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Abstract—Focal plane arrays are being developed to provide
dishes with a wide field of view for both the next generation
of radiotelescopes and to retrofit existing large radiotelescopes.
We describe a prototype radiotelescope, comprising a two dish
interferometer with real-time digital beamformer that was built
to study focal plane array systems. Two beamformer weightings
were applied to the system: A normalized conjugate match and
the maximum sensitivity (G/T). Both incorporate the uncorrelated
noise from the receiver chains and the latter includes correlated
noise from spillover and coupling in the array. A black box
approach is taken where the assembled system is considered
and the only accessible data is that typically available from an
operational radiotelescope. This approach is particularly suitable
for complex active antennas where there is insufficient knowledge
of the system for beamformer weights to be set a priori. It also
allows adaptation to changes such as electronic gain drift, partial
failures and alterations in the environment.

Index Terms—Active arrays, antenna array feeds, antenna array
mutual coupling, antenna measurements, radio astronomy.

I. INTRODUCTION

HE primary benefit of focal plane arrays (FPAs) to radio
T astronomy is the increased field of view and hence survey
speed. Interest has been developing in arrays with closely
spaced elements, which we will refer to as dense FPAs, where
the signals from the elements are combined to form beams in
contrast to single feed per beam or discretely processed FPAs
[1], [2]. These dense FPAs, also known as phased array feeds,
can provide superior survey speed and have recently become
more attractive due to technological advances.
Discretely processed multibeam FPAs, where the output of
each array element forms a separate beam, have been used in
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radioastronomy for some time [3], [4]. These systems multiply
the field of view available by the number of array elements
but they do not provide a contiguous field of view as outlined
by Johansson [5]. Veidt shows they typically require four or
more interleaved pointings to fully sample the sky [6]. Con-
versely a dense FPA, where the elements are combined as a
complex weighted sum, can fully sample a region of sky, pro-
viding contiguous coverage [6]. These feeds also have poten-
tially much wider bandwidths and allow some correction of
aberrations present in off-axis beams [6]—[8].

Dense FPAs have come within reach due to progress in a
number of areas. Advances in analogue electronics allow the
use of uncooled low-noise amplifiers (LNAs) and hundreds of
receiver chains per antenna. Improvements in electromagnetic
analysis capabilities allow the joint optimization of the array
structure and the connecting electronics, especially the LNA
and matching components. Finally, developments in digital
electronics and devices have made digital beamforming prac-
tical, bringing precision, stability and flexibility.

Early work on radioastronomy systems fitted with dense
FPAs was done by the National Radio Astronomy Observatory,
USA [1], with continuing collaboration with Brigham Young
University [9], [10]. ASTRON made early contributions on
several fronts including the array design in collaboration with
others [11], [12] and beamforming [2]. They continue an active
program with an FPA on one of the Westerbork radiotelescope
dishes [13]-[15]. The National Research Council of Canada has
also pursued this technology [16], reporting recent results of
their 180 element prototype [17]. FPAs form an important part
of plans for the Square Kilometre Array (SKA) [18]. CSIRO
started investigating this area in the early 2000s, and is building
the Australian SKA Pathfinder (ASKAP), a radiotelescope with
36 12-m dishes fitted with FPAs [19].

A prototyping test bed for ASKAP was used for our exper-
imental work. This test bed was built to gain experience in re-
ceiver, beamformer and system design.

The purpose here is to present results from the prototype
radiotelescope, giving a more comprehensive account of beam-
forming than the early results in conference presentations
[20]-[23].

The beamformer weightings used are based on formulations
first applied to aperture arrays: The weighting of aperture ar-
rays for maximum gain and G/T is detailed in [24] and [25]. The
conjugate field match, with a history in horn feed design [26],
has been used as the basis for FPA beamforming [7], [27], [28].
This approach assumes the array elements are point field sam-
plers and does not usually include mutual coupling effects. By
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contrast the maximum gain or maximum directivity weightings
do include these effects and have been applied to FPAs by Bird
[29] and Lam et al. [30]. The maximum G/T has been applied
to FPAs by Bird and Hayman [31], Brisken [32] and Hansen et
al. [33] and Jeffs et al. [34] among others.

The design of FPAs requires a full understanding of the
system, including a detailed model of the electromagnetics of
the FPA and its relationship to the reflector and the receiving
system [32], [35], [36]. During development of an array, it is
common to measure the scattering matrix and radiation patterns
of the array separately from the receiver electronics. With
knowledge of the characteristics of the electronics, the overall
performance of the array can be predicted.

However once the system is assembled, access to internal
ports is usually impractical, particularly once the array is inte-
grated with the reflector. Therefore, a black-box approach was
adopted for this work. We consider the situation where there the
system can operate in two modes. Firstly where there is access
to the beamformed output and secondly where each element’s
signal can be correlated against the others.

The implementation used is presented here to make it clear
how the weights are calculated and how they relate to common
figures of merit.

The next section discusses the implementation of the
weighting formulation. Section III describes the prototype
radiotelescope. The measurement details are provided in
Section IV and they are discussed in Section V. Finally in
Section VI, conclusions are drawn about the two beamformer
weightings and the evaluation techniques.

II. IMPLEMENTATION

The standard definition of antenna gain [37] includes the dis-
sipative losses in the antenna and does not include the match
between the receiver and the antenna. When measuring an as-
sembled active antenna such as a focal plane array, however, it
is impossible to separate these effects from the electronic gain in
the receiver electronics. The noise contributions of the antenna
and receiver also cannot easily be separated. In the black box
approach adopted (Fig. 1), it is convenient to define the refer-
ence plane for the gain and system noise as the radiation port,
consequently directivity is used as the reference for G/T evalu-
ation. Dissipative losses in the antenna are assigned to the re-
ceiver. Some other approaches that assume modelled or mea-
sured knowledge of parameters internal to the active antenna
are given in [38]-[41].

The voltage at the beamformer output, with the assumption
that the array system is linear, is given by

> (v

where )\ is the wavelength; 79 the impedance of free space;
E, ;(t) the field strength of the desired signal in the co-polariza-
tion, denoted by subscripts p and with unit vector definition p;
ep.i(8,¢) = €,.:(6,¢) - p, the co-polarized embedded-element
field-pattern (with final system loading, not open or shorted);
vT,,.,i> the noise from all sources referred to the input of each el-
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Fig. 1. FPA signal and noise model showing n beamformed focal plane array
elements. The parameters are: E': desired incident plane-wave. €;: embedded-
element field-pattern. vy,  ;: noise from all sources referred to the input of
each element. w;: adjustable complex weight.

ement; and w;, the adjustable complex weight.! The subscript ¢
and unit vector ¢ correspond to the cross-polarized components
and ey ; (6, ¢) is the cross-polarized embedded field-pattern. The
constants have been chosen so that vz, _ ; |2 is the noise power
and the directivity of the it" element (i.e. w; = 1 and wj =0,

Vi # i) is
D, ;= 47T€1*,,i6p,i 2)

This formulation leads the e, ; and e ; to include pattern distor-
tion due to mutual coupling but not coupling loss or dissipative
loss.

By using superposition it can be readily shown that the direc-
tivity of the array for the p polarization is

WHe;egw
D, = 4W4WHCQW 3)
where
[Ce]z’j = // (e;iep_’j + e;’ieq,j) dQ) “4)
Q
ande, = [--ep; -] and w = [---w;---]T are column

vectors representing the array field-patterns and weights respec-
tively. The superscript T denotes the transpose and H the Her-
mitian or conjugate transpose.

The equivalent system temperature can be expressed as

T WH CTSySW (5)
VT wHC,w
where Cr,, is the noise covariance matrix for the array. That
is the elements of Cr.__ are

sys

[Cr,,.],; = E{vh, (Ovr,. (1)} (©)

I Another common notational convention uses the conjugate of the beam-
former weights.
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where E{} is the expected value and can be measured by corre-
lating element pairs.

