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Abstract—In this paper, we consider a multicasting multiple-
input multiple-output (MIMO) relay system where the transmit-
ter multicasts a common message to multiple receivers with the
aid of a relay node, all equipped with multiple antennas. Given
the power constraints at the source and the relay nodes, we aim at
minimizing the maximal mean-squared error (MSE) of the signal
waveform estimation among the destination nodes through joint
source, relay, and receiver matrices optimization. We provide
a low complexity solution to this highly nonconvex optimization
problem. In particular, we show that under the (moderately) high
signal-to-noise ratio (SNR) assumption, the joint source and relay
optimization problem can be solved using standard semidefinite
programming (SDP) technique. Numerical simulations provided
demonstrate the effectiveness of the proposed algorithm.

I. INTRODUCTION

Wireless multicasting technology has attracted much re-

search interest recently, due to the increasing demand on mo-

bile applications such as streaming media and location-based

services involving group communications. The broadcasting

nature of the wireless channel makes it naturally suitable for

multicasting applications, since a single transmission may be

simultaneously received by a number of users. However, the

wireless channel is subject to signal fading. By exploiting

the spatial diversity, multi-antenna techniques can provide

significant improvement in spectral efficiency and link relia-

bility in wireless systems. Next generation wireless standards

such as WiMAX 802.16m and 3GPP LTE-Advanced have

already included technologies which enable better multicasting

solutions based on multi-antenna and beamforming techniques

[1].

The information theoretic capacity of the multi-antenna

multicasting channel has been studied in [2]. The effect

of channel spatial correlation on the capacity performance

has been investigated in [3]. The authors in [4] designed

transmit beamformers for physical layer multicasting. In [5],

the authors focused on transmit precoding design for multi-

antenna multicasting systems where the channel state infor-

mation (CSI) is obtained via limited feedback. The works in

[4]-[5] solved the max-min signal-to-interference-plus-noise

ratio (SINR)/rate beamforming problems with the aid of

semidefinite relaxations (SDR). In [6], a stochastic beam-

forming strategy is proposed for multi-antenna physical-layer

multicasting considering an achievable rate perspective where

the randomization is guided by SDR.

While the works [2]-[7] focus on multicasting systems

with single-antenna receiving nodes, recently multi-antenna

receiving nodes have been considered in [8]-[10]. In particular,

coordinated beamforming techniques have been investigated

in [8] to facilitate physical layer multicasting with multi-

antenna receivers. In [9], non-iterative near-optimal transmit

beamformers are designed for wireless link layer multicasting

with real-valued channels, and for complex-valued channels an

upper bound on the multicasting rate is derived. The scaling

of the achievable rate for the increasing number of users has

been investigated in [10] for multiple-input multiple-output

(MIMO) multicasting in which the transmission is coded at

the application layer over a number of channel realizations.

The above works [2]-[10] consider single-hop multicasting

systems. However, in the case of long source-destination

distance, relay node(s) is necessary to efficiently combat the

pathloss of wireless channel. In [11], the authors investigated

multicast scheduling with multiple sessions and multiple chan-

nels where the base station may multicast data in two sessions

using MIMO simultaneously through the same channel and

the users are allowed to cooperatively help each other on

orthogonal channels. The authors in [12] studied the lower

bound for the outage probability of cooperative multiple

antenna multicasting schemes based on amplify-and-forward

(AF) strategy where the users are equipped with a single

antenna.

In this paper, we consider a multicasting MIMO relay

system where the transmitter multicasts a common message

to multiple receivers with the aid of a relay node. The

transmitter, relay, and receiving nodes are all equipped with

multiple antennas. To the best of our knowledge, such two-hop

multicasting MIMO relay system has not been investigated in

existing works. For implementation simplicity, we choose the

AF relaying strategy. We aim at jointly optimizing the source,

relay, and receiver matrices to minimize the maximal mean-

squared error (MSE) of the signal waveform estimation among

all destination nodes. This optimization problem is highly

nonconvex with matrix variables. We provide a low complexity

solution for the problem under some mild approximation.

