HTML AESTRACT * LINKEES

JOURNAL OF APPLIED PHYSICS7, 104318(2005

An analytical model for the thermal conductivity of silicon nanostructures

P. Chantrenne®
Centre de Thermique de Lyon, Institut National des Sciences Appliquées, batiment Sadi Carnot, 20,
Avenue A. Einstein, 69621 Villeurbanne Cedex, France

J. L. Barrat and X. Blase

Laboratoire de Physique de la Matiére Condensée et Nanostructures, Université Claude Bernard Lyon 1
and Centre National de la Recherche Scientifique (CNRS), Batiment Léon Brillouin, 43 Boulevard

du 11 Novembre, 69622 Villeurbanne Cedex, France

J. D. Gale
Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology,
P.O. Box U1987, Perth 6845, Western Australia

(Received 20 July 2004; accepted 7 March 2005; published online 6 May) 2005

A simple model of thermal conductivity, based on the harmonic theory of solids, is used to study the
heat transfer in nanostructures. The thermal conductivity is obtained by summing the contribution
of all the vibration modes of the system. All the vibrational propertidispersion curves and
relaxation time that are used in the model are obtained using the data for bulk samples. The size
effect is taken into account through the sampling of the Brillouin zone and the distance that a wave
vector can travel between two boundaries in the structure. The model is used to predict the thermal
conductivity of silicon nanowires and nanofiims, and demonstrates a good agreement with
experimental results. Finally, using this model, the quality of the silicon interatomic potential, used
for molecular-dynamics simulations of heat transfer, is evaluate@0@ American Institute of
Physics [DOI: 10.1063/1.1898437

I. INTRODUCTION to electrons is negligible compared to phonon heat transfer.
Finally, the experimental conditions of the thermal-

The thermal characterization of nanostructures and nanqonductivity measurement of silicon nanostructures are such

structured materials is a fundamental issue for the rellablllt){hat radiative heat transfer is neg|ected toward phonon heat

of the systems as microelectronic, microelectromechanicatansfer. For all these reasons, silicon is a material that can be

systems, energy conversion systems using the thermoelectiiged as a benchmark for simple models such as the one dis-
effect, lab on a chip, and super insulators. The thermal concyssed in this paper.

ductivity of such structures can either be measured or pre-  \odels allowing an analytical calculation of the

dicted. The measurement of the thermal conductivity is qUitE{phonon-dominate)dthermal conductivity are, in general,
common for bulk materials, much less so for nanostructuregygsed on the use of the standard kinetic theory within the
materials, and remains a challenge that has been met only feg|axation-time approximation. They require the knowledge
a few nanostructures. Theoretical analysis and numericgds the phonon properties: dispersion curves or density of
simulations, on the other hand, readily provide informationgiates group velocities, and relaxation tiff&'® For simple
regarding heat transfer phenomena at the nanoscales. Thgypdels a constant group velocity and a unique relaxation
can, in principle, accurately predict the thermal conductivitytjme may be considered for all the vibration modésns-
of nanostructures that have not already been produced or th@trse and longitudinglwhile for more complex models, the
are difficult to characterize experimentally. However, beforegroup velocity is calculated from the dispersion curves and
entering such a predictive stage, it is necessary to check thge relaxation time may depend on the polarization. The tem-
validity of the results with experimental data. perature variations of the relaxation time depend on two phe-
In this context, silicon appears as one of the most intermomena: the variation of phonon density with the tempera-
esting materials, since it is widely used for designing micro;re (given by the Planck distribution functipnand the
electronic devices. Moreover silicon crystals of differentygriation of the anharmonicity with the temperature level.
shapes have been produced with characteristic lengths rangeayeral analytical expressions were proposed for the relax-
ing from some nanometer to centimeter. The thermal conducygion time, in which the parameters are determined in order
tivity of bulk silicon has been measured over a large temyq fit the experimental temperature dependence of the ther-
perature range since the 19603. Silicon-based g conductivity. In these models, the phonon frequency
superlattices, nanofilms, nanowires, and nanoporous silico||%lnges from 0 to a maximum value, which means that their
have also been characterized experimenfﬁﬁyf the elec- wavelength ranges from infinity to a minimum value. For
tronic concentration is small enough, which is the case fogach system, it has to be checked that the energy contribution
intrinsic and moderately doped silicon, the heat transfer dugg the phonons with wavelength larger than the system size
(which cannot exist in the system but are still considered in
¥Electronic mail: patrice.chantrenne@insa-lyon. fr these mode)sis negligible towards the energy contribution
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of the other phonons. Qualitatively, for small systems at low
temperatures, this condition might not be verified and the
thermal conductivity might be overestimated. For silicon,
models have been proposed to predict the thermal conductiv-
ity of bulk material, nanofilms, and nanowiré&1215:16

