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A simple model of thermal conductivity, based on the harmonic theory of solids, is used to study the
heat transfer in nanostructures. The thermal conductivity is obtained by summing the contribution
of all the vibration modes of the system. All the vibrational propertiessdispersion curves and
relaxation timed that are used in the model are obtained using the data for bulk samples. The size
effect is taken into account through the sampling of the Brillouin zone and the distance that a wave
vector can travel between two boundaries in the structure. The model is used to predict the thermal
conductivity of silicon nanowires and nanofilms, and demonstrates a good agreement with
experimental results. Finally, using this model, the quality of the silicon interatomic potential, used
for molecular-dynamics simulations of heat transfer, is evaluated. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1898437g

I. INTRODUCTION

The thermal characterization of nanostructures and nano-
structured materials is a fundamental issue for the reliability
of the systems as microelectronic, microelectromechanical
systems, energy conversion systems using the thermoelectric
effect, lab on a chip, and super insulators. The thermal con-
ductivity of such structures can either be measured or pre-
dicted. The measurement of the thermal conductivity is quite
common for bulk materials, much less so for nanostructured
materials, and remains a challenge that has been met only for
a few nanostructures. Theoretical analysis and numerical
simulations, on the other hand, readily provide information
regarding heat transfer phenomena at the nanoscales. They
can, in principle, accurately predict the thermal conductivity
of nanostructures that have not already been produced or that
are difficult to characterize experimentally. However, before
entering such a predictive stage, it is necessary to check the
validity of the results with experimental data.

In this context, silicon appears as one of the most inter-
esting materials, since it is widely used for designing micro-
electronic devices. Moreover silicon crystals of different
shapes have been produced with characteristic lengths rang-
ing from some nanometer to centimeter. The thermal conduc-
tivity of bulk silicon has been measured over a large tem-
perature range since the 1960s.1–3 Silicon-based
superlattices, nanofilms, nanowires, and nanoporous silicon
have also been characterized experimentally.4–8 If the elec-
tronic concentration is small enough, which is the case for
intrinsic and moderately doped silicon, the heat transfer due

to electrons is negligible compared to phonon heat transfer.
Finally, the experimental conditions of the thermal-
conductivity measurement of silicon nanostructures are such
that radiative heat transfer is neglected toward phonon heat
transfer. For all these reasons, silicon is a material that can be
used as a benchmark for simple models such as the one dis-
cussed in this paper.

Models allowing an analytical calculation of the
sphonon-dominatedd thermal conductivity are, in general,
based on the use of the standard kinetic theory within the
relaxation-time approximation. They require the knowledge
of the phonon properties: dispersion curves or density of
states, group velocities, and relaxation time.7,9–16For simple
models, a constant group velocity and a unique relaxation
time may be considered for all the vibration modesstrans-
verse and longitudinald, while for more complex models, the
group velocity is calculated from the dispersion curves and
the relaxation time may depend on the polarization. The tem-
perature variations of the relaxation time depend on two phe-
nomena: the variation of phonon density with the tempera-
ture sgiven by the Planck distribution functiond and the
variation of the anharmonicity with the temperature level.
Several analytical expressions were proposed for the relax-
ation time, in which the parameters are determined in order
to fit the experimental temperature dependence of the ther-
mal conductivity. In these models, the phonon frequency
ranges from 0 to a maximum value, which means that their
wavelength ranges from infinity to a minimum value. For
each system, it has to be checked that the energy contribution
of the phonons with wavelength larger than the system size
swhich cannot exist in the system but are still considered in
these modelsd is negligible towards the energy contributionadElectronic mail: patrice.chantrenne@insa-lyon.fr
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of the other phonons. Qualitatively, for small systems at low
temperatures, this condition might not be verified and the
thermal conductivity might be overestimated. For silicon,
models have been proposed to predict the thermal conductiv-
ity of bulk material, nanofilms, and nanowires.7,9,12,15,16

As the characteristic size of the nanostructures de-
creases, the influence of the boundary surfaces becomes
more and more important. This can lead to significant modi-
fication of the vibrational propertiessdispersion curves
and/or the relaxation timed of the matter compared to the
bulk properties. One way to take this effect into account is to
use atomic scale simulations, in particular, classical molecu-
lar dynamicssMDd.17,18 The merit of this approach is that it
explicitly allows for anharmonic effects, though conversely it
neglects the quantization of the phonons, which is important
at low temperatures. In MD simulations, the system is clas-
sical; i.e., the mean number of phonons does not depend on
their vibration frequency. Consequently, the use of MD to
study heat transfer is limited to high temperatures.