It has been shown that the problem can be solved using

standard semidefinite programming (SDP) techniques under



(moderately) high signal-to-noise ration (SNR) assumption. In

contrast to the existing works, the proposed algorithm supports

multicasting multiple data streams. Numerical simulations are

performed to demonstrate the effectiveness of the proposed

algorithm. Note that in contrast to our system, the second-hop

receivers are equipped with a single antenna in [11]-[12].

II. SYSTEM MODEL

We consider a two-hop MIMO multicasting system with L
receiving nodes as illustrated in Fig. 1. The source, relay, and

destination nodes are equipped with Ns, Nr, and Nd anten-

nas, respectively. The source node multicasts its information-

carrying symbols to the destination nodes with the aid of

a relay node. Moreover, the direct links between the source

node and the destination nodes are not considered since we

assume that these direct links undergo relatively larger path

attenuations compared with the links via the relay node.
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Fig. 1. Block diagram of a multicasting MIMO relay system.

We assume that the relay node works in half-duplex mode.

Thus the communication between the source and destina-

tion nodes is accomplished in two time slots. In the first

time slot, the source node linearly precodes an Nb × 1
(Nb ≤ min(Ns, Nr, Nd)) modulated signal vector s (common

message to all destination nodes) by the Ns × Nb source

precoding matrix B and transmits the precoded vector x = Bs

to the relay node. We assume that E[ssH ] = INb
, where

E[·] denotes statistical expectation, (·)H stands for the matrix

Hermitian transpose, and In is an n× n identity matrix. The

received signal vector at the relay node is given by

yr = HBs+ vr (1)

where H is the Nr ×Ns MIMO channel matrix between the

source node and the relay node, yr and vr are the Nr × 1
received signal and additive Gaussian noise vectors introduced

at the relay node, respectively.

In the second time slot, the source node remains silent

and the relay node multiplies (linearly precodes) the received

signal vector yr by an Nr × Nr relay amplifying matrix F

and transmits the precoded signal vector xr = Fyr to all

destination nodes. Hence the received signal vector at the ith

destination node can be written as

yd,i = GiF(HBs+ vr) + vd,i

, Ais+ ni, i = 1, · · · , L (2)

where Gi is the Nd ×Nr MIMO channel matrix between the

relay node and the ith destination node and vd,i is the additive

Gaussian noise vector at the ith destination node. Here Ai ,
GiFHB is the equivalent MIMO channel between the source

node and the ith destination node, and ni , GiFvr + vd,i is

the equivalent noise vector at the ith destination node.

We assume that the channel matrices H and Gi, i =
1, · · · , L, are all quasi-static, i.e., the channel matrices are

constant throughout a block of transmission. In practice,

the CSI of Gi can be obtained at the ith destination node

through standard training method. The relay node can have

the CSI of H through channel training, and obtain the CSI

of Gi, i = 1, · · · , L, by a feedback from ith receiving node.

The quasi-static channel model is valid in practice when the

mobility of all communicating nodes is relatively slow. Thus,

we can obtain the necessary CSI with a reasonably high

precision during the channel training period. The relay node

calculates the optimal source matrix B, and the relay matrix

F, and forwards B to the source node and forwards F and

H to the destination nodes. Thus the source node does not

need any channel knowledge and each destination node needs

CSI of its own channel with the relay and that of the first-hop

channel. This is a very important assumption for multicasting

communication since in a multicasting scenario the users are

distributed and cannot cooperate. We assume that all noises

are independent and identically distributed (i.i.d.) complex

circularly symmetric Gaussian noise with zero mean and unit

variance.

We aim at improving the system performance through

optimizing the source and relay matrices. System performance

is usually quantified by its quality-of-service (QoS) and the

resources it uses. The most common QoS metrics include

MSE of the signal waveform estimation, bit-error-rate (BER),

system capacity and output SINR. Interestingly, different QoS

measures can always be expressed in terms of MSE [13]. In

the next section, we optimize the source and relay matrices

based on the min-max MSE criterion.