The system temperature is the sum of noise from the antenna-
receiver combination and radiation from the surrounding scene:
Cr,. = Cr, +Cr._.,.. Modelling the contributors to Cr, _ is

described in other FPA treatments such as [34], [35], [42], [43].
Using (3) and (5) the G/T for the system is then

D H T

we e W
G,)T ==L =4r PP 7)
Tsys

wHC, w’

sys

The weights for the maximum G/T are [25], [44]

w=Cr' e (8)

Tsys P

A. Measurable Quantities

The model outlined above established the formulation for
the maximum G/T weighting, however, in an assembled system
there is usually insufficient information to determine accurate
values of the embedded element patterns e, ;. We will show
how the maximum G/T weighting can be found from data that
is readily measured—the covariance matrix and the element re-
sponses to a distant point source—as used, e.g., in [34]. We will
also detail a simpler weighting that does not require the covari-
ance matrix, referred to here as the normalized conjugate match.

To establish the implementation based on measurable quanti-
ties, the unknown contributions of electronic gain, scattering by
the antenna, dissipative losses in the antenna, mutual coupling
losses and mismatch effects are assigned to a set of complex
terms h;. A new weight vector u : u; = w;/h; is used to repre-
sents the weights actually applied in the beamformer.

Using (1) the voltage at the beamformer output is given by

- A
ﬂout(t) = ; <\/T%Ep-,2( )ep i+ vTS\s, (t)> w9
where é,; = h; ep i 1s the active element response to a distant
point source and U1, ; = h;vr, i is the noise voltage at the
beamformer output for unity weighting for the it" element (i.e.
u; = land u; = 0, Vj # ).

This modified model will be used to show that the maximum
G/T weighting equivalent to (8) can be determined even though
the electronic gains and the losses listed above are not directly
known.

The relative magnitudes and phases of the é; are determined
from the correlation product from the interferometer pointed at a
point source. The noise covariance matrix, scaled for the weight
vector u, is

[Cryu];; =F {ﬁiys,i(t)ﬁTsys,j (t)} = hih;[Cr.,.],;-
(10)
Using the relationships between w and u and between e and é,
(7) can be expressed in terms of u and é, giving

yssl

D ufé*éTu
G,)T =2 =d4r—2P2 11
P/ Tﬁys uHCTw<,11u ( )
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As with (8), the weights for the maximum G/T are

Crl & (12)

u= Toys,u P°

This expression allows the maximum G/T weighting to be found
from the conveniently measured data ¢; and 9t _ ;.

Initially the full covariance matrix was not available from the
system and so a simpler weighting was employed. The conju-
gate match to the desired signal was normalized by the noise
from each element, that is the diagonal of the noise covariance
matrix and so the weighting terms are

(13)

i/ [Crdyi ]

The equivalent weights in terms of the field patterns and noise
covariance matrix referred to the radiation port are

R

* T
W= [ o e]’ai/[CT<ys]ii t ] .

The similarity between this normalized conjugate match and
the maximum gain is described in Appendix B. The normalized
conjugate match and the maximum G/T weightings are equiva-
lent if the noise from each element is uncorrelated.

With this black box approach, it was possible to obtain the
data for calculating the weights using the completed radiotele-
scope system. The calculation of the maximum G/T weighting
(12) requires the element responses to a distant point source
¢p,; and the noise covariance matrix Cr, . with the antenna
pointed away from any strong sources (off-source).

(14)

III. INSTRUMENTATION

The performance of a prototype radio telescope with various
beamformer weightings has been studied. The radiotelescope
comprised a two dish interferometer established at the CSIRO
Radiophysics Laboratory in Sydney. It had a 90 m baseline, ori-
ented approximately east-west (Figs. 2 and 3). The two dishes
have a diameter of 14.2 m and an F/D of 0.40. The western dish
was fitted with a single horn with an edge taper of 17 dB. The
eastern dish was fitted with a single polarization 8 x 8 array of
Vivaldi elements, originally used in the ASTRON THEA project
[45]. The signals were transported from the FPA on coaxial ca-
bles to receivers in the pedestal. The 70 MHz intermediate fre-
quency signals from the receiver (24 MHz wide) were then fed
into the 24 input digital beamformer-correlator.

Twenty one of the sixty four elements of the array were se-
lected for beamforming. Fig. 4 shows the positions from above
the dish and feed, the dominant polarization is electric field hor-
izontal, west is in the top left corner and north the top right. The
initial more central element selection was used first and is shown
in Fig. 4(b). Element number seven developed a fault and so the
connections were then moved to an offset selection for the latter
measurements (Fig. 4(e)). This moved the beam 1.8° away from
the reflector boresight. With this set of connections, element 17
developed an intermittent fault. Being at the edge of the selected
area it was expected to have less impact than element seven in
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Fig. 2. The two dish prototype radiotelescope located in Sydney; the east an-
tenna in the foreground is fitted with the FPA and the west antenna in the back-

ground with a single horn.
Single horn
feed

Focal Plane
Array

| 21 cables to
~| pedestal
1.1-1.8 GHz

Receiver |

Receiver
IF: 70 MHz (BW 24 MHz)

Digitizer | Digitizer
Beamformer
(weighted sum) orretator
| Integrator

| 1024 complex data points across 28 MHz per second |

Fig. 3. System diagram of the prototype radiotelescope. Twenty one signals
are brought down from the FPA through the receiver to the digitizer. Autocorre-
lations and cross-correlations between any two FPA inputs were also possible.

the central element selection. The other three beamformer in-
puts were used for the reference (western) antenna feed and the
two vertex noise sources used for calibration.

The original FPA range of 700 to 1800 MHz was found to be
too wide with significant distortion products present from the
severe radio frequency interference (RFI) environment of sub-
urban Sydney. An 1150 to 1750 MHz filter was fitted to each ele-
ment between the first and second amplification stages, leaving
a few RFI free bands available for measurements. The center
frequency of 1200 MHz was chosen for the results presented
in this paper. At this frequency the element spacing was 0.51
wavelengths and with a higher frequency, with element lower
spacing, a single element would dominate and beamforming
would have less effect.

The separate receiver chains result in drift of the gain and
phase for each element relative to the others. To correct for this

1925

a noise signal was radiated from the vertex of the dish by a
noise source connected to a small antenna. With the noise source
turned on and a coupled signal from the source fed into the cor-
relator, a reference phase was established and this was used to
compensate for drift. The noise source used in this instance did
not have a stabilized output level and so the off-source autocor-
relation of each element was used as a measure of the magnitude
drift instead. A stabilized noise source is recommended for fu-
ture systems.

Where an interferometer, with its higher sensitivity, is un-
available, a single dish can be used to obtain the beamformer
coefficients and determine the G/T performance [17], [34], [46].

The prototype radiotelescope is described in more detail in
[22].

IV. MEASUREMENTS

A series of investigations were conducted on the prototype
radiotelescope to demonstrate beamforming and evaluation
methods. For each set of measurements, there were two phases:
First the data required for calculating the array weights was
gathered and then tests were undertaken to evaluate the system
with beamforming applied.

A. Beamformer Weight Data Collection

The noise covariance matrix (Section II) was used for deter-
mining the system noise for different sets of weights. To gen-
erate the matrix, the antenna was pointed off-source, i.e. away
from any strong sources whilst retaining a similar surrounding
scene of radiative noise. This was achieved by keeping the ele-
vation approximately the same for the on-source and off-source
measurements.

The diagonal terms of this matrix dominated, being at least
ten times the off diagonal terms. The correlation coefficients
are used for this comparison 7;; = ci]-/ VCiiCjj where ¢;; =
[CTsys,u]ij- Element pairs that were adjacent in the H-plane
(e.g., elements 4 and 8, Fig. 4) had correlation terms between
6 and 10% of the diagonals. Element pairs that were adjacent in
the E-plane had much lower terms. This corresponds to the de-
gree of coupling that is expected with electric-source dominated
elements [47].