Due to the computational cost of MD, the accessible
time scale is typically limited to the nanoscale. The maxi-
mum size that can be handled depends on the material and
the shape of the nanostructure, but is always much less than
1 mm.

In MD simulations, the vibrational properties depend on
the interatomic potential used to calculate the forces on the
atoms. Their variations with temperature level and system
size sespecially for small systemd are automatically taken
into account. The quality of the interatomic potential is then
a key issue for the reliability of the MD results. For silicon,
several interatomic potentials have been proposed in the
literature.19 However, the only one that was used in MD
simulations in order to determine its thermal
conductivity20–22 is the Stillinger–WebersSWd potential.23 It
is argued that the SW model allows us to accurately simulate
the melting temperature, the elastic constant tensor, the dis-
persion curves, and the thermal-expansion coefficient of bulk
silicon. Comparing four interatomic potentialssSW,23

Tersoff,24 Harrison,25 and Biswas and Hamann26d, Cooley27

concluded that the use of any of these models to calculate
quantities with a significant vibrational contribution should
proceed with caution. This comparison was based on the
calculation of the elastic constants and two particular vibra-
tion frequencies. The computation of the thermal properties
proposed in this work provides a different, more global,
benchmark of interatomic potentials.

This paper is organized in three parts. In the Sec. II, a
simple, semianalytical model is presented and the contribu-
tion of each vibration mode to the thermal conductivity is
evaluated. In the Sec. III, this approach is used to predict the
thermal conductivity of nanowires and nanofilms of different
sections or thicknesses in order to compare with the existing
experimental values. The same model, based on the vibra-
tional properties and relaxation time of the bulk crystal, is
used in all cases. The difference lies in the sampling of the
vibrational modes in the first Brillouin zone, which becomes
nonisotropic. Finally, the model is used to check the validity
of the SW interatomic potential for MD simulations of heat

transfer in silicon, and to determine the temperature above
which the MD results are expected to be reliable.

II. MODEL FOR THE THERMAL CONDUCTIVITY

Using the elementary kinetic theory, the thermal conduc-
tivity l in the directionz associated with the phononssK ,pd
can be written as28,29

lzsK,pd = CsK,pdv2sK,pdtsK,pdcos2fuzsKdg, s1d

where K is the wave vector,p its polarization, andv the
group velocity determined from the dispersion curves:

vsK,pd = dvsK,pd/dK, s2d

with v the angular velocity,tsK ,pd is the phonon relaxation
time due to the phonon-scattering phenomena,uzsKd is the
angle between the wave vectorK and the directionz, and
CsK ,pd is the specific heat per unit volume. It is the tem-
perature derivative of the internal energyUsK ,pd. For a sys-
tem of volumeV,28

CsK,pd = kbx
2 ex

Vsex − 1d2 , s3d

x =
"vsK,pd

kbT
. s4d

The total thermal conductivity and specific heat are the sum
of the individual contributions due to all the wave vectorsK
and polarizationsp:

lz = o
k

o
p

lzsK,pd

= o
k

o
p

CsK,pdv2sK,pdtsK,pdcos2fuzsKdg, s5d

C = o
K

o
p

CsK,pd. s6d

Only the dispersionsfor both optical and acoustic branchesd
curves are required to calculate the specific heat of the bulk
crystal. The sampling of the wave vectors depends on the
crystal shape.