III. PROPOSED SOURCE AND RELAY DESIGN ALGORITHM

Due to its simplicity, a linear receiver is considered at each

destination node to retrieve the transmitted signals. Denoting

Wi as an Nd × Nb weight matrix at the ith receiver, the

estimated signal vector ŝi is given by

ŝi = WH
i yd,i, i = 1, · · · , L. (3)

From (3), the MSE of the signal waveform estimation at the

ith receiver is given by

Ei=tr
(

E
[

(ŝi − s)(ŝi − s)H
])

=tr
(

(WH
i Ai − INb

)(WH
i Ai − INb

)H+WH
i CiWi

)

(4)



where tr(·) denotes matrix trace and

Ci , E[nin
H
i ] = GiFF

HGH
i + INd

is the covariance matrix of ni.

We aim at minimizing the maximal MSE of the signal

waveform estimations among all destination nodes, given the

power constraints at the source and the relay nodes. Such

problem formulation is important when the power constraint

is a strict system restriction that cannot be relaxed. Since the

source and relay transmit powers are given, respectively, by

tr(F(HBBHHH + INr
)FH) and tr(BBH), the optimization

problem can be written as

min
B,F,{Wi}

max
i

Ei (5a)

s.t. tr(F(HBBHHH + INr
)FH) ≤ Pr (5b)

tr(BBH) ≤ Ps (5c)

where {Wi} , {Wi, i = 1, · · · , L}, (5b) and (5c) are the

transmission power constraints at the relay and the source

nodes, respectively, and Pr > 0, Ps > 0 are the corresponding

power budgets.

Obviously, for any given B and F, the weight matrix Wi

minimizing (4) is the Wiener filter and given by

Wi =
(

AiA
H
i +Ci

)−1
Ai, i = 1, · · · , L (6)

where (·)−1 denotes matrix inversion. By substituting (6) back

into (4), we have

Ei = tr
(

[

INb
+AH

i C−1

i Ai

]−1
)

. (7)

Therefore, we can equivalently rewrite the problem (5) as

min
B,F

max
i

tr
(

[

INb
+AH

i C−1
i Ai

]−1
)

(8a)

s.t. tr(F(HBBHHH + INr
)FH) ≤ Pr (8b)

tr(BBH) ≤ Ps. (8c)

The min-max problem (8) is highly nonconvex with matrix

variables, and a globally optimal solution is hard to obtain

with a reasonable computational complexity (non-exhaustive

searching). In the following, we propose a low complexity

solution to the problem (8).

It can be shown similar to [14] that for any B, the optimal

F for each user has the generic structure of F = TDH ,

where D = (HBBHHH + INr
)−1HB. Interestingly, D can

be viewed as the weight matrix of the MMSE receiver for the

first-hop MIMO channel at the relay node given by (1) and T

can be viewed as the transmit precoding matrix for the effec-

tive second-hop MIMO multicasting system yi = GiTx+vi,

where x is the transmitted signal vector and vi is the noise

vector. Using such F, the MSE of signal estimation at the ith
receiver in (7) can be equivalently rewritten as the sum of two

individual MSEs

Ei = tr
(

[

INb
+BHHHHB

]−1
)

+tr
(

[

R−1 +THGH
i GiT

]−1
)

, i = 1, · · · , L (9)

where R = BHHH(HBBHHH + INr
)−1HB. Note that the

first term tr([INb
+ BHHHHB]−1) in (9) is actually the

MSE of signal waveform estimation at the relay node and

tr([R−1 +THGH
i GiT]−1), i = 1, · · · , L, can be viewed as

the increment of the MSE introduced by the second-hop. Here

R is in fact the covariance matrix of DHyr as DHE[yry
H
r ]D

and R−1 can be viewed as the covariance matrix of the am-

plified noise at the relay node. Using the optimal structure of

F, the relay power consumption is equivalent to tr(TRTH).
Therefore, the problem (8) can be equivalently rewritten as

min
B,T

max
i

tr
(

[

INb
+BHHHHB

]−1
)

+tr
(

[

R−1 +THGH
i GiT

]−1
)

(10a)

s.t. tr(TRTH) ≤ Pr (10b)

tr(BBH) ≤ Ps. (10c)

By applying the matrix inversion lemma, the matrix R can

be rewritten as

R=BHHH
(

INr
−HB

(

BHHHHB+INb

)−1
BHHH

)

HB

= BHHHHB
(

BHHHHB+ INb

)−1
. (11)

An interesting observation from (11) is that with the increase

in the first-hop SNR, BHHHHB approaches to infinity and

at (moderately) high SNR level BHHHHB ≫ INb
. Thus we

can approximate R as INb
for the high SNR case [15]. As a

consequence, tr([R−1 + THGH
i GiT]−1) in (10a) is upper-

bounded by tr([INb
+ THGH

i GiT]−1), for i = 1, · · · , L.