Initially the system was not equipped to measure Cr,__ ,, and
only the normalized conjugate match weighting was used for
the central element selection.

In interferometer mode, both dishes were pointed at a suit-
able radio source and the correlations of each element against
the reference (western) antenna were recorded. The galaxy M87
(Virgo A) was chosen for this purpose because it appeared as a
point source for the 90 m baseline at 1200 MHz, it has a high
flux density and it is available for 7 1/2 hrs a day for the location
and range of motion of these antennas.

B. Evaluation of the Beamformed System

The weights were calculated from the noise covariance ma-
trix and the point source response data (see (12) and (13)). The
single element in the center of the 21 selected elements was used
as a reference for the weighting cases (number one in Fig. 4.
It is stressed that this single element over illuminates the re-
flector and so a purpose designed horn, such as the one on the
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Fig. 4. Magnitude of array element weights (decibels) at 1200 MHz for the weighting cases applied, showing the central and offset element selections. The
E field polarization of the array is horizontal. (a) Single element—central. (b) Normalized conjugate match, 21 elements—central. (c) Single element—offset.
(d) Maximum G/T, 5 elements—offset. () Normalized conjugate match, 21 elements—offset. (f) Maximum G/T, 21 elements—offset.

western antenna, would perform better in both noise and effi-
ciency. Nonetheless, the single element was convenient to use
as it was expected to have a similar noise contribution from the
receiver electronics as the weighted array and its G/T would not
change too much over time. Tests were also done with five ele-
ments to see the effect of the reduction from 21 elements.

The weighting cases applied were the normalized conjugate
match with 21 elements for both the central and offset element
selections and the maximum G/T with five and 21 elements in
the offset selection. Fig. 4 shows the magnitude of the calculated
weights for the cases presented here.

Radiation patterns were obtained with the system acting as
an interferometer using a point source. The correlator output
is the product of the voltage gains of the eastern and western
dishes. The reference (western) dish tracks the source and the
eastern dish changes its pointing relative to the source to make
the pattern cuts. M87 was used for the central element selection.
Sagittarius A*, being higher in the sky allowed a greater range
in declination, was used for the offset element selection. Cuts
were made in the E, H, 45° and 135° planes at 0.25° spacing
over 8° and 10° spans for the central and offset selections re-
spectively (Fig. 5). The 45° plane (with respect to the E-field)
corresponds to cuts in declination (north-south) and the 135°
plane corresponds to cuts in hour angle (east-west). These pat-
terns were interpolated using the formulation described in Bucci
[48].

The half-power beamwidth (HPBW) is about 1.7° with the
variations shown in Table I.

A readily accessible method was used to compare single
element and beamformed G/T performance. A directivity
measure was obtained from the interferometer response to M87
and a noise measure was obtained from the autocorrelation of
weighted signal off-source. These measures do not represent
the true directivity or system temperature as they do not include
the overlap integral terms in the denominators of (3) and (5).

Their ratio however is proportional to the true G/T as shown by
(7) and (11).

Table I shows the G/T improvement seen for the beamformed
cases over the single element cases. These measurements were
repeated a number of times and the results vary by about 0.1 dB
but the difference between the normalized conjugate match and
the maximum G/T case remains within 0.03 dB of the figures
quoted.

The absolute G/T values for the offset element selection were
determined by measuring the ratio of the power pointing at and
away from a source of known strength. The G/T value then is
found by

QkB ()/SI‘(‘, - 1)
A2S

where kg is the Boltzmann constant, Y;,. is the on-source/off-
source power ratio and S is the spectral power flux density of
the source.

MS87 was used as the source and its strength was determined
by extrapolating the data from Ott et al. [49], giving the value
of ~ 230 £ 16 Jy at 1200 MHz. The uncertainty in Yg,, 0.02
dB, dominates the combined uncertainty of ~0.7 dB (~17%).
The combined uncertainties quoted in this paper are calculated
from the root sum of squares of the contributing uncertainties
and represent the ~95% probability interval. The system tem-
perature over aperture efficiency (based on the dish area), 7ap,
is also presented as the figure of merit as this is a useful way of
comparing feed systems:

G/T = 4n (15)

Toys AS
Tap B 2kB(}/src - 1)

where A is the dish area. Both figures of merit are shown in
Table 1.

(16)
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TABLE I
BEAMFORMED PERFORMANCE AT 1200 MHz

On/Off M87 Absorber

Element  Weighting Num. AG/T®* HPBW  Yie G/T Tsys/Map  Yabs  Ticene  Map
sel. elts. (dB) ) (dB)  (dB(1/K)) (K) (dB) (K) (%)
central single 1 0 1.16

central norm. conj. 21 1.98 1.18

offset single 1 0 1.17 0.09 17.2 614 243 112 41
offset max. G/T 5 1.15 1.27 0.13 18.8 419 3.31 66 49
offset norm. conj. 21 2.02 1.22 0.16 19.6 350 3.36 64 57
offset max. G/T 21 2.08 1.24 0.16 19.5 357 3.57 55 54

@ AG/T refers to the ratio of the G/T with the weighting and the corresponding single element G/T.

A measure of the system temperature can be arrived at by
placing microwave absorber under the feed. A 1.8 m x 1.8 m
sheet of 457 mm thick absorber was used. The power ratios for
with and without absorber, Y5, are shown in Table I; the uncer-
tainty is ~0.02 dB. The interpretation of these results requires
knowing either the receiver system temperature or the noise con-
tribution from the surrounding scene [S0]. An estimate of the
former is detailed in Section V-B.

V. DISCUSSION

The measurements are used to interpret the behavior of the
beamforming weights in the prototype radiotelescope. Charac-
teristics of the aperture distribution are determined from the ra-
diation patterns. An estimate of the FPA noise temperature is
calculated and then used to find the spillover temperatures and
aperture efficiencies from the power ratio measurements.

A. Radiation Patterns

As a general observation, it is apparent from the pattern dis-
tortion that the H-plane radiation pattern cuts for the single and
beamformed central element selection (Fig. 5(a) and (b)) suf-
fered minor contamination with noise. This is probably due to
interference being present at the moment of the distorted data in
those cuts.

The patterns in the E and 45° planes show a coma effect in
the single and five-element cases for the offset element selection
(Fig. 5(c) and (d)). However in the 21-element cases the effect
is reduced (Fig. 5(e) and (f)). This improvement demonstrates
the ability of FPAs to compensate for such off-axis aberrations
[51].

To understand beamforming behaviour, it is valuable to de-
termine the aperture field distribution generated by the feed pat-
terns. Aperture distributions are commonly ascertained using
microwave holography from an extensive 2D far-field map. This
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Fig. 6. Aperture illumination cuts at 1200 MHz, magnitude (dB). (a) Single element—central. (b) Normalized conjugate match, 21 elements—central. (c) Single
element—offset. (d) Maximum G/T, 5 elements—offset. (¢) Normalized conjugate match, 21 elements—offset. (f) Maximum G/T, 21 elements—offset.

approach was not available here and so the technique described
in Appendix A is used.

The magnitude and phase distributions from the measured
cases are shown in Figs. 6 and 7 respectively. The magnitude
plots show a slight narrowing of the feed pattern for the beam-
formed cases over the single element cases. The phase plots are
flatter in the beamformed cases. This is most likely due to the
phase center of the array elements being slightly above or below
the focal plane (defocused) and the beamforming correcting the
location of the phase center.

In the central element selection the first sidelobe levels are
higher for the beamformed case (Fig. 5(b)) than for the single
element (Fig. 5(a)). The aperture distributions show an increase
in aperture taper for the beamformed case (cf. Fig. 6(a) and (b))
and normally this reduces the sidelobe levels. However the con-
centration of the feed pattern under the feed blockage appears
to be the factor increasing the sidelobes [52].

