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ABSTRACT 

The design of pile foundations requires good estimation of the pile load-carrying 

capacity and settlement. Design for bearing capacity and design for settlement have been 

traditionally carried out separately. However, soil resistance and settlement are influenced by 

each other and design of pile foundations should thus consider the bearing capacity and 

settlement inseparably. This requires the full load-settlement response of piles to be well 

predicted. However, it is well known that the actual load-settlement response of pile 

foundations can only be obtained by load tests carried out in-situ, which are expensive and 

time-consuming. In this technical note, the recurrent neural networks (RNNs) were used to 

develop a prediction model that can resemble the load-settlement response of steel driven 

piles subjected to axial loading. The developed RNN model was calibrated and validated 

using several in-situ full-scale pile load tests, as well as cone penetration test (CPT) data. The 

results indicate that the developed RNN model has the ability to reliably predict the load-

settlement response of axially loaded steel driven piles and can thus be used by geotechnical 

engineers for routine design practice. 
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INTRODUCTION 

Bearing capacity and settlement are the two main criteria that govern the design process 

of pile foundations so that safety and serviceability requirements are achieved. Design for 

bearing capacity is carried out by determining the allowable pile load (the service load), 

which is obtained by dividing the ultimate pile load by an assumed factor of safety. Design 

for settlement, on the other hand, consists of obtaining the amount of settlement that occurs 

when the allowable (service) load on the piles stresses the soil, causing the soil to consolidate 

or compress. In the absence of the load-settlement curve, design for bearing capacity and 

design for settlement have been traditionally carried out separately. However, Fellenius 

(1988) stated that: “The allowable load on the pile should be governed by a combined 

approach considering soil resistance and settlement inseparably acting together and each 

influencing the value of the other”. In fact, the methods of determining the ultimate (failure) 

load based on load-settlement response are the most reliable, provided that the load-

settlement curves have been well predicted and simulated. However, there is a strong 

argument regarding the definition of the ultimate pile load and multiple criteria have been 

proposed in the literature to interpret the pile load capacity from the pile load-settlement 

curves, some result in interpreted ultimate loads that greatly depend on judgement and shape 

of the load-settlement curve. For example, the failure load may be defined based on 

settlement as that which causes a settlement equal to 10% of the pile diameter and this load is 

divided by a nominal factor of safety of 2 to obtain the working load which is used to 

calculate the settlement. However, if this criterion is applied to certain piles and soil 

conditions (e.g. piles of large diameter in clayey soils), then the settlement at the calculated 

working load may be excessive (Murthy 2003). Another criterion based on the shape of the 

load-settlement curve is by plotting both the load and settlement on logarithmic scales, which 

often lead to two segments of straight lines, and the ultimate load is defined by the point of 
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the maximum curvature. The methods of determining the failure load using the load-

settlement curves allow the designer to decide which ultimate load definition should be used, 

depending on the conditions of the pile and soil, thus the serviceability requirement can then 

be complied.  

Good prediction of the load-settlement response of pile foundations needs a thorough 

understanding of the load transfer along the pile length, which is complex, indeterminate and 

difficult to quantify (Reese et al. 2006). The actual load-settlement response of pile 

foundations can only be obtained by carrying out full-scale in-situ load tests, which provide 

the most precise assessment of the ultimate load capacity. However, the full-scale load tests 

are expensive and time-consuming. Alternatively, the load-settlement response of pile 

foundations can be estimated using several methods available in the literature. However, due 

to many complexities, these available methods, by necessity, simplify the problem by 

incorporating several assumptions associated with the factors that affect the pile behaviour. 

Therefore, most existing methods failed to achieve consistent success in relation to 

predictions of the pile capacity and corresponding settlement. In this respect, the artificial 

intelligence techniques such as artificial neural networks (ANNs) will be efficient as they can 

resemble the in-situ full-scale pile load tests without the need for any assumptions or 

simplifications.  

ANNs are a data mining statistical approach that has proved its potential in many 

applications in geotechnical engineering and interested readers are referred to Shahin et al. 

(2001), where the pre-2001 applications are reviewed in some detail, and Shahin et al. (2009) 

and Shahin (2013), where the post-2001 applications are briefly examined or acknowledged. 

