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Abstract 

Let 1 2, , , nX X X  be independent and identically distributed random variables with common 

probability density function ( )f x . The kernel density estimation of ( )f x  can be defined as 
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constants that satisfy lim 0nn
h


 . A theory is established to approximate kernel density estimation 

( )nf x  by using random weighting estimation ˆ ( )nH x  of ( )f x . Under certain conditions, it 

rigorously proves that ˆ( ( ) ( ))n n nnh H x f x  and ( ( ) ( ))n nnh f x f x  have the same limiting 

distribution for any random series 1 2, , , nX X X . 
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approximation theory. 

 

1. Introduction 

The random weighting method is an emerging computing method in statistics [1]. It has received 

great attention in the recent years, and has been used to solve different problems [1-7]. However, 

there has been very limited research to use the random weighting method for kernel density 

estimation. Estimation of kernel density is an important research topic in statistics and computing. 
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Currently, Bootstrap is a commonly used method for kernel density estimation [8-10]. In 

comparison with the Bootstrap method, the random weighting method has advantages [1, 4, 5, 11], 

such as the simplicity in computation, the suitability for large samples, and there is no need to know 

the distribution function. The random weighting method can also be used to calculate a statistic with 

a probability density function, since the resultant statistical distribution provides a probability 

density function. 

In this paper, the random weighting method is adopted in the first time to kernel density 

estimation. A theory is established for random weighting estimation of kernel density. It rigorously 

proves that kernel density estimation can be precisely approximated by random weighting 

estimation under certain conditions. 

 

2. Theorem 

Assume that 1 2, , , nX X X  are an independent and identically distributed random sample drawn 

from unknown probability density function ( )f x , and )(xK  is a Borel function in the real 

domain. Then, the kernel density estimation of ( )f x  can be described as 
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where ( )K u  is a kernel function, and 0nh   is a series of positive constants. 

We now discuss how to use the random weighting method to approximate kernel density 

estimation )(xfn . Assume that the joint distribution function of random vector 1 2( , , , )nV V V  

obeys Dirichlet distribution (1,1, ,1)D  , that is,  
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The proposed random weighting estimation of kernel density aims to use the conditional 

distribution of ˆ( ( ) ( ))n n nnh H x f x  to approximate the distribution of ( ( ) ( ))n nnh f x f x . To 

achieve this goal, we shall prove that ˆ( ( ) ( ))n n nnh H x f x  and ( ( ) ( ))n nnh f x f x  have the 

same limiting distribution for any random series 1 2, , , nX X X . 

 

Theorem  Suppose K(u) and f(x) satisfy the following conditions: 
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where P represents the probability, *P  represents the conditional probability when 1 2, , , nX X X  

are given, and nM  is any sufficiently large number that satisfies nM n loglog . 

 

3. Proof of Theorem 

We introduce the following results, which are to be used in the proof of the theorem. 

Lemma 1. [12]  For 0p  , 
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where )(x  is a normal distribution function, and q is a real number. 

Lemma 2. [4]  Suppose K(u) and f(x) satisfy the following conditions: (i) ( )K u  is bounded on 
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where 0nh   is a series of positive constants, and lim 0nn
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 . 
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Then, when ( )f x  is continuous within ( , )  , 
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Proof of Theorem  For the sake of concise description, we denote sup
z
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where E  and arV  represent the expectation and variance of random sample 1 2, , , nX X X , 

respectively, and arV   represents the conditional variance when 1 2, , , nX X X  are given. 
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1L  may be further written as 
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According to Theorem 1 in [5], it is known that ˆ ( ) ( )n nH x f x  converges in probability to 0 when 

n  , under the condition that the first-order moment of x  is finite. Consequently, 
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 Similar to the derivation process of 1L , we can also get 
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 Considering 3L , the following expression may be written 
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By Lemma 1, 
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Using Bernstein’s inequality and noticing that 
 

1
1 12log

n

n
h

n

 
 
 
 

, we get 

 

 
1 2

4(1 )
2 2

1 2(1 )

log1 n
i i

i n
h N i n n

nx X x X
P V K EK M

h h h
n










 

  

                             
   (19)

 

Therefore, by the Borel-Cantelli Lemma, 

 

   

 

1 2

4 1
2 2

1 2 1

log1
i

n
i

i n
in n n

x X nx X
V K EK o M

h h h
n










 

                      
     a.s (20)

 

Similar to the derivation of (20), we can also get 

 

   

 

1 2

4 1

1 2 1

log1
i

n
i

i n
in n n

x X nx X
V K EK o M

h h h
n










 

                      
      a.s (21)

 

From (13), (20) and (21), we get 

 

 
1 2

4(1 )
(1)
3

2(1 )

log
.n

n
L o M a s

n












 
    
 

 (22)

 

By Lemma 1, 

 



 10

(2)
3 1

2

( ) ( )1

2 1

n n

i
ar

n n

nh f x Ef x
L

x X
V K

h h





  
  

  

 
(23)

 

where 

 

( ) ( )nf x Ef x =
1

( ) ( )k
n n

x u
f x K f u du

h h

 
  

 
  

         = ( ) ( ) ( )k nf x K v f x h v dv   

                  =  ( ) ( ) ( )n kf x f x h v K v dv      

( )n kCh v K v dv
   

(24)

 

Since 

 

2 21
( ) ( ) ( )i

ar n
n n

x X
V K a x f x K u du

h h





 
  

 
 , 

 
1

1 12log
n

n
h

n

 
 
 
 

 (25)

 

we have 

 

 
1 2

1 1 4(1 )( )(2) 2 2
3

(1 )

log
n

n
L o n h o

n












            

 (26)

 

By (12), (22) and (26), we get 

 



 11

1 2

4(1 )

3

2(1 )

(log )
.n

n
L o M a s

n












 
   
 
 

 (27)

 

Noticing that 
 

1
1 12log

n

n
h

n

 
 
 
 

, (3) follows from (8), (10), (11) and (27). 

The proof of Theorem is completed. 

 

4. Conclusions 

This paper adopts the random weighting method in the first time to kernel density estimation. The 

contribution of the paper is that a theory of random weighting estimation is established for 

estimation of kernel density. The established theory has extensive applications in many fields such 

as navigation, signal processing and image processing. Future research work will focus on 

applications of the theory in engineering practices. 
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