A tradeoff to be considered with the use of FPAs is the in-
creased blockage. On this instrument, the feed, occupying 2.1
m?, blocks 1.3% of the physical aperture, corresponding to a
~5% reduction in gain [52]. The struts, occupying 3.4 m?, block
2.1% of the physical aperture corresponding to a ~4% reduction
in gain.

B. G/T Results

The equivalent receiver noise temperature 7; of the FPA was
calculated to aid in the understanding of the G/T results. This
was calculated as 137 K using estimates of component contri-
butions, listed in Table II, obtained from both the FPA supplier
and data from the modifications performed by CSIRO. Note that
T« includes dissipative losses in the antenna but not radiation
from the surrounding scene, such as spillover. Measurements on

an array with the same elements and LNAs but with a differing
subsequent receiver chain produced a very similar result [53].

Rough uncertainties assigned to the values contributing to this
estimate show the two dominant contributors to the total uncer-
tainty in 7T} are the dissipative loss in the antenna and the LNA
noise. The former is assigned 95% confidence interval bounds
of —0.1 and +0.2 dB, based on our experience with similar cal-
culations and measurements, resulting in a —10 to 420 K un-
certainty in 7}« and the latter bounds of —9 and +18 K, based
on the manufacturers data sheet and resulting in contributions
of —9 and +18 K to the 7} uncertainty. The upper and lower
bounds are combined as a root sum of squares separately. The
combined 95% confidence interval bounds for 7T, are —17 K
(120 K) and +29 K (166 K). The relatively high combined un-
certainty in reflects the incomplete nature of the information
readily available for this FPA.

The estimated value of the receiver equivalent noise temper-
ature, T, = 137 K, was used to give representative values of
the equivalent noise temperature from the surrounding scene for
the offset element selection. This is given by

Ta s_Trx Yas_l
Tscene = & ( & ) (17)
Yabs

where T, is the temperature of the absorber, 299 K, and Y1,
is the power ratio. These results are shown in Table I. The un-
certainty in Tycene is dominated by 7}. This varies slightly for
the different measurement sets with the worst case being £16
K. The uncertainty is much less for the relative values however:
Tocene for the five-element maximum G/T case is 46 + 3 K
lower than the single element case. Tycone for the 21-element
maximum G/T case is 58 £ 4 K lower than the single element
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TABLE II
FPA NOISE BUDGET

Parameter Value Contrib. To
Tix (K)

Noise from surrounding elements® 11K 11

Dissipative loss in antenna® 0.5dB 38

LNA noise figure® 0.6dB 48

Gain of LNA® 12.6dB

Noise figure of filter and second amp.? 4.6dB 34

Gain of filter and second amp.? 17.0dB

Focus to receiver cable loss® 10.0dB 3

Receiver Noise Figure? 2.0dB 2
137

Total

“This is the energy picked up by each element that has been radiated
from the termination presented by surrounding LNAs. It was calculated
from the scattering matrix measured from the array (without the
electronics) and an estimated equivalent noise temperature presented
by the LNA inputs of 100 K [50].

*Estimated by the FPA supplier [50].

“Data sheet for the LNA [54].

4Calculated by the designer [55].

€Measured prior to installation.

case. The difference between the normalized conjugate match
and maximum G/T for 21-elements is 10 &= 1 K. The Yj,., Yans
and T, values can be combined to find the antenna aperture ef-
ficiency using the expression

(Tabs + Trx) 2k‘B (Y;rc - 1)

Tlap =

The values for the offset element selection weightings range
from 41-57% (Table I). The combined uncertainty in the effi-
ciency is £10% in absolute terms and is dominated by the un-
certainty in Y. It is interesting to note that this calculation is
relatively insensitive to the coarse estimate of the receiver noise
with it contributing only 2—4% to the total. Higher efficiencies
are expected with an FPA where more elements are used.

C. Comparison of Weighting Cases

In the measured results there is close correspondence be-
tween the normalized conjugate match and the maximum G/T
weighting cases in the radiation patterns, the aperture distribu-
tions and the G/T measures. The normalized conjugate match
has a slightly higher directivity (aperture efficiency) and the
maximum G/T has slightly better noise performance. As the nor-
malized conjugate match does not take spillover noise into ac-
count (assuming identical spillover for the individual elements)
the similarity suggests aperture efficiency improvement and not
noise reduction dominated both cases.

The maximum G/T weighting reduces to the normalized con-
jugate match when the noise covariance matrix Cr,, is diag-
onal. On this instrument the receiver noise temperature is rela-
tively high, hence the dominant diagonal terms in Cr, _. Where
the receiver temperature is very low, reduction of spillover is ex-
pected to be more dominant for the maximum G/T case and the
two weightings would be less similar.

The five-element case showed about half the G/T improve-
ment of the 21-element case (Table I). The difference between
the G/T comparison method (Section IV-B) and the on/off M87
result is accounted for by the uncertainty estimates: 2.1 £ 0.1
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and 2.4 £ 0.7 dB respectively for maximum G/T over single
element.

The normalized conjugate match and the maximum gain
weightings are shown to be equivalent in certain cases as shown
in Appendix B. They have the same relative phase and are
equivalent if across the beamformed elements, the radiation
efficiencies are equal and the noise temperatures are equal.
The dominantly weighted elements are away from the edge of
the array and so will have similar radiation efficiencies. Mea-
surements on the FPA show a Ty variation of up to 2.5 dB.
Taking the worst case of this disparity being on two dominant
elements, the reduction in the gain is 0.09 dB. That is gain from
the normalized conjugate match is within a tenth of a decibel
of the maximum gain achievable.

VI. CONCLUSION

The practical implementation of beamforming an FPA in a
prototype radiotelescope has been presented. A normalized con-
jugate match and the maximum G/T weightings have been ap-
plied and evaluated. The results were compared to a single el-
ement from the array and a similar moderate improvement in
G/T was seen in both cases. With lower noise FPAs, a greater
difference between the two weightings is expected.

The formulation for the beamforming was presented using a
black box approach based on standard beamforming methods.
Scattering matrix or similar models are essential for good FPA
system design and can provide good predictions of performance
[15]. The black box approach shown here demonstrates what
can be readily determined from measurements on an installed
system alone. It accommodates factors such as any omissions in
modelling, such as supporting structures, and drift in the elec-
tronic gain amplitude and phases with temperature and over
time as well as component failures. The relationship between
the black box formulation and a scattering matrix method was
also detailed. The black box approach does not separate out the
performance of the different components and so is less useful
for synthesis or analyzing where the system could be improved.

Beamforming schemes used in an operating radiotelescope
are likely to be close to the maximum G/T methods explored
here (and in other recent FPA prototypes) because of the im-
portance of sensitivity to the field of radioastronomy. The max-
imum G/T does not however address other considerations such
as sidelobe level, main lobe shape, pattern stability and polariza-
tion purity. These may need to be taken into account as well (as
in [29], [34]) and would require high dynamic range measure-
ments or accurate modelling of the element radiation patterns.
The normalized conjugate match was shown to be useful in the
system development due to its simplicity but is unlikely to be
appropriate in an operational setting because it does not mini-
mize correlated noise.

The evaluation techniques allowed the antenna system to be
characterized with some limitations. The radiation patterns gave
an indication of the aperture distribution but more extensive pat-
tern cuts or a holography grid would provide superior resolution
and greater confidence in the interpretation of the results. A rel-
atively sensitive technique for comparing G/T values as well
as a less sensitive method for determining the absolute value
of G/T were demonstrated. The uncertainty of the latter was
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high due to the limited strength of the source, M87. This un-
certainty would be much lower with a stronger source such as
the northern hemisphere’s Cassiopeia-A. While the noise per-
formance of this system was modest, the beamforming and eval-
uation techniques are applicable to future systems.