In recent years, ANNs have been used with varying degrees of success for prediction of axial 

and lateral bearing capacities of pile foundations in compression and uplift, including driven 

piles (e.g. Chan et al. 1995; Goh 1996; Lee and Lee 1996; Teh et al. 1997; Abu-Kiefa 1998; 
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Goh et al. 2005; Das and Basudhar 2006; Pal 2006; Shahin and Jaksa 2006; Ahmad et al. 

2007; Ardalan et al. 2009; Shahin 2010; Alkroosh and Nikraz 2011; Tarawneh 2013) and 

drilled shafts (e.g. Goh et al. 2005; Shahin 2010; Alkroosh and Nikraz 2011). However, to the 

author’s best knowledge, ANNs have not been previously used for modelling the load-

settlement response of pile foundations and this technical note will fill in part of this gap.   

In this technical note, the feasibility of using one of ANN techniques, i.e. recurrent 

neural networks (RNNs), is investigated for modelling the load-settlement response of steel 

driven piles subjected to axial loading. As mentioned by Briaud et al. (1986), the problem of 

piles all in sand or all in clay seems to be handled reasonably well by many methods. 

However, the difficulty arises when the piles are driven through layered soils, especially 

those with the tip in sand. In the current work, the RNN model is developed for any soil type 

including layered soils and the model works for piles subjected to either compression or uplift 

loading. To facilitate the use of the developed RNN model for routine use by practitioners, it 

was translated into an executable program that is made available for interested readers upon 

request.   

 

OVERVIEW OF RECURRENT NEURAL NETWORKS 

The type of artificial neural networks used in this study are multilayer perceptrons 

(MLPs) that are trained with the back-propagation algorithm (Rumelhart et al. 1986). A 

comprehensive description of back-propagation MLPs is beyond the scope of this technical 

note but can be found in Fausett (1994). The typical MLP consists of a number of processing 

elements or nodes that are arranged in layers: an input layer; an output layer; and one or more 

intermediate layers called hidden layers. Each processing element in a specific layer is linked 

to the processing element of the other layers via weighted connections. The input from each 

processing element in the previous layer is multiplied by an adjustable connection weight. 

S1
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The weighted inputs are summed at each processing element, and a threshold value (or bias) 

is either added or subtracted. The combined input is then passed through a nonlinear transfer 

function (e.g. sigmoidal or tanh function) to produce the output of the processing element.  

The output of one processing element provides the input to the processing elements in the 

next layer. The propagation of information in MLPs starts at the input layer, where the 

network is presented with a pattern of measured input data and the corresponding measured 

outputs. The outputs of the network are compared with the measured outputs, and an error is 

calculated.  This error is used with a learning rule to adjust the connection weights so as to 

minimize the prediction error. The above procedure is repeated with presentation of new 

input and output data until some stopping criterion is met. Using the above procedure, the 

network can obtain a set of weights that produces input-output mapping with the smallest 

possible error. This process is called “training” or “learning”, which once has been 

successfully accomplished, the performance of the trained model has to be verified using an 

independent validation set. 

In simulations of the typical non-linear response of pile load-settlement curves, the 

current state of load and settlement governs the next state of load and settlement; thus, 

recurrent neural networks (RNNs) are recommended. RNNs proposed by Jordan (1986) 

imply an extension of the MLPs with current-state units, which are processing elements that 

remember past activity (i.e. memory units). RNNs then have two sets of input neurons: plan 

units and current-state units (see Fig. 1). At the beginning of the training process, the first 

pattern of input data is presented to the plan units while the current-state units are set to zero. 