As the characteristic size of the nanostructures de-
creases, the influence of the boundary surfaces becomes
more and more important. This can lead to significant modi-
fication of the vibrational propertiegdispersion curves
and/or the relaxation timeof the matter compared to the
bulk properties. One way to take this effect into account is to
use atomic scale simulations, in particular, classical molecu-
lar dynamics(MD).}"*8 The merit of this approach is that it
explicitly allows for anharmonic effects, though conversely it
neglects the quantization of the phonons, which is important

a_t Iow_ temperatures. In MD simulations, the system is Clasiransfer in silicon, and to determine the temperature above
sical; i.e., the mean number of phonons does not depend

Wnich the MD results are expected to be reliable.
their vibration frequency. Consequently, the use of MD to P

study heat transfer is limited to high temperatures.

Due to the computational cost of MD, the accessible
time scale is typically limited to the nanoscale. The maxi-  Using the elementary kinetic theory, the thermal conduc-
mum size that can be handled depends on the material ariity \ in the directionz associated with the phonofi, p)
the shape of the nanostructure, but is always much less tharan be written £
1 pm. — 2

g In MD simulations, the vibrational properties depend on A(K,p) = C(K,p)o(K, p) (K, p)cosT 6K)]. @
the interatomic potential used to calculate the forces on thwhere K is the wave vectorp its polarization, andy the
atoms. Their variations with temperature level and systengroup velocity determined from the dispersion curves:
§ize (especially for small syste)pare autqmatically tgken v(K,p) = do(K,p)/dK, (2)
into account. The quality of the interatomic potential is then
a key issue for the reliability of the MD results. For silicon, With o the angular velocity7(K, p) is the phonon relaxation
several interatomic potentials have been proposed in théme due to the phonon-scattering phenomef) is the
literature!® However, the only one that was used in MD @ngle between the wave vectirand the directiorg, and
simulations in order to determine its thermal C(K.p) is the specific heat per unit volume. It is the tem-
conductivit?®?is the Stillinger—~WebefSW) potential?® |t~ Perature derivative of the internal enetyK,p). For a sys-

28
is argued that the SW model allows us to accurately simulatim Of volumeV,
the melting temperature, the elastic constant tensor, the dis-

FIG. 1. The primitive unit cell of diamond containing two atoms.

IIl. MODEL FOR THE THERMAL CONDUCTIVITY

persion curves, and the thermal-expansion coefficient of bulk C(K,p) = kbxzm' 3)
silicon. Comparing four interatomic potential§SW>

Tersoff?* Harrison?® and Biswas and Hamaffh, Cooley’’ h(K,p)

concluded that the use of any of these models to calculate X= kT (4)

quantities with a significant vibrational contribution should
proceed with caution. This comparison was based on thé&he total thermal conductivity and specific heat are the sum
calculation of the elastic constants and two particular vibraof the individual contributions due to all the wave vectirs
tion frequencies. The computation of the thermal propertiegnd polarizationg:
proposed in this work provides a different, more global, _
benchmark of interatomic potentials. ha= % % A(K.p)