For silicon, the crystal is composed of fcc elementary
cells containing two atomssFig. 1d. Thus there are six polar-

FIG. 1. The primitive unit cell of diamond containing two atoms.
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izations and then six dispersion curves for each wave vector.
The crystal is completely defined by the number of cellsNa1

,
Na2

, andNa3
in the direction of each primitive vectorsa1, a2,

and a3. The wave vectors describing the crystal vibrations
are a linear combination of

Kb1
= 2na1

p/sNa1
a0d,Kb2 = 2na2p/sNa2a0d s7ad

and

Kb3
= 2na3

p/sNa3
a0d, s7bd

whereKbi is in the direction ofbi, the reciprocal vector ofai.
The limiting values ofna1

, na2
, andna3

are such that the wave
vectors belong to the first Brillouin zone of the primitive cell.
These limiting values also depend on the boundary condi-
tionssperiodic of fixed surfacesd.28 Actually, we have already
shown that the type of boundary conditions does not signifi-
cantly affect the value of the thermal conductivity.29 There-
fore, a first information about the geometry of the sample
sshape, size, anisotropy, etc.d can be straightforwardly ac-
counted for changing the values ofNa1

, Na2
, andNa3

.
For the sake of simplicity, the dispersion curves in the

f1, 0, 0g direction are used for all the wave-vector directions
whereKmax is the largest wave vector of the first Brillouin
zone. For convenience, the experimental curves were fitted
with linear curves, as shown in Fig. 2. This linear fit is ac-
tually a good approximation, within less than 5% of the ac-
tual experimental values, except for the transverse mode
aroundk/kmax=0.4 where the maximum difference is about
15%.

The specific heat of silicon, calculated using the linear fit
of the experimental dispersion curvessFig. 3d, is slightly
higher than the experimental value at low temperaturessbe-
low 150 Kd, and both values are identical at higher tempera-
tures. Hence, the use of this unique set of dispersion curves
for all the wave-vector directions is a good approximation to
recover the internal energy of silicon.

To calculate the thermal conductivity, it is necessary to
know the relaxation time, which depends on the frequency of
the vibration mode, the temperature, and the system size. For
a crystal, assuming that the scattering mechanisms are not

coupled, the expression representing the phenomenological
variation of the relaxation time can be written as

t−1svd = tU
−1svd + tBC

−1 svd + td
−1svd, s8d

with the relaxation time due to the umklapp processes
sphonon-phonon interactionsd,3,9–11being

tU
−1svd = AvxTj exps− B/Td. s9d

The relaxation time due to phonon-defect interaction is
written as10

td
−1svd = Dv4. s10d

Several expressions have been proposed for the relaxation
time due to the presence of the system boundaries.12,13,30All
of these are proportional to the relaxation time of the Casimir
limit.31 In this study, we consider the following expression:15

tBC
−1 svd = vsK,pd/fF*LsKdg, s11d

whereLsKd is the distance that a phonon can travel between
two boundary surfaces andF mainly depends on the surface
roughness. All the parametersA, B, D, F, x, andj have to be
determined. In order to recover the experimental variations
of the thermal conductivity of silicon, it is necessary to con-
sider a different umklapp relaxation time for the longitudinal
and transverse modes.15 For nearly pure silicon, the param-
eterD mainly depends on the isotope concentration. Assum-
ing that this concentration is constant,D should be a constant
and has already been determined,16

D = 1.323 10−45 s3.

Using Eqs.s5d ands8d–s11d and the experimental dispersion
curves, all the parametersAT, AL, BT, BL, xT, jT, xL, jL, and
F are fitted to match the variation of the experimental ther-
mal conductivity of a bulk silicon crystalsFig. 4d for which
the characteristic length is equal toLskd=7.16310−3 m:15

AT = 7 3 10−13, BT = BL = 0, AL = 3 3 10−21,

xT = 1, jT = 4, xL = 2, jL = 1.5, F = 0.55.

Assuming the same relaxation time for the acoustic and op-
tical branches, the contribution of the optical vibration

FIG. 2. Longitudinal- and transverse-stwo degenerated curvesd acoustic
dispersion curves of bulk silicon in thef1,0,0g direction. Squares: experi-
mental values. Continuous lines: linear fit of the experimental curves.
Dashed lines: SW potential.