As mentioned earlier, the training proceeds, and the first output pattern of the network is 

produced. This output is copied back to the current-state units for the next input pattern of 

data. RNN model development for the load-settlement response of steel driven piles is 

described in detail below.  
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DEVELOPMENT OF RNN MODEL 

In this work, the RNN model was developed with the computer-based software package 

Neuroshell 2, Release 4.2 (Ward 2007). The data used to calibrate and validate the model 

were obtained from the literature and included a series of 23 in-situ full-scale pile load-

settlement tests reported by Eslami (1996). The tests were conducted on sites of different soil 

types and geotechnical conditions, ranging from cohesive clays to cohesionless sands 

including layered soils. The pile load tests include compression and uplift loading conducted 

on steel driven piles of different shapes (i.e., circular with closed toe and H-pile with open 

toe). The piles ranged in diameter between 273mm to 660mm with embedment lengths 

between 9.2m to 34.3m. Consequently, the RNN model was developed and validated using 

data that span the ranges of conditions found in the majority of practical problems.  

 

Model inputs and outputs 

Six factors affecting the capacity of driven piles were presented to the plan units of the 

RNN as potential model input variables (Fig. 1). These six factors were chosen because they 

are included by several traditional methods as the most significant factors affecting load-

settlement response of driven pile foundations. These factors represent the pile geometry and 

soil properties. The pile geometry includes the pile diameter, D (the equivalent diameter is 

rather used in case of H-pile as: pile perimeter/π), and pile embedment length, L. On the other 

hand, due to complex geological processes, soils are usually layered (or stratified) and the 

variation of soil properties must be taken into account by averaging over a sufficient 

influence zone. Bowles (1997) suggested a number of averaging methods for handling 

layered soils, a useful averaging technique is the weighted average values adopted in the 

current study. Consequently, the soil properties considered are the weighted average cone 

point resistance over pile tip failure zone, tipcq  , weighted average friction ratio over pile tip 
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failure zone, tipRf  , weighted average cone point resistance over pile embedment length, 

shaftcq  , and weighted average friction ratio over pile embedment length,  shaftRf  . The friction 

ratio, Rf , is the ratio of the cone point resistance, cq , to the cone sleeve friction, sf , i.e. 

csR qff / . It should be noted that the weighted averaging method has the advantage of 

taking into account the impact of different layering thicknesses, which provides better 

representation of the variation of soil properties. It should also be noted that for a single 

particular soil property, different layering scenarios may lead to the same weighted average 

of that soil property. For example, a scenario of different layers of cohesive soils may lead to 

the same weighted average cone resistance, cq , to that of another scenario of different layers 

of cohesionless soils. However, the weighted average cone sleeve friction or friction ratio, Rf

, is unlikely to be the same for both scenarios as the type of soils forming them are different. 

Consequently, pile capacities are expected to be different depending on the type of soils 

forming each layering scenario. This agrees well with one would expect based on the 

physical meaning.    

There are some other factors, such as the pile installation type, load test method, whether 

the pile tip is closed or open, and depth of water table, that contribute to a lesser degree of 

significance and thus can be considered secondary and neglected (Nejad et al. 2009). The 

depth of water table was not considered in this study as the CPT data used are based on the 

total resistance (stress) and thus the effect of water table is already accounted for in the 

measured CPT results. The current state units of the RNN were represented by three input 

variables including the normalised axial settlement, iaε , , (= pile settlement/pile diameter), 

increment of axial settlement, iaε , , and pile load, iQ . The single model output variable is the 

pile load at the next state of loading, 1iQ .  
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In this study, an increment of axial settlement that increases by 0.05% was used, in 

which iaε , = (0.1, 0.15, 0.2, …, 1.0, 1.05, 1.1, …) were utilized. As recommended by 

Penumadu and Zhao (1999), using varying strain increment values results in good modelling 

capability without the need for a large size training data. Because the data points needed for 

RNN model development were not recorded at the above settlement increments in the 

original pile load-settlement tests, the load-settlement curves were digitized to obtain the 

required data points. This was carried out using the computer software Microcal Origin 

Version 6.0 (Microcal 1999) and implementing linear interpolation. A range between 14 to 

28 training patterns was used to represent a single pile load-settlement test, depending on the 

maximum incremental settlement values available for each test. It should be noted that the 

following conditions were applied to the input and output variables used in the RNN model: 

 The pile tip failure zone over which  tipcq   and tipRf  were calculated is taken in 

accordance with Eslami (1996), in which the influence zone extends to 4D below and 8D 

above pile toe when the pile toe is located in nonhomogeneous soil of dense strata with a 

weak layer above (see Fig. 2a). Also, in non-homogeneous soil, when the pile toe is 

located in weak strata with a dense layer above, the influence zone extends to 4D below 

and 2D above pile toe (Fig. 2b). In homogeneous soil, however, the influence zone 

extends to 4D below and 4D above pile toe (Fig. 2c).   