This paper is organized in three parts. In the Sec. I, a
simple, semianalytical model is presented and the contribu- =2, 2 C(K,pv(K,p) (K, p)cos] 6,(K)], (5)
tion of each vibration mode to the thermal conductivity is kop
evaluated. In the Sec. lll, this approach is used to predict the
thermal conductivity of nanowires and nanofilms of different ~ C= > 2 CK.p). (6)
sections or thicknesses in order to compare with the existing K.Pp
experimental values. The same model, based on the vibr@nly the dispersiorffor both optical and acoustic branches
tional properties and relaxation time of the bulk crystal, iscurves are required to calculate the specific heat of the bulk
used in all cases. The difference lies in the sampling of therystal. The sampling of the wave vectors depends on the
vibrational modes in the first Brillouin zone, which becomescrystal shape.
nonisotropic. Finally, the model is used to check the validity ~ For silicon, the crystal is composed of fcc elementary
of the SW interatomic potential for MD simulations of heat cells containing two atom&ig. 1). Thus there are six polar-
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T . FIG. 3. The specific heat of silicon as a function of the temperature.
FIG. 2. Longitudinal- and transverséwo degenerated curvescoustic Crosses: experimental dateee Ref. 3. Curve with triangle: Stillinger—

dispersion curves of bulk silicon in tr{d.0,0l direction. Squares: experi- Weber. Curve with squares: calculation with experimental dispersion curves
mental values. Continuous lines: linear fit of the experimental curves, ' d ' P P

Dashed lines: SW potential. fitted with linear curves.

izations and then six dispersion curves for each wave vectofPUP!ed. t?ehexprlesspn re_presentwkl)g the phenomenological
The crystal is completely defined by the number of chils variation of the relaxation time can be written as

Na,, andN,, in the direction of each primitive vectoes, a,, 7 Hw) = T 0) + Tan(w) + 74(w), (8)

and a;. The wave vectors describing the crystal vibrations

are a linear combination of with the relaxation time due to the umklapp processes

(phonon-phonon interaction®®*! being

Kp, = 2na, 7/(Na, B0), Koz = 257/ (NazBo) (7a) Yw) = Aw*TE exp(- BIT). )
and The r%laxation time due to phonon-defect interaction is
Ko, = 2N, 7(Ny 0), (7b)  written as

-1 — 4
whereK,; is in the direction oby;, the reciprocal vector ;. 74 (@) = Do, (10

The limiting values ohal, Na,, andnas are such that the wave Several expressions have been proposed for the relaxation
vectors belong to the first Brillouin zone of the primitive cell. time due to the presence of the system boundafis>’All
These limiting values also depend on the boundary condief these are proportional to the relaxation time of the Casimir
tions (periodic of fixed surfaces®Actually, we have already limit.%* In this study, we consider the following expression:
shown that the type of boundary conditions does not signifi- 1, . x

cantly affect the value of the thermal conductivityThere- ac(@) = v(K,p)/[F L(K)], (11)
fore, a first information about the geometry of the samplewhereL(K) is the distance that a phonon can travel between
(shape, size, anisotropy, etcan be straightforwardly ac- two boundary surfaces arilmainly depends on the surface
counted for changing the values Ngl, Na,, and Na,. roughness. All the paramete#s B, D, F, x, and¢ have to be

For the sake of simplicity, the dispersion curves in thedetermined. In order to recover the experimental variations
[1, 0, O direction are used for all the wave-vector directionsof the thermal conductivity of silicon, it is necessary to con-
where K.y is the largest wave vector of the first Brillouin sider a different umklapp relaxation time for the longitudinal
zone. For convenience, the experimental curves were fittednd transverse modé¥For nearly pure silicon, the param-
with linear curves, as shown in Fig. 2. This linear fit is ac-eterD mainly depends on the isotope concentration. Assum-
tually a good approximation, within less than 5% of the ac-ing that this concentration is constabtshould be a constant
tual experimental values, except for the transverse modand has already been determirtéd,

:irsczz-ndk/kmax—OA where the maximum difference is about D=132% 10453

The specific heat of silicon, calculated using the linear fitUsing Egs.(5) and(8)—(11) and the experimental dispersion
of the experimental dispersion curvéBig. 3), is slightly  curves, all the parameteps;, A, Br, B, x, &, XL, &, and
higher than the experimental value at low temperatiibes F are fitted to match the variation of the experimental ther-
low 150 K), and both values are identical at higher temperamal conductivity of a bulk silicon crystdFig. 4) for which
tures. Hence, the use of this unique set of dispersion curvee characteristic length is equal tok) =7.16x 103 m:*®
for all the Wz_ive-vector directiong_is a good approximation to Ar=7x 1013 B;=B =0, A =3x102,
recover the internal energy of silicon.