Thus, the problem (10) can be approximated as

min
B,T

max
i

tr
(

[

INb
+BHHHHB

]−1
)

+tr
(

[

INb
+THGH

i GiT
]−1

)

(12a)

s.t. tr(TTH) ≤ Pr (12b)

tr(BBH) ≤ Ps. (12c)

Note that such approximation may result in some power loss

at the relay node for the low SNR case. We can simply scale

the relay matrix obtained from the optimal solution of (12) to

compensate the loss and make the best use of the available

power budget at the relay node.

Interestingly, it can be seen from (12) that T has no effect

on the first term of the objective function (12a) and B has

no effect on the second term as well. This fact implies that

the objective function (12a) and the constraints (12b)-(12c) are

decoupled with respect to the optimization variables B and T.

In this case, the source precoding matrix B can be determined

independent of T, and vice-versa, which greatly simplifies the

source and relay matrices design. Therefore, the problem (12)

can be decomposed into the following source precoding matrix

optimization problem

min
B

tr
(

[

INb
+BHHHHB

]−1
)

(13a)

s.t. tr(BBH) ≤ Ps (13b)



and the relay amplifying matrix optimization problem

min
T

max
i

tr
(

[

INb
+THGH

i GiT
]−1

)

(14a)

s.t. tr(TTH) ≤ Pr (14b)

with the high SNR assumption.

Let H = UhΛhV
H
h

denote the singular value decomposi-

tion (SVD) of H, where the dimensions of Uh,Λh,Vh are

Nr × Nr, Nr × Ns, Ns × Ns, respectively. We assume that

the main diagonal elements of Λh are arranged in decreasing

order. According to Lemma 2 in [14], the source optimization

problem (13) has a closed form solution with the optimal

structure of B given by B = Vh,1Λb, where Vh,1 contains

the leftmost Nb columns of Vh and Λb is an Nb × Nb

diagonal power loading matrix. Substituting the optimal B

back into (13) and using the Lagrangian multiplier method,

we find that the ith diagonal element of Λb is given by

λb,i =
[

1

λh,i

(

√

λh,i

µ
− 1

)+] 1

2 , i = 1, · · · , Nb. Here, (x)+ ,

max(x, 0), λh,i is the ith diagonal element of Λh, and µ > 0 is

the Lagrangian multiplier which is the solution to the nonlinear

equation of
∑Nb

i=1
1

λh,i

(

√

λh,i

µ
− 1

)+
= Ps.

By introducing TTH , Q, the problem (14) can be

rewritten as

min
Q

max
i

tr
(

[

INd
+GiQGH

i

]−1
)

+Nb −Nd (15a)

s.t. tr(Q) ≤ Pr (15b)

Q < 0. (15c)

Here A < 0 indicates that the matrix A is positive semidef-

inite (PSD). By introducing
[

INd
+GiQGH

i

]−1
4 Yi, i =

1, · · · , L, and a real-valued slack variable t, the problem (15)

can be transformed to

min
t,Q,{Yi}

t (16a)

s.t. tr(Yi) ≤ t, i = 1, · · · , L (16b)

tr(Q) ≤ Pr (16c)
(

Yi INd

INd
INd

+GiQGH
i

)

<0, i = 1, · · · , L(16d)

t ≥ 0, Q < 0 (16e)

where {Yi} , {Yi, i = 1, · · · , L} and we use the Schur

complement to obtain (16d). Note that in the above for-

mulation, t provides an MSE upper bound (UB) for the

relay-destination channels. The problem (16) is a semidefinite

programming (SDP) problem which can be efficiently solved

by the disciplined convex programming toolbox CVX [16]

at a maximum complexity cost of O
(

(N2
r + L + 1)3.5

)

.