FIG. 3. The specific heat of silicon as a function of the temperature.
Crosses: experimental datassee Ref. 37d. Curve with triangle: Stillinger–
Weber. Curve with squares: calculation with experimental dispersion curves
fitted with linear curves.
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modes to the thermal conductivity increases with tempera-
ture, but the contribution remains at less than 3% of the
thermal conductivity below 1000 K.

III. PREDICTION OF THERMAL CONDUCTIVITY OF
SILICON NANOWIRES AND NANOFILMS

If the system is isotropic, and its size infinite, the sum in
s5d becomes an integral, which is most conveniently reex-
pressed using a change of variables from wave vectorK to
angular velocityv fthrough the dispersion curve and density
of statesDsvdg. The result forl becomes

l =
"2

3kbT
2Vmol

E
0

`

vsvd2tsvdDsvd
v2e"v/kbT

se"v/kbT − 1dbdv. s12d

Mingo16 calculated the thermal conductivity of nanowires
using this expression in which he replaced the bulk density
of states and the group velocity by the same quantities as
calculated from the set of dispersion curves of a nanowire.
Using the Harisson25 potential, the dispersion curves were
obtained from the construction of the dynamical matrix of
the system. For each wire diameter, Mingo found it neces-
sary to fit the parameterF of the relaxation timefEq. s11dg
due to phonon-boundary diffusion in order to match the ex-
perimental results.

Calculating the phonon distribution function of a wire as
a deviation from the distribution function of the bulk crystal,
the thermal conductivity of a wire can be expressed as12–14

l =
"2

3kbT
2Vmol

E
0

`

vsvd2tsvdDsvd
v2e"v/kbT

se"v/kbT − 1d2

3f1 − Gsh,«dgdv, s13d

where the functionG depends on

s1d the wire section geometry,
s2d the ratio between the section characteristic length and

the phonon mean free pathh, and
s3d the roughness effect on the phonon-boundary scattering

through the parameter«. Asheghiet al.7 have also pro-
posed an equivalent expression for nanofilms.

To calculate the thermal conductivity of nanowires, the
total relaxation time still includes the relaxation time due to
the phonon-boundary diffusion, but for the nanofilms,
Asheghiet al.7 just considers the contribution of the umklapp
process and phonon diffusion by defect. In each case, the
parameter« has to be fitted so that the model yields a good
quantitative agreement with the experimental results.

In this section, we calculate the thermal conductivity of
nanowires and nanofilms using Eqs.s5d and s8d–s11d in
which all the parameters are those previously determined
based on the experimental dispersion curves of bulk silicon.
We assume that the phonon-boundary diffusion is the same
in nanostructure as in the bulk crystal, so that the parameter
F in Eq. s11d is constant whatever the size and geometry of
the system. The only difference between the bulk crystal and
the nanostructure lies in the sampling of the first Brillouin
zone. Hence, it depends on the sample size and shape and
becomes strongly nonisotropic for both films and wires.
Moreover, the distanceL(K) depends on the wave-vector di-
rection and is also nonisotropic for films and wires. This is
the main advantage of our model since the anisotropy cannot
be recovered using the angular velocity samplingfEqs.s12d
and s13dg.

The thermal conductivity of silicon nanowires in the
axial direction was measured by Liet al.8 The authors esti-
mated the length of their nanowires to beL=2 mm. For our
analysis, we consider that the wire is built from the elemen-
tary crystal cell of silicon defined by the primitive vectorsa1,
a2, and a3. Consideringa1 as the axial direction and the
lattice parameter for siliconsa0=0.543 nmd, the number of
cells in this direction is equal to 5209. The number of cells in
the a2 anda3 directions is equal to 68, 115, 173, and 356 in
order to get the same characteristic section lengths,d, in the
plane perpendicular to thea1 direction, as found in the ex-
perimental measurements, namely, 22, 37, 56, and 115 nm,
respectively. The thermal conductivities of the wires in the
axial direction are calculated using Eqs.s5d and s8d–s11d
whereL(k) used in Eq.s11d is defined as