 Both values of cone point resistance and friction ratio were incorporated as model inputs, 

allowing the soil type (classification) to be implicitly considered in the RNN model.   

 Several CPT tests used in this work include mechanical rather than electric CPT data, thus 

it was necessary to convert the mechanical CPT readings into equivalent electric CPT 

values as the electric CPT is the one that is commonly used at present. This is carried out 

for the cone point resistance using the following correlation proposed by Kulhawy and 

Mayne (1990):  
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 For the cone sleeve friction, the mechanical cone gives higher reading than the electric 

cone in all soils with a ratio in sands of about 2, and 2.5–3.5 for clays (Kulhawy and 

Mayne 1990).  In the current work, a ratio of 2 was used for sands and 3 for clays. 

 

Data division and pre-processing 

The next step in development of the RNN model is dividing the available data into their 

subsets. In this work, the data were randomly divided into two sets: a training set for model 

calibration and an independent validation set for model verification. As recommended by 

Masters (1993) and Shahin et al. (2004), the data were divided in such a way that the training 

and validation sets are statically consistent and thus represent the same statistical population. 

In total, 20 in-situ pile load tests were used for model training and 3 tests for model 

validation. A summary of the data used in the training and validation sets as well as the 

minimum values, maximum values, ranges and averages, is given in Table 1. Once the 

available data were divided into their subsets, the input and output variables were pre-

processed; in this step the variables were scaled between 0.0 and 1.0 to eliminate their 

dimensions and ensure that all variables receive equal attention during training.   

 

Network architecture and optimization of internal parameters 

Following the data division and the pre-processing, the optimum model architecture (i.e., 

the number of hidden layers and corresponding number of hidden nodes) must be determined. 

It should be noted that, as investigated by Hornik et al. (1989) and Cybenko (1989), a 

network with one hidden layer is sufficient to approximate any continuous function provided 



11 
 

that adequate connection weights are used. Hecht-Nielsen (1989) also provided a proof that a 

single hidden layer of neurons is sufficient to model any solution surface of practical interest. 

Consequently, only one hidden layer was used in the current study. The optimal number of 

hidden nodes was obtained by a trial-and-error approach in which the network was trained 

with a set of random initial weights and a fixed learning rate of 0.1; a momentum term of 0.1; 

a tanh transfer function in the hidden layer nodes; and a sigmoidal transfer function in the 

output layer nodes. The following number of hidden layer nodes were then utilized: 2, 3, 4, 

…, and (2I+1), where I is the number of input variables. It should be noted that (2I+1) is the 

upper limit for the number of hidden layer nodes needed to map any continuous function for a 

network with I inputs, as discussed by Caudill (1988). To obtain the optimum number of 

hidden layer nodes, it is important to strike a balance between having sufficient free 

parameters (connection weights) to enable representation of the function to be approximated 

and not having too many, so as to avoid overtraining (Shahin and Indraratna 2006).   

The criterion used to terminate the training process was as follows. The error between 

the actual and predicted values of all outputs in the training set over all patterns was 

monitored until no significant improvement in the error occurs. This was achieved at 

approximately 10,000 training cycles (epochs). Once training has been accomplished, the 

error between the actual and predicted outputs in the validation set was determined for all 

trained models so that the optimal model can be selected. The model that performed the best 

in both the training and validation sets was considered to be optimal. Fig. 3 shows the impact 

of the number of hidden layer nodes on the root mean squared error (RMSE) and mean 

absolute error (MAE) of the trained models. The RMSE and MAE will be explained in the 

next section. It can be seen that the network with 10 hidden layer nodes has the lowest 

prediction error in the training and validation sets and can thus be considered optimal. As a 

result of training, the optimal network produced 9 × 10 weights and 10 bias values 
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connecting the input layer to the hidden layer and 10 × 1 weights and one bias value 

connecting the hidden layer to the output layer. 