Modelling and design techniques for FPAs are rapidly
improving with the efforts from a number of groups. Within
CSIRO, FPA development is continuing using another test-bed
at the Parkes observatory (where the RFI is much lower) [19],
[36], [46].

APPENDIX A
APERTURE DISTRIBUTION CALCULATION

The available data consists of four patterns cuts, equally
spaced in the azimuthal coordinate, ¢, over eight or ten degree
spans in the elevation coordinate, 6, where the coordinate
system is aligned with the beam peak. This angle is interpolated
as described in Section IV-B and ¢, is interpolated using a cubic
spline. The aperture distributions are then calculated by ap-
plying 2D Fourier transforms to this far-field data. A Hamming
window is used to reduce ripples in the aperture distributions.

The validity and limitations of this technique was tested using
models of aperture distributions. These include feed and strut
blockage. A parabolic taper on a pedestal was used for the test
distribution with differing profiles and 6 dB edge illumination
(C =0.5): E(p) = C+ (1-C)1L-(p/a)?]". Quadratic
phase distortion of similar magnitude to the single element re-
sults, was introduced in the form arg(E(p)) = 20°(p/a)?. a is
the radius of the dish. Magnitude and phase cuts of the fields
in three such test apertures are in Fig. 8 along with the regen-
erated apertures. The far-field patterns were generated from the
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test apertures (using the formulation in [56], p283). Comparison
of the initial and regenerated apertures show the effect of spa-
tial filtering and little can be determined by the regions around
the blocked center of the dish or the edges. Within the annulus
of p = 2 to 6 m however, the test apertures exhibited an RMS
phase error of 0.24° for the quadratic phase case and much less
for the flat phase case and 2% and 5% RMS amplitude error for
the n = 1 and n = 2 cases respectively.

APPENDIX B
NORMALIZED CONJUGATE MATCH AND MAXIMUM GAIN

Our purpose here is to relate the black-box implementation
(Section II) to a conventional scattering matrix representation,
which is often used in synthesis. The correspondence between
the models is used to demonstrate the conditions under which
the normalized conjugate match weighting (black box) is equiv-
alent to the maximum gain weighting (scattering matrix). Par-
ticularly noted is the difference in the choice of reference plane
dividing the array and the beamformer.

Scattering matrix analyses of arrays is well covered in the
literature in a range of different forms (e.g. [57] and [58]). The
scattering matrix model of the array is shown in Fig. 9. The
receiver electronics (with the LNA having the major effect)
is included in the model by splitting each receiver into a pas-
sive-reciprocal two-port, S;, representing the network element
presented to the array port and an isolating-matched amplifier
representing the electronic gain (Fig. 9). The gain is included in
the weighting terms a;. The g, ;(0, ¢) are embedded-element
field-patterns for the p polarization and the antenna gain (in-
cluding the receiver match) at the i** port is Gpi =47y 9y i
The voltage signal response to a p polarized plane-wave F, in
terms of the scattering matrix model is (cf. (1))

A
E,(t)g"a.
\/% p()gpa

where a and g are the weight and embedded-element field-pat-
tern column vectors.

Uout (t) = (19)

The choice of reference plane results in the field patterns from
the black box and scattering matrix models to be related by com-
plex terms that are constant over the sphere. Equivalent weight-
ings from the two models (i.e. producing the same output for the
same incident radiation) obey the identity el w = gla.

A consequence of the field patterns from the two models
being proportional to each other is their directivities are the same

D, =4 Cp.iri (20)
i =4m
P / fQ e, i€pi+ e;,ieq,idﬂ

gp,igp,i (21)

I Ja 9590, + 95 194,192

The denominator of (20) is unity from the definition of the e, ;
((2)). Consider (21) in terms of the scattering matrix model in
transmit. The denominator is the ratio of total power radiated
and power available for the i*? port only excited. By comparing

(20) and (21), the relationship between the g), and the e, is

gp,i('gv ¢) = /Thadiated,i eXp(j\I/i)ep,i(97 ‘b) (22)
and between w and a
Wp,i = y/Thadiated,i eXp(j\Ili)ap,i~ (23)

where VU, is an (undetermined) phase.

The maximum gain condition, that is the maximum power
delivered to the beamformer output, given the constraint that
af a is constant, is given by the conjugate match to the signals
from the array port, a = ga. Inserting this into (23), w,; =
nradiated,ie;,i-

If both 7radiated,i and [Cr,_].. are constant across the array,
the normalized-conjugate-match condition is equivalent to the

maximum gain condition.

ACKNOWLEDGMENT

This work was facilitated by the ASKAP project and its pre-
decessors and has only been possible through the contributions
of the large team that contributed to the prototype radiotele-
scope [22]. ASTRON contributed both with the FPA itself and
with advice during this project. In particular M. Ivashina and
B. Woestenburg have provided data and advice on evaluating
the FPA. The authors thank the anonymous reviewers for their
comments resulting in an improved paper. D. B. Hayman thanks
S. Hay, J. O’Sullivan, and M. Kesteven for their additional en-
couragement and advice during this project.

REFERENCES

[1] J. R. Fisher and R. F. Bradley, “Full sampling array feeds for radio
telescopes,” in Proc. SPIE, Radio Telescopes, H. R. Butcher, Ed., Jul.
2000, vol. 4015, pp. 308-318, SPIE.

[2] M. V. Ivashina and J. D. B. A. van Ardenne, “A way to improve the
field of view of the radiotelescope with a dense focal plane array,” in
Proc. 12th Int. Conf. Microwave and Telecommunication Technology,
2002, pp. 278-281.



1932

[3] Multi-Feed Systems for Radio Telescopes, ser. Astron. Soc. Pac. Conf.,
D.T.Emerson andJ. M. Payne, Eds. Tucson, AZ:, May 16-18, 1994,
vol. 75.

L. Staveley-Smith, W. E. Wilson, T. S. Bird, M. J. Disney, R. D. Ekers,

K. C. Freeman, R. F. Haynes, M. W. Sinclair, R. A. Vaile, R. L. Web-

ster, and A. E. Wright, “The Parkes 21 CM multibeam receiver,” Publ.

Astron. Soc. Aust., vol. 13, pp. 243-248, Nov. 1996.

J. F. Johansson, “Fundamental limits for focal-plane array efficiency,”

in Multi-Feed Systems for Radio Telescopes, ser. Astron. Soc. Pac.

Conf.. Tucson, AZ:, May 1618, 1994, vol. 75, pp. 34—41 [Online].

Available: http://adsabs.harvard.edu/abs/1995ASPC...75...34]

B. Veidt, Focal-Plane Array Architectures: Horn Clusters vs. Phase-

Array Techniques International Square Kilometre Array Steering Com-

mittee, SKA Memo 71, 2006 [Online]. Available: http://www.skatele-

scope.org/PDF/memos/71_Veidt.pdf

[7] P. Loux and R. Martin, “Efficient aberration correction with a trans-
verse focal plane array technique,” in Proc. IRE Int. Convention
Record, 1964, vol. 12, pp. 125-131, IEEE.

[8] R. Padman, “Optical fundamentals for array feeds,” Multifeed Systems
for Radio Telescopes, ser. Astron. Soc. Pac. Conf., vol. 75, 1995 [On-
line]. Available: http://adsabs.harvard.edu/abs/1995ASPC...75....3P

[9] K. F. Warnick, B. D. Jeffs, J. Landon, J. Waldron, D. Jones, A. Stem-
mons, J. R. Fisher, R. Norrod, and R. Bradley, “BYU/NRAO 19 ele-
ment L-band focal plane array feed—Sensitivity, efficiency, and RFI
mitigation,” in Eur. Conf. on Antennas and Propagation (EuCAP), Ed-
inburgh, UK, Nov. 2007 [Online]. Available: http://wiki.gb.nrao.edu/
pub/Electronics/ResultPresentations/ArrayFeed_E uCAP_Nov07.pdf

[10] K. F. Warnick, B. D. Jeffs, J. Landon, J. Waldron, D. Jones, J. R.
Fisher, and R. Norrod, “Beamforming and imaging with the BYU/
NRAO I-band 19-element phased array feed,” in Proc. ANTEM Symp.,
Banft, AB, Feb. 15-18, 2009, pp. 1-4.