LsKd = d/sinfua1
sKdg s14ad

and

LsKd ø L. s14bd

Except for the smallest wire, our results are in good agree-
ment with the experimental datasFig. 5d. The differences
could not only be due to the experimental uncertainties in the
measurements but also to the difference between the theoret-
ical and experimental wire dimensions/geometries. In par-
ticular, the error, as compared to the experiment, is signifi-
cantly smaller than the differences between the values
obtained for different wire diameters. As such, this simple
model can be used to reliably estimate the influence of di-
ameter on the thermal conductivity. It seems that the bulk
propertiessdispersion curves and relaxation timed can be
used to predict the thermal conductivity of nanowires down
to 37 nm. For the smallest wiresd=22 nmd, the value of the
thermal conductivity at 300 Ks13 W m−1 K−1d is the same as
the one calculated by Zou and Balandin12 for a nanowire of

FIG. 4. Thermal conductivity of a silicon crystalL=7.16310−3 m. Crosses:
experimental valuesssee Ref. 15d. Dashed line: results obtained with the
experimental dispersion curves. Line with triangles: results obtained from
the SW potential dispersion curves.
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diameterd=20 nm. However, the variation of the experi-
mental thermal conductivity of the smallest wire is com-
pletely different from those obtained for larger sections. This
behavior, which is not predicted by our model, remains to be
experimentally confirmed and theoretically understood. It
could be argued that as the wire diameter decreases, the sys-
tem approaches a one-dimensionals1Dd behavior. It may
have a transition between the three-dimensionals3Dd and 1D
behaviors for diameters between 20 and 30 nm. This transi-
tion can have a significant influence on the dispersion curves,
the relaxation time, and the specific heat. As the wire diam-
eter decreases, the influence of the surface defectssoxides
and so ond can also be much more important and strongly
modifies the vibration modes, as well as their diffusion,
along the boundary surfaces. However, it remains puzzling
that no such transition is observed in a film geometry, as
shown below.

As for the wires, we consider that silicon nanofilms are
built from elementary crystal cells of silicon. The in-plane
directions are defined by vectorsa2 and a3. The number of
cells in thea1 direction is equal to 90, 451, 1895, 3744,
7217, and 13 533 in order to have the same thickness,e, as
the six films that have been characterized:7,32,33 20 nm, 100
nm, 420 nm, 830 nm, 1.6mm, and 3mm, respectively. The
number of cells in thea2 anda3 directions should depend on
the largest dimension of the film. For the two thinner films,
this dimension is about 100—500mm, but it is not known
for the other films. Actually, the thermal conductivity varies
when the number of cells in the plane direction increases, but
there is a minimum number of cells after which the thermal
conductivity remains constant. This minimum number of
cells depends on the film thickness and temperature. We have
used 2400 cells for the 20-nm film thickness, 720 cells for
the case of 100- and 420-nm film thicknesses, and 300 cells
for the larger film thickness. Regardless of the number of
cells, since the larger dimension of the film is much greater
than its thickness, the distanceL(K) used in Eq.s11d is equal
to

LsKd = e/sinfua1
sKdg. s15d

The in-plane thermal conductivity of these films is calculated
using Eqs.s5d and s8d–s11d and compared with the experi-

mental values.7,32,33 The agreement between the model and
the experimental results is excellent for the two thinnest
films sFig. 6d for which the experimental uncertainty has
been evaluated to be 5%.33 For the remaining films, the
model underestimates the thermal conductivity at high tem-
perature. However, the qualitative variation of the thermal
conductivity is quite well reproduced, and the absolute val-
ues remain within the range of the experimental uncertainty:
25% for the films of thickness 420 nm, 830 nm, and 1.6mm
sRef. 7d and 12% for the 3-mm-thick film.32

In summary, we have shown in this section that a simple
model based on the kinetic theory of phonons, using bulk
properties as an input, can very reasonably account for ex-
perimental results concerning the thermal conductivities of
various nanostructures. The geometry of the structure enters
only through the sampling of the Brillouin zone. Other quan-
tities entering the thermal conductivity are not affected by
the geometry, at least for structures larger than 20–30 nm.
This result is, in a sense, quite intuitive, since the bulk cal-
culation does not involve any intermediate length scale at
which a crossover to a different behavior should be expected.