 

Optimal model performance and validation 

The performance of the optimal RNN model in the training and validation sets is given 

numerically in Table 2. It can be seen that four different standard performance measures were 

used, including the coefficient of correlation, r, coefficient of efficiency, E, and root mean 

squared error, RMAE, and mean absolute error, MAE. The formulas of these four measures 

are as follows: 
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where; N is the number of data points presented to the model; Oi and Pi are the observed and 

predicted outputs, respectively; and O and P are the mean of the predicted and observed 

outputs, respectively. 
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The coefficient of correlation, r, is a measure that is used to determine the relative 

correlation between the predicted and observed outputs. However, as indicated by Das and 

Sivakugan (2010), r sometimes may not necessarily indicate better model performance due to 

the tendency of the model to deviate toward higher or lower values, particularly when the 

data range is very wide and most of the data are distributed about their mean. Consequently, 

the coefficient of efficiency, E, was used as it can give unbiased estimate and may be a better 

measure for model performance. The RMAE is the most popular error measure and has the 

advantage that large errors receive much greater attention than small errors (Hecht-Nielsen 

1990). However, as indicated by Cherkassky et al. (2006), there are situations when RMSE 

cannot guarantee that the model performance is optimal; thus, the mean absolute error, MAE, 

was also used. The MAE eliminates the emphasis given to large errors, and is a desirable 

measure when the data evaluated are smooth or continuous, which is the case in the current 

study. The performance measures in Table 2 indicate that the optimum RNN model performs 

well and has good prediction accuracy in both the training and validation sets. Table 2 also 

indicates that the RNN model has consistent performance on the validation set with that of 

the training set.  

The performance of the optimal RNN model in the training and validation sets was 

further investigated graphically, as shown in Figs. 4 and 5. It should be noted that, for 

brevity, only five of the most appropriate simulation results in the training set are given in 

Fig. 4. These five simulations were chosen because they reflect the entire range of the in-situ 

pile load-settlement tests used in this study. As can be seen in Figs. 4 and 5, excellent 

agreement between the actual pile load tests and the RNN model predictions is obtained, in 

both the training and validation sets. The nonlinear relationships of the load-settlement 

response are well predicted, and the results demonstrate that the RNN model has a strong 

capability to simulate the behaviour of steel driven piles quite well. 
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Model robustness and sensitivity analyses 

To further examine the generalization ability (or robustness) of the RNN model, 

sensitivity analyses were carried out that investigate the response of the RNN predicted pile 

behavior to a set of hypothetical input data that lie on the range of the data used for model 

training. For example, to investigate the effect of one parameter such as pile diameter, D, all 

other input variables were set to selected constant values, while D was allowed to change. 

The inputs were then accommodated in the RNN model and the predicted pile load versus 

settlement response was calculated. This process was repeated for the next input variable and 

so on, until the model response was examined for all inputs. The robustness of the RNN 

model was determined by examining how well the predictions compare with the available 

geotechnical knowledge and experimental data.  

The results of the sensitivity analyses are shown in Fig. 6, which indicates that the 

predicted pile behavior by the RNN model is in good agreement with what one would expect 

based on the underlying physical meaning and with published experimental results. For 

example, it can be observed that the ultimate pile capacity increases with the increase of pile 

diameter, pile embedment length, soil resistance at the pile tip and soil resistance at the pile 

length. The above results confirm the predictive ability of the developed RNN model in 

reflecting the role of important factors affecting pile behavior, which indicates that the model 

is robust and can thus be used with confidence. 

       

CONCLUSION 

The work presented in this technical note has used a series of full-scale in-situ pile load-

settlement tests and CPT data collected from the literature to develop a recurrent neural 

network (RNN) model for simulating the load-settlement response of steel driven piles. The 

graphical comparison of the load-settlement curves between the RNN model and experiments 
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showed an excellent agreement and indicates that the RNN model can capture the highly non-

linear load-settlement response of steel driven piles reasonably well. To facilitate the use of 

the developed RNN model, it was translated into an executable program using MATLAB 

code, which is made available for interested readers upon request.      