While most of the computation task in solving problem (13)

involves performing SVD and calculating the power loading

parameters, the computation overhead is negligible compared

to that of problem (16). Note that the problem (12) can also

be formulated as an SDP problem which can be solved using

interior point-based solvers at a complexity cost that is at most

O
(

(N2
s + N2

r + L + 2)3.5
)

[4]. Thus the decoupled source

and relay optimization problems have much less computational

overhead compared with the problem (12).

We would like to mention that although a high SNR

approximation is employed in the derivation of the proposed

solution, it has been shown in [14] and [15] by numerical

examples that it provides negligible performance loss in all

SNR range in comparison to the optimal designs, with a

significantly reduced computational complexity.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed

multicasting MIMO relay optimization algorithm through nu-

merical simulations. The source, relay, and destination nodes

are equipped with Ns, Nr, and Nd antennas, respectively. We

simulate a flat Rayleigh fading environment where the channel

matrices have entries with zero mean and variances 1/Ns and

1/Nr, for H and Gi, i = 1, · · · , L, respectively. All simulation

results are averaged over 500 independent channel realizations.

We compare the performance of the proposed min-max

MSE algorithm with the naive amplify-and-forward (NAF)

algorithm and the pseudo match-and-forward (PMF) algorithm

in terms of both MSE and BER. For the NAF scheme, we use

B =
√

Ps/Ns INs
, F =

√

Pr/tr(HBBHHH + INr
) INr

.

For the PMF algorithm, the same B in the NAF algorithm is

taken and

F =

√

Pr/tr((HG)H(HBBHHH + INr
)HG) (HG)H

where we randomly pick G from among the relay-destination

channels Gi, i = 1, · · · , L. Both the NAF and the PMF

algorithms use the MMSE receiver at the destination nodes.

In the first example, we compare the performance of the

proposed algorithm with the other two approaches in terms

of MSE normalized by the number of data streams (NMSE)

for L = 4, Nb = Ns = Nr = Nd = 3. Fig. 2 shows the

MSE performance of all tested algorithms versus Ps with Pr =
20dB. For the proposed algorithm, we plot the NMSE of the

user with the worst channel and the average of all the users.

Our results clearly demonstrate the better performance of the

proposed joint source and relay optimization algorithm. It can

be seen that the proposed optimal algorithm consistently yields

the lowest average MSE over the entire Ps region. The worst-

user MSE is always better than the MSE upper bound. The

NAF and PMF algorithms have much higher MSE compared

with the proposed scheme even at very high Ps level.

In the second example, we compare the MSE performance

of the proposed algorithm for different number of receiving

nodes. Fig. 3 illustrates the NMSE performance versus Pr with

Ps = 20dB for L = 2, 4, and 6. It can be clearly seen from

Fig. 3 that as the number of receivers increases, the MSE

upper bound and the worst-user MSE keep increasing. This is

quite reasonable since it is more likely to find a worse relay-

destination channel among the increased number of users and

we choose the worst-user MSE as the objective function.

In the last example, we compare the performance of the

min-max MSE algorithm with that of the NAF and the PMF
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Fig. 2. Example 1: Normalized MSE versus Ps. L = 4, Nb = Ns = Nr =

Nd = 3, Pr = 20dB.
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Fig. 3. Example 2: Normalized MSE versus Pr. Nb = Ns = Nr = Nd = 3,
Ps = 20dB.

schemes in terms of BER. QPSK signal constellations are used

to modulate the transmitted signals. We set L = 2, Nb = 2,

Ns = 4, Nr = 2, Nd = 4, and multicast Nb × 1000 randomly

generated bits from the transmitter in each channel realization.

Fig. 4 shows the BER performance of all tested algorithms

versus Ps with Pr = 20dB. It can be seen from Fig. 4 that on

the average the proposed joint source and relay optimization

algorithm obtains the lowest BER compared with the other

approaches. Even the worst-user BER is always much better

than that of the NAF and the PMF schemes.

V. CONCLUSIONS

We considered a two-hop multicasting MIMO relay system

with multi-antenna nodes and developed the optimal source

and relay precoding matrices under some mild approximation

which results in significantly smaller computational complex-

ity. The worst case MSE is minimized subject to power

constraints at the source and the relay nodes. Simulation

results demonstrate that the jointly optimal source and relay

design algorithm outperforms the existing techniques.
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