IV. EVALUATION OF THE SW INTERATOMIC
POTENTIAL FOR HEAT TRANSFER MD SIMULATION
IN SILICON

As mentioned in the Introduction, MD is a powerful tool
that permits to take into account the variation of the vibra-
tional properties with the system size and the variation of the
anharmonicity with the temperature level. Of course, the
quality of the results directly depends on the quality of the
interatomic potential used to calculate the interatomic forces.
The aim of this section is to propose a methodology to evalu-
ate the quality of an interatomic potential. Our approach is
based on the observation of Sec. III, that even in nanostruc-
tures, thermal conductivity is essentially determined by bulk
vibrational properties. Hence the general quality of an inter-
atomic potential with respect to heat transfer modeling in
nanostructures should be judged based on its ability to cor-
rectly reproduce those properties that are essential in heat
transfer in the bulk.

FIG. 5. Thermal conductivities of silicon nanowires vs temperature. Dashed
lines: experimental datassee Ref. 8d. Continuous lines: our prediction
model. Each kind of symbol corresponds to a different section characteristic
length.

FIG. 6. Thermal conductivities of silicon nanofilms vs temperature. Dashed
lines: experimental datassee Ref. 7d. Continuous lines: our prediction
model. Each kind of symbol corresponds to a different film thickness.
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In this section, silicon is still considered as the target
material. Reviews of interatomic potentials for silicon have
already been published19,34 and it seems that no empirical
model has been proposed since 1997. As explained by Ba-
zant and Kaxiras,34 almost all the empirical potentials for
silicon fall into either the generic Stillinger–Weber23 sSWd or
Tersoff24 forms. A simpler potential, for which the energy of
the system is the sum of a two- and three-body harmonic
terms, was earlier proposed by Harrison.25 The SW model is
considered in this section since the SW model has been used
for the majority of dynamical heat transfer simulations, while
the Harrison potential has just been used once,16 and the
Tersoff potential has never been used for such an application.

As phonon heat transfer is considered, the first essential
ingredient of heat conductivity computations will be the dis-
persion curves. We first determine these curves for the SW
potential and compare them with the experimental data,
which are used as a reference.

Bulk silicon has a diamond structure, which is face-
centered cubic and contains just two atoms in the primitive
rhombohedral unit cell. Hence, the dispersion curves consist
of one longitudinal-acousticsLA d and two transverse-
acousticsTAd branches, as well as one longitudinal-optical
sLOd and two transverse-opticalsTOd branches, in each di-
rection. For simplicity, only the dispersion curves in thef1,
0, 0g direction are compared with the experimental ones.35,36

Using the conventional notation, the center of the Brillouin
zone is theG point and the point on the limit of the Brillouin
zone in thef1, 0, 0g direction is namedX. In Fig. 2, only the
acoustic branches are represented, and the two transverse
modes are degenerated. The vibration frequencies atG andX
are given in Table I, as the experimental data for the optical
and acoustic branches for comparison.

The SW accurately reproduces the experimental acoustic
dispersion curves as long as the wave vector is smaller than
0.4Kmax. Over this value, the SW model overestimates the
vibrational frequencies and the group velocities for all
modes. The vibration frequency of the TA mode atX point is
largely overestimated. As the group velocities and the elastic
behavior are related, the elastic constants of silicon obtained
with the SW potential are compared to the experimental val-
ues sTable Id. As expected, the SW potentials give a good
estimate of the elastic constants.

Using Eq.s6d, the specific heat of silicon is calculated as
a function of the temperature based on the set of dispersion

curves obtained from the SW potentials. The curve is plotted
in Fig. 3 to be compared to the experimental specific
heat.37–39 At low-temperature, the lower-frequency vibra-
tional modes constitute a large contribution to the internal
energy. As the SW reproduces with a good accuracy the ex-
perimental dispersion curves in the limit of small wave vec-
tors, it gives a good estimate of the specific heat at low
temperature. At higher temperatures, overestimating the fre-
quency range leads to an underestimation of the specific heat
by between 25% and 10% for the SW potential when the
temperature varies from 100 to 300 K.