[11] C. Craeye, A. B. Smolders, A. G. Tijhuis, and D. H. Schaubert, “Com-
putation of finite array effects in the framework of the square kilo-
meter array project,” in Proc. Inst. Elect. Eng. Int. Conf. on Antennas
and Propagation (ICAP), Manchester, Apr. 17-20, 2001, vol. 1, pp.
298-301.

[12] J. Simons, J. G. B. de Vaate, M. V. Ivashina, M. Zuliani, V. Natale, and
N. Roddis, “Design of a focal plane array system at cryogenic temper-
atures,” in Proc. Eur. Conf. on Antennas and Propagation (EuCAP),
Nice, Nov. 6-10, 2006, pp. 1-6.

[13] M. A. W. Verheijen, T. A. Oosterloo, W. A. van Cappellen, L. Bakker,
M. V. Ivashina, and J. M. van der Hulst, “Apertif, a focal plane array
for the WSRT,” in The Evolution of Galaxies Through the Neutral Hy-
drogen Window, Aug. 2008, vol. 1035, pp. 265-271, Am. Inst. Phys.
Conf. Proc. series.

[14] M. V. Ivashina, M. N. M. Kehn, P. S. Kildal, and R. Maaskant, “De-
coupling efficiency of a wideband Vivaldi focal plane array feeding a
reflector antenna,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp.
373-382, Feb. 2009.

[15] M. V. Ivashina, O. A. Iupikov, R. Maaskant, W. A. van Cappellen, L.
Bakker, and T. Oosterloo, “Off-axis beam performance of focal plane
arrays for the westerbork synthesis radio telescope—Initial results of
a prototype system,” in IEEE AP-S Int. Symp. Digest, Charleston, SC,
Jun. 1-5, 2009, pp. 1-4.

[16] B. Veidtand P. Dewdney, “Development of a phased-array feed demon-
strator for radio telescopes,” presented at the ANTEM Symp., Saint-
Malo, France, Jun. 2005.

[17] B. Veidt, T. Burgess, R. Messing, G. Hovey, and R. Smegal, “The
DRAO phased array feed demonstrator: Recent results,” in Proc.
ANTEM Symp., Banff, AB, Feb. 15-18, 2009, pp. 1-4.

[18] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. W. Lazio, “The
square kilometre array,” Proc. IEEE, vol. 97, no. 8, pp. 1482-1496,
Aug. 2009.

[19] D. R. DeBoer, R. G. Gough, J. D. Bunton, T. J. Cornwell, R. J. Beres-
ford, S. Johnston, I. J. Feain, A. E. Schinckel, C. A. Jackson, M. J.
Kesteven, A. Chippendale, G. A. Hampson, J. D. O’Sullivan, S. G.
Hay, C. E. Jacka, T. W. Sweetnam, M. C. Storey, L. Ball, and B. J.
Boyle, “Australian SKA pathfinder: A high-dynamic range wide-field
of view survey telescope,” Proc. IEEE, vol. 97, no. 8, pp. 1507-1521,
Aug. 2009.

[20] D.B.Hayman and T. Cornwell, “NTD THEA tile measurements,” pre-
sented at the 3rd Int. Focal Plane Array Workshop, Mar. 2007.

[21] J. O’Sullivan, R. Gough, D. B. Hayman, A. Grancea, C. Granet, S. Hay,
and J. Kot, “Recent focal plane array developments for the Australian
SKA Pathfinder,” presented at the Int. Symp. on Microwave and Optical
Technology (ISMOT), Dec. 2007.

[4

=

[5

—_

[6

—_

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 6, JUNE 2010

[22] D. Hayman, R. Beresford, J. Bunton, C. Cantrall, T. Cornwell,
A. Grancea, C. Granet, J. Joseph, M. Kesteven, J. O’Sullivan, J.
Pathikulangara, T. Sweetnam, and M. Voronkov, “The NTD inter-
ferometer: A phased array feed test bed,” presented at the URSI
Workshop on Applications of Radio Science, 2008 [Online]. Avail-
able: http://www.ncrs.org.au/wars/wars2008/Hayman

[23] D.B.Hayman, T.S. Bird, P. Hall, and K. Esselle, “Evaluation of beam-
forming radioastronomy focal plane arrays,” presented at the UNSC/
URSI, 2009.

[24] Y. T. Lo, S. W. Lee, and Q. H. Lee, “Optimization of directivity and
signal-to-noise ratio of an arbitrary antenna array,” Proc. IEEE, vol. 54,
no. 8, pp. 1033-1045, 1966.

[25] S. P. Applebaum, “Adaptive arrays,” IEEE Trans. Antennas Propag.,
vol. 24, no. 5, pp. 585-598, Sep. 1976.

[26] B. Minnett and H. Thomas, “A method of synthesizing radiation pat-
terns with axial symmetry,” IEEE Trans. Antennas Propag., vol. 14, no.
5, pp. 654-656, Sep. 1966.

[27] M. V.lIvashina, J.-G. bij de Vaate, R. Braun, and J. D. Bregman, “Focal
plane arrays for large reflector antennas: First results of a demonstrator
project,” presented at the SPIE Astronomical Telescopes and Instru-
mentation, Glasgow, Scotland, U.K., 2004.

[28] M. V. Ivashina, J. Simons, and J. G. B. Vaate, “Efficiency analysis of
focal plane arrays in deep dishes,” Exp. Astron., vol. 17, no. 1-3, pp.
149-162, Jun. 2004.

[29] T.S. Bird, “Contoured-beam synthesis for array-fed reflector antennas
by field correlation,” Proc. Inst. Elect. Eng. Microw. Opt. Antennas,
vol. 129, pp. 293-298, Dec. 1982.

[30] P.Lam, S.-W. Lee, D. Chang, and K. Lang, “Directivity optimization
of areflector antenna with cluster feeds: A closed-form solution,” IEEE
Trans. Antennas Propag., vol. 33, no. 11, pp. 11631174, 1985.

[31] T. S. Bird and D. B. Hayman, “Focal-plane array concepts for the
Parkes radio telescope,” presented at the URSI General Assembly,
Lille, France, Sep. 1996.

[32] W. Brisken and C. Craeye, Focal Plane Array Beam-Forming
and Spill-Over Cancellation Using Vivaldi Antennas National
Radio Astronomy Observatory, EVLA Memo 69, Jan. 2004
[Online]. Available: http://www.aoc.nrao.edu/evla/geninfo/memo-
series/evlamemo69.pdf

[33] C. K. Hansen, K. F. Warnick, B. D. Jeffs, J. R. Fisher, and R. Bradley,
“Interference mitigation using a focal plane array,” Radio Sci., vol. 40,
p. RS5S16, Jun. 2005.

[34] B.D. Jeffs, K. F. Warnick, J. Landon, J. Waldron, D. Jones, J. R. Fisher,
and R. D. Norrod, “Signal processing for phased array feeds in radio
astronomical telescopes,” IEEE J. Sel. Topics Signal Process., vol. 2,
no. 5, pp. 635-646, Oct. 2008.

[35] K. F. Warnick and M. A. Jensen, “Optimal noise matching for mutu-
ally coupled arrays,” IEEE Trans. Antennas Propag., vol. 55, no. 6, pp.
1726-1731, Jun. 2007.

