because the multitaper parameters were different in
the two studies, we obtained an isotropic estimate using the
multitaper parameters NW = 3, K = 3 and corrected this
using Figure 3, obtaining 7, = 100 + 20 km. We consider
that the difference between this value and the anisotropic
average does not indicate any systematic bias.

[19] The difference between the two isotropic estimates
for the same data set (115 km with NW =2, K =2; 100 km
with NW = 3, K = 3) is probably due to differences in the
behavior of the estimation procedure for the synthetic and
real data. One possible contributing factor could be that the
azimuthally averaged maximum observed coherence for the
Australian data (0.81) is somewhat lower than for synthetic
data sets (>0.95 in most cases).

7. Discussion and Conclusions

[20] We have shown that it is easy to incorporate anisot-
ropy into both forward wavenumber-domain modeling and
Forsyth’s [1985] inverse method by means of an intrinsi-
cally orthotropic thin plate model. The new method appears
to work well and has the important advantages, compared to
non-model-based methods, of fitting the model to all the
observed data (2-D coherences) and of accounting for the
effects of anisotropic loading. However, it is perhaps
necessary to ask whether such a model can approximate
the mechanical behaviour of the lithosphere. Simons et al.
[2000] noted a number of possible mechanisms to explain
azimuthal variations in 7, including: (a) stress;
(b) anisotropic variations of Moho depth and (c) its
temperature; (d) intrinsic anisotropy of mantle materials;
(e) parallel faulting; (f) alignment of weak zones in the
crust. However, Lowry and Smith [1995] suggested that
lithospheric weakening by regional horizontal stress is the
most likely cause. We infer that mechanisms (b)—(f) can all
be approximated by an intrinsically anisotropic plate. The
case of stress-induced anisotropy of 7, is more difficult as
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the azimuthal pattern of 7, variation can be bilobate or
cloverleaf as well as elliptical, depending on the stress
pattern [Lowry and Smith, 1995]. This is because 7, varies
non-linearly with stress and the latter varies with azimuth 0
as cos’0. However, we have converted such azimuthal 7,
variations to coherence transition wavenumbers, which are
approximately elliptical, so the model is probably adequate
in this case as well.

[21] As well as the central elliptical high, the coherence
map (Figure 2a) shows anomalous high coherence on the
k,-axis at a wavelength of ~200 km. The admittance map
shows a very similar central elliptical anomaly (with values
of about —0.12 mGal/m) and also a similar anomaly on the
ky-axis which is so strong that it is still significant after
azimuthal averaging [Swain and Kirby, 2003, Figure 4]. It
results from the negative correlation that exists at these (and
shorter) wavelengths between the major EW gravity
anomalies of central Australia and the topography, due to
NS compressional tectonics.

[22] Although our weak direction of 7, anisotropy,
—50°N + 23° is inconsistent with this NS compression,
present-day stress directions within our area [Hillis et
al., 1998] vary from 10°-20°N in the Amadeus Basin to
70°N just 200 km to its south, and approximately EW a few
hundred km to the east and west. Our 7, anisotropy
direction is also at odds with the predominantly EW
directions of major faults, possible weak zones in the crust
and of inferred Moho topography. Simons et al. [2003]
argue that the direction of 7, anisotropy should be
perpendicular to the fast axis of seismic anisotropy. In both
their anisotropic velocity model and that of Debayle and
Kennett [2000], the fast axis varies spatially very rapidly at
depths <150 km, although it is more uniform, with direction
0°-30°N, at depths >150 km. We conclude that although is
impossible to correlate our direction of 7, anisotropy to the
regional stress field or to velocity anisotropy in the upper
lithosphere, it could represent an average of either of these
vector fields over our large data window.

[23] Acknowledgments. We thank Tony Lowry for commenting on
an earlier version of the paper. The Australian Research Council supported
this work with grant no. DP0211877.
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