The above considerations pertain to the frequency range
of the vibrational modes, and to the propagation of the
phonons through the crystal. However, the thermal conduc-
tivity also depends on phonon-phonon scattering, which is
due to the anharmonic nature of the interactions. The quality
of the anharmonic contribution of the interatomic potential
can be evaluated through the variation of the atomic volume
with the temperature, since thermal expansion is a purely
anharmonic effect. As shown on Fig. 7, the variation of the
density of Si obtained with the SW potential is very close to
the experimental one. It can then be assumed that the phonon
relaxation time due to the SW potential anharmonicity is the
same as the value identified from the experimental values of
the thermal conductivitysSec. IId. With this assumption, the

TABLE I. Properties of bulk silicon.

Melting
temperature

sKd

Elastic constantssMbard Group velocitiessm/sd frequenciessTHzd

C11 C12 C44 LA at G TA at G

LA at
X

LA at X

LO at X TA at X

Expt. 1683a 1.7b 0.65b 0.81b 8480c 5860c 4240d 11.9d 4.35d

SW 1665–1691a 1.79e 0.72e 0.74e 8790e 5660e 5600e 13.9e 7.9e

aReference 19.
bReference 34.
cReference 15.
dReference 35.
eData calculated using the codeGULP ssee Ref. 40d.

FIG. 7. Variation of the atomic volume as a function of the temperaturessee
Ref. 19d. Circles: experimental values; squares: SW potential; the lines are
guides for the eyes.
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model developed in Sec. II can be used to predict the thermal
conductivity that can be obtained from MD heat transfer
simulations with the SW potential. These calculations show
sFig. 4d that the SW potential leads to an overestimate of the
thermal conductivity by almost 100% at 2 K, 50% at 20 K,
and 15% above 300 K.

In MD simulations, the phonon distribution function is
constant whereas in the reality, phonons follow the Planck
distribution function. To account for this effect, the thermal
conductivity in our model can be calculated by replacing
CsK ,pd with its limiting value at high temperature,kb. This
constant value corresponds to the classical description of the
phonon distribution function as in MD simulations. The re-
sults are compared in Fig. 8 to the thermal conductivity pre-
viously calculated with the true value of the specific heat. As
expected, the difference between the classical model and the
model with the true distribution function for the phonons
decreases when the temperature and the system size increase.
For a system with a characteristic size of several nanometers,
which is the typical system size that can be handled with
MD, the difference between the constant and the Planck dis-
tribution function for phonons becomes negligible for tem-
peratures larger than 300 K.

V. CONCLUSIONS

An analytical model has been used to study the heat
transfer in silicon nanostructures based on the calculation of
the contribution to the thermal conductivity of each vibration
mode of a system. All the vibrational propertiessdispersion
curves and relaxation timed that are used in the model come
from the bulk material. The size effect is taken into account
through the sampling of the wave vectors and the distance a
wave vector can travel in the structure between two bound-
aries. The model successfully predicts the thermal conductiv-
ity of silicon nanofilms for thicknesses down to 20 nm, and
of silicon nanowires with diameters down to 37 nm. For
thinner wires, the model appears to overestimate the thermal
conductivity, but it is not clear whether it is due to an experi-
mental artifactslarger uncertainties, stronger effect of the

surface defects, etc.d or an inaccurate description of the heat
transfer by the model due, for instance, to the deviation of
the phonon dispersion with respect to the bulk.

The model has also been used to evaluatea priori the
performance of the SW potential in MD simulations of heat
transfer. Using the dispersion curves of the SW potential and
the relaxation time identified from the experimental values of
the thermal conductivity, the model show that the SW should
overestimate thermal conductivities by an amount that varies
between 100% and 15% as the temperature varies between 2
and 300 K. In practice, to predict the results that should be
obtained with MD, the thermal conductivity has to be calcu-
lated assuming a constant distribution function for the
phonons. Under these conditions, the model predicts that
MD heat transfer simulations should lead to a much larger
overestimation when the temperature is lower than 300 K.
Above 300 K, MD heat transfer simulations should result in
a slightly stypically less than 15%d overestimated conductiv-
ity.
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