[36] S. G. Hay, J. D. O’Sullivan, J. S. Kot, C. Granet, A. Grancea, A.
R. Forsyth, and D. B. Hayman, “Focal plane array development
for ASKAP (Australian SKA Pathfinder),” in Proc. Eur. Conf. on
Antennas and Propagation (EuCAP), Edinburgh, Nov. 2007, pp.
1-5.

[37] Standard Definitions of Terms for Antennas, IEEE Std. 145-1993, Mar.
1993.

[38] A. Waldman and G. J. Wooley, “Noise temperature of a phased array
receiver,” Microw. J., vol. 9, pp. 89-96, Sep. 1966.

[39] E. Jacobs, “A figure of merit for signal processing reflector antennas,”
IEEE Trans. Antennas Propag., vol. 33, no. 1, pp. 100-101, Jan. 1985.

[40] J.7J. Lee, “G/T and noise figure of active array antennas,” IEEE Trans.
Antennas Propag., vol. 41, no. 2, pp. 241-244, Feb. 1993.

[41] K. F. Warnick and B. D. Jeffs, “Gain and aperture efficiency for a re-
flector antenna with an array feed,” IEEE Antennas Wireless Propag.
Lett., vol. 5, no. 1, pp. 499-502, Dec. 2006.

[42] S. G. Hay, “FPA modelling concepts at CSIRO,” in Focal Plane Array
Workshop, Dwingeloo, The Netherlands, Jun. 2005 [Online]. Avail-
able: http://www.astron.nl/fpaworkshop2005/, Astron

[43] K. F. Warnick and M. A. Jensen, “Effects of mutual coupling on in-
terference mitigation with a focal plane array,” IEEE Trans. Antennas
Propag., vol. 53, no. 8, pp. 2490-2498, Aug. 2005.

[44] D. K. Cheng and F. I. Tseng, “Gain optimization for arbitrary antenna
arrays,” IEEE Trans. Antennas Propag., vol. AP-13, pp. 973-974, Nov.
1965.

[45] S.J. Wijnholds, A. G. Bruyn, J. D. Bregman, and J. G. B. Vaate, “Hemi-
spheric imaging of galactic neutral Hydrogen with a phased array an-
tenna system,” Exp. Astron., vol. 17, no. 1-3, pp. 59-64, Jun. 2004.



HAYMAN et al.: EXPERIMENTAL DEMONSTRATION OF FOCAL PLANE ARRAY BEAMFORMING IN A PROTOTYPE RADIOTELESCOPE

[46] J. D. O’Sullivan, F. Cooray, C. Granet, R. Gough, S. Hay, D. B.
Hayman, M. Kesteven, J. Kot, A. Grancea, and R. Shaw, “Phased
array feed development for the Australian SKA Pathfinder,” presented
at the URSI General Assembly, Sep. 2008.

[47] R. C. Hansen, Phased Array Antennas, K. Chang, Ed. New York:
Wiley, 1998.

[48] O.M. Bucci, C. Gennarelli, and C. Savarese, “Optimal interpolation of
radiated fields over a sphere,” IEEE Trans. Antennas Propag., vol. 39,
no. 11, pp. 1633-1643, Nov. 1991.

[49] M. Ott, A. Witzel, A. Quirrenbach, T. P. Krichbaum, K. J. Standke, C.
J. Schalinski, and C. A. Hummel, “An updated list of radio flux density
calibrators,” Astron. Astrophys., vol. 284, pp. 331-339, Apr. 1994.

[50] E. E. M. Woestenburg, Personal Communication. 2007.

[51] A. W. Rudge and M. J. Withers, “New technique for beam steering
with fixed parabolic reflectors (Wide angle microwave antenna radia-
tion beam steering with fixed parabolic reflectors, using adaptive pri-
mary feed for intercepted field spatial Fourier transformation),” Proc.
Inst. Elect. Eng., vol. 118, pp. 857-863, Jul. 1971.

[52] P.-S.Kildal, Foundations of Antennas: A Unified Approach. Sweden:
Studentlitteratur, 2000.

[53] E. E. M. Woestenburg and K. F. Dijkstra, “Noise characterization of a
phased array tile,” in Proc. Eur. Microwave Conf. (EuMC), 2003, vol.
1, pp. 363-366.

[54] “CGY2106TS Dual LNA Data Sheet,” Philips Semiconductors, 2000.

[55] A. Grancea, Personal Communication. 2006.

[56] W. L. Stutzman and G. A. Thiel, Antenna Theory and Design, 2nd
ed. New York: Wiley, 1998.

[57] S. Stein, “On cross coupling in multiple-beam antennas,” IEEE Trans.
Antennas Propag., vol. AP-10, no. 5, pp. 548-557, Sep. 1962.

[58] J. W. Wallace and M. A. Jensen, “Mutual coupling in MIMO wireless
systems: A rigorous network theory analysis,” IEEE Trans Wireless
Commun., vol. 3, no. 4, pp. 1317-1325, 2004.

Douglas Brian Hayman (M’93) was born in
Misawa, Japan, in 1964. He received the B.Sc.
degree in pure mathematics and physics in 1986
and the B.E. degree (electrical, Hons.) in 1988, both
from the University of Sydney, Sydney, Australia.

In 1988, he joined Radio Transmission Engi-
neering, working on FM broadcast transmitters
and microwave links. From 1990 to 1992, he was
with the satellite company, AUSSAT, working in
earth station engineering. In December in 1992, he
joined the Commonwealth Scientific and Industrial
Research Organisation (CSIRO), in Sydney, Australia, where is he currently
a Senior Research Engineer. He has focused on antenna metrology and led a
comprehensive upgrade of CSIRO’s antenna measurement facility hardware
and software. He has also designed components such as waveguide rotary joints
and orthomode transducers and managed a number of antenna related projects.
Most recently he has been involved in the ASKAP focal plane array work and,
since 2003, he has been undertaking a part time Ph.D. in the field of focal plane
array beamforming and evaluation at Macquarie University, NSW, Australia.

Mr. Hayman has served as a reviewer for the IEEE TRANSACTIONS ON
ANTENNAS AND PROPAGATION since 2005 and for the Australian Symposium
on Antennas since 2006.

Trevor S. Bird (S’71-M’76-SM’85-F’97) received
the B.App.Sc., M.App.Sc., and Ph.D. degrees from
the University of Melbourne, Melbourne, Australia,
in 1971, 1973, and 1977, respectively.

From 1976 to 1978, he was a Postdoctoral Re-
search Fellow at Queen Mary College, University of
London, London, U.K., followed by five years as a
Lecturer in the Department of Electrical Engineering

at James Cook University of North Queensland.
\ | During 1982 and 1983, he was a consultant at

o Plessey Radar, UK., and in December 1983 he
joined the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) in Sydney, Australia. He has held several positions with CSIRO and
is currently a CSIRO Fellow and Chief Scientist in the CSIRO Information
and Communication Technologies Centre. He is also an Adjunct Professor at
Macquarie University, Sydney.