It is worthwhile noting that predictions from ANN models are better when used for 

ranges of input variables similar to those utilized in model training and this is because ANNs 

work better in interpolation than extrapolation. Consequently, the developed RNN model 

performs the best when it is used for the ranges of values of inputs shown in Table 1. 

However, the values given in Table 1 span the ranges of conditions found in the majority of 

practical problems. It should be noted that the developed RNN model, like all other available 

pile settlement and bearing capacity models, was not developed to deal with very special 

cases of highly complicated sites which can give surprising results that are hard to explain. 

However, the model is valid for the common cases of site conditions containing single or 

multilayer cohesive and/or cohesionless soils. In addition, the model has the advantage that it 

can always be updated in the future by presenting new training examples of wider ranges, as 

new data become available. Overall, it was evident from the results of this study that the 

developed RNN model is robust and can be used with confidence.  
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Figure captions: 

Fig. 1. Architecture of the developed RNN model 

Fig. 2. Pile tip failure zones: (a) nonhomogeneous soil 8D/4D; (b) nonhomogeneous soil 

2D/4D; and (c) homogeneous soil 4D/4D 

Fig. 3. Effect of number of hidden nodes on the RNN model performance: (a) RMSE; 

and (b) MAE 

Fig. 4. Some simulation results of the RNN model in the training set 

Fig. 5. Simulation results of the RNN model in the validation set 

Fig. 6. Sensitivity analyses to test the robustness of the RNN model  
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Fig. 1. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Table 1. Summary of the data used for development of the RNN model 

 

 

 

 

 

 

 

 

 

Test  

No 

D 
(mm) 

L  

(m) 
tipcq   

(MPa) 
tipRf   

(%) 

shaftcq   

(MPa) 
shaftRf 

 (%) 

RNN 

status
a
 

Loading 

type
b
 

1 300 16.2 20.0 0.50 17.5 0.46 T C 

2 455 12.0 0.0 0.00 15.8 0.38 T U 

3  455 11.3 0.0 0.00 15.0 0.40 T U 

4 609 34.3 8.0 0.75 5.2 1.15 T C 

5  273 22.5 18.3 1.09 8.7 0.69 T C 

6 660 18.2 10.0 0.60 9.0 0.67 T C 

7 324 31.1 2.5 2.00 5.6 0.45 T C 

8 455 11.3 0.0 0.00 15.0 0.40 T C 

9 300 28.4 1.0 2.00 2.5 1.20 T C 

10 324 13.7 1.0 2.00 2.1 0.71 T C 

11 273 22.5 0.0 0.00 8.7 0.69 T U 

12  350 11.1 0.0 0.00 15.0 0.40 T U 

13 273 13.0 0.0 0.00 2.5 1.60 T U 

14 455 16.8 0.0 0.00 17.7 0.45 T U 

15  400 14.6 0.0 0.00 15.0 0.40 T U 

16 300 31.4 1.0 2.00 2.5 1.20 T C 

17  450 15.2 1.0 2.00 3.3 2.12 T C 

18 273 9.2 6.5 0.31 6.3 0.32 T C 

19 273 15.2 4.9 1.63 5.3 0.75 T C 

20 330 10.0 4.0 1.00 6.0 1.00 T C 

21 300 11.0 0.0 0.00 15.0 0.40 V U 

22 350 14.4 20.0 0.50 16.5 0.48 V C 

23 400 14.6 19.5 0.51 16.5 0.48 V C 

Minimum 273 9.2 0.0 0.00 2.1 0.32 ̶ ̶ 

Maximum 660 34.3 20.0 2.00 17.7 2.12 ̶ ̶ 

Range 387 25.1 20.0 2.00 15.6 1.80 ̶ ̶ 

Average 376 17.9 3.9 0.80 8.9 0.77 ̶ ̶ 

a:
 
T, training; V, validation. 

b:
 
C, compression; U, uplift. 
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Table 2. Performance results of the optimal RNN model 

Data sets 

Performance measures 

r E 
RMSE 

(kN) 

MAE 

(kN) 

Training 0.997 0.993 72 42 

Validation 0.992 0.973 77 65 

 

 

 