Dr. Bird is a Fellow of the Australian Academy of Technological and En-
gineering Sciences, the IEEE, the Institution of Engineering and Technology

1933

(IET), London, U.K., and is an Honorary Fellow of the Institution of Engineers,
Australia. He has published widely in the areas of electromagnetics and an-
tennas, particularly related to waveguides, horns, reflectors, wireless and satel-
lite communication applications, and he holds twelve patents. In 1988, 1992,
1995, and 1996 he received the John Madsen Medal of the Institution of En-
gineers, Australia for the best paper published annually in the Journal of Elec-
trical and Electronic Engineering, Australia, and in 2001 he was co-recipient
of the H. A. Wheeler Applications Prize Paper Award of the IEEE Antennas
and Propagation and Society. He was awarded a CSIRO Medal in 1990 for the
development of an Optus-B satellite spot beam antenna and again in 1998 for
the multibeam antenna feed system for the Parkes radio telescope. He received
an IEEE Third Millennium Medal in 2000 for outstanding contributions to the
IEEE New South Wales Section. Engineering projects that he played a major
role in were given awards by the Society of Satellite Professionals International
(New York) in 2004, the Engineers Australia in 2001, and the Communica-
tions Research Laboratory, Japan, in 2000. In 2003 he was awarded a Cente-
nary Medal for service to Australian society in telecommunications and also
named Professional Engineer of the Year by the Sydney Division of Engineers
Australia. His biography is listed in Who'’s Who in Australia. He was a Distin-
guished Lecturer for the IEEE Antennas and Propagation Society from 1997 to
1999, Chair of the New South Wales joint AP/MTT Chapter from 1995 to 1998,
and again in 2003, Chairman of the 2000 Asia Pacific Microwave Conference,
Member of the New South Wales Section Committee from 1995-2005 and was
Vice-Chair and Chair of the Section in 1999-2000 and 2001-2002 respectively,
Associate Editor of the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
from 2001 to 2004, a member of the Administrative Committee of the IEEE
Antennas and Propagation Society from 2003-2005, and a member of the Col-
lege of Experts of the Australian Research Council (ARC) from 2006-2007.
He has been a member of the technical committee of numerous conferences
including JINA, ICAP, AP2000, IRMMW-THz and the URSI Electromagnetic
Theory Symposium. Currently, he is member of the Editorial Boards of the IEEE
TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES and the Journal of
Infrared, Millimeter and Terahertz Waves. He has been Editor-in-Chief of the
TEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION since 2004.

Karu P. Esselle (M’92-SM’96) received the B.Sc.
degree in electronic and telecommunication engi-
neering (First Class Honors) from the University
of Moratuwa, Sri Lanka, in 1983 and the M.A.Sc.
and Ph.D. degrees in electrical engineering from the
University of Ottawa, Ottawa, ON, Canada, in 1987
and 1990, respectively.

He is a Professor in electronic engineering, Mac-
quarie University, Sydney. He was the Immediate
Past Associate Dean - Higher Degree Research and
the Founding Director of Postgraduate Research
Committee in the Division of Information and Communication Sciences. He
held these positions 2003 - 2008 and was also a member of the Division Exec-
utive. He served in all Macquarie University HDR-related committees at the
highest level. He is the Director of Electromagnetic and Antenna Engineering,
and the Deputy Director of the Research Centre on Microwave and Wireless
Applications (CMWA), which was recently expanded after recognised as a
Concentration of Research Excellence. He has been invited to serve as an
international expert/research grant assessor by several overseas nationwide
research funding bodies form the Netherlands, Finland, Hong-Kong and Chile.
In Australia, he has been invited to assess grant applications submitted to the
nation’s most prestigious schemes such as Australian Federation Fellowships
and Australian Laureate Fellowships. His industry experience includes full-time
employment as Design Expert by the Hewlett Packard Laboratory, USA, and
several consultancies for local and international companies, including Cisco
Systems (USA), Optus Networks, Locata (USA)/QX Corporation, ResMed,
FundEd and Katherine-Werke (Germany) through Peter-Maxwell Solicitors.
He was an Assistant Lecturer at the University of Moratuwa, a Canadian
Government laboratory Visiting Postdoctoral Fellow at Health Canada, a
Visiting Professor of the University of Victoria and a Visiting Scientist of
the Information and Communication Technologies Centre (ICT Centre),
Commonwealth Scientific and Industrial Research Organisation (CSIRO),
Sydney, Australia. He is an Editor of the International Journal of Antennas
and Propagation. He has authored about 250 scientific publications, including
six invited book chapters and over fifteen invited conference presentations.
His current research interests include metamaterials and their microwave
applications, photonic crystals and photonic band gap (PBG)/electromagnetic
band gap (EBG) structures, millimeter-wave EBG MMIC devices, antennas
based on EBG, periodic structures including frequency selective surfaces,



1934

antennas for mobile and wireless communication systems including WiFi,
WiMAX, HyperLAN, and ultrawideband systems, antennas for multi-signal
location and navigation systems, dielectric-resonator (DR) antennas, broadband
and multi-band printed antennas, smart antenna systems, hybrid antennas,
theoretical methods, lens and focal-plane-array antennas for radio astronomy,
moment methods, FDTD methods for periodic structures and closed-form
Green’s functions for layered structures. His research activities are posted in
the web at www.elec.mq.edu.au/celane/.

Prof. Esselle’s recent awards include the 2009 Vice Chancellor’s Award for
Excellence in Higher Degree Research Supervision (the first such award ever of-
fered in Macquarie University) and 2004 (Inaugural) Innovation Award for best
invention disclose. Since 2002, he was involved with research grants and con-
tracts worth about five million dollars, and his research team members attracted
further grants worth about a million dollars. The CELANE, which he founded,
has provided a stimulating research environment for a strong team of researchers
including six postdoctoral fellows. His mentees have been awarded 6 extremely
competitive postdoctoral fellowships. Nine international experts who examined
the theses of his recent five Ph.D. graduates ranked them in the top 5% or 10%
in the world. He has served on Technical Program Committees or International
Committees for many International Conferences. He will be chairing the Tech-
nical Program Committee of APMC 2011; he was the Publicity Chair of the
APMC 2000. He is the Chair of the IEEE New South Wales (NSW) MTT/AP
Joint Chapter, Editor of MQEC, the past Chair of the Educational Committee
of the IEEE NSW, and a member of the IEEE NSW Committee.

Peter J. Hall was born in Hobart, Tasmania, in 1957.
He was received the B.Eng. degree from the Tasma-
nian College of Advanced Education, in 1980, and
the B.Sc. (Hons.) and Ph.D. degrees from the Uni-
versity of Tasmania, in 1981 and 1985, respectively.
His postgraduate study was in the field of radio as-
tronomy, particularly the development of high time
resolution polarimeter spectrometers.

He began his professional career in 1985 with
a Postdoctoral Fellowship at the Commonwealth
Scientific and Industrial Research Organization

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 6, JUNE 2010

(CSIRO), Parkes radio telescope, Sydney, Australia, implementing a novel
system for observing the encounter of the Giotto spacecraft with Halley’s
Comet. He moved to the University of Sydney School of Electrical Engineering
as a Lecturer in 1987, prior to re-joining CSIRO in 1989, this time as a Research
Scientist and Group Leader responsible for on-site commissioning of the new
Australia Telescope Compact Array (ATCA) at Narrabri, in northwestern New
South Wales. He performed a similar role during a major upgrade of the Parkes
radio telescope in the mid-1990s, the upgrade allowing the telescope to support
the Galileo mission to Jupiter while observing the southern sky with a new
13-beam receiver. With a long-time interest in millimeter-wave astronomy,
he was a prime instigator of, and system scientist during, a major extension
of the ATCA to 100 GHz operation. In 1999 he became Program Leader for
CSIRO’s Square Kilometre Array (SKA) endeavour, being responsible for
developing the scientific and engineering concepts surrounding wide-field
astronomy, as well as the initial Australian submission to host the SKA. With
a growing role in the global SKA project, he accepted an invitation in 2003 to
become the first International Project Engineer, a position he held until 2008.
During this time he played a leading role in the establishment of a Reference
Design for the SKA, the setting of initial specifications for the instrument, and
the formulation of an international design phase now underway. In 2008 he
accepted an invitation to join Curtin University of Technology in Perth as its
Foundation Professor of Radio Astronomy Engineering. In this capacity he
is also Co-Director of the Curtin Institute of Radio Astronomy and a Deputy
Director of the International Centre for Radio Astronomy Research (ICRAR).
Professor Hall is a Fellow of the Institution of Engineers (Australia) and a
Member of the Institution of Engineering and Technology (IET), London, U.K.