To calculate the thermal conductivity, it is necessary to
know the relaxation time, which depends on the frequency of
the vibration mode, the temperature, and the system size. Férssuming the same relaxation time for the acoustic and op-
a crystal, assuming that the scattering mechanisms are ntital branches, the contribution of the optical vibration

XT::I., §T:4, XL:21 §L:1'57 F:055
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10000

To calculate the thermal conductivity of nanowires, the
total relaxation time still includes the relaxation time due to
the phonon-boundary diffusion, but for the nanofilms,
Asheghiet al.” just considers the contribution of the umklapp
process and phonon diffusion by defect. In each case, the
parametek has to be fitted so that the model yields a good
guantitative agreement with the experimental results.

In this section, we calculate the thermal conductivity of
nanowires and nanofilms using Eg®) and (8)—(11) in

10 : — which all the parameters are those previously determined
1 10 100 1000 based on the experimental dispersion curves of bulk silicon.
Temperature (K) We assume that the_ phonon-boundary diffusion is the same
in nanostructure as in the bulk crystal, so that the parameter
FIG. 4. Thermal conductivity of a silicon crystak7.16x 10 m. Crosses: ~ F in Eq. (11) is constant whatever the size and geometry of
exper@mental v_alue$s_ee Ref. 1b D_ashe_d Iing: results obtained With the the system. The only difference between the bulk crystal and
experimental Q|spgr5|on curves. Line with triangles: results obtained fron}he nanostructure lies in the sampling of the first Brillouin
the SW potential dispersion curves.
zone. Hence, it depends on the sample size and shape and
L . becomes strongly nonisotropic for both films and wires.
modes to the thermal _conduct|\_/|ty increases with temperaMoreover, the distance(K) depends on the wave-vector di-
ture, but the co_nfcrlbutlon remains at less than 3% of therection and is also nonisotropic for films and wires. This is
thermal conductivity below 1000 K. the main advantage of our model since the anisotropy cannot
be recovered using the angular velocity sampliggs.(12)
IIl. PREDICTION OF THERMAL CONDUCTIVITY OF and (13)].
SILICON NANOWIRES AND NANOEILMS The thermal conductivity of silicon nanowires in the
axial direction was measured by kt al® The authors esti-

If the system is isotropic, and its size infinite, the sum inpated the length of their nanowires to be2 xm. For our
(5) becomes an integral, which is most conveniently reexynalysis, we consider that the wire is built from the elemen-
pressed using a change of variables from wave Vet a1y crystal cell of silicon defined by the primitive vectars
angular velocityw [through the dispersion curve and densiw% and a;. Consideringa, as the axial direction and the

1000 4

A Wm'KY

100

of statesD(w)]. The result forx becomes lattice parameter for silicofia,=0.543 nm, the number of
72 o w2eliolkeT cells in this direction is equal to 5209. The number of cells in
N= f v(w)?*(w)D(w) ot —pde. (120 thea, andas directions is equal to 68, 115, 173, and 356 in
3k TVimorJ o (e"koT — 1)

order to get the same characteristic section lengths the

Mingo™® calculated the thermal conductivity of nanowires plane perpendicular to the direction, as found in the ex-

using this expression in which he replaced the bulk densitperimental measurements, namely, 22, 37, 56, and 115 nm,

of states and the group velocity by the same quantities agspectively. The thermal conductivities of the wires in the

calculated from the set of dispersion curves of a nanowireaxial direction are calculated using Eq&) and (8)—(11)

Using the Harissofi potential, the dispersion curves were WhereL(k) used in Eq(11) is defined as

obtained from the construction of the dynamical matrix of — Al

the system. For each wire diameter, Mingo found it neces- LK) = d/sin 6, (K)] (149

sary to fit the parametdf of the relaxation timdEq. (11)] and

due to phonon-boundary diffusion in order to match the ex-

perimental results. L(K) < L. (14b
Cglc_ulating the ph_on(_)n d_istributio_n function of a wire as Except for the smallest wire, our results are in good agree-

a deviation from the_d_|str|but|on_ function of the bulk c_rystal, ment with the experimental datig. 5. The differences

the thermal conductivity of a wire can be expresseda$ could not only be due to the experimental uncertainties in the

K2 * 5 w2l kT measurements but also to the difference between the theoret-
)\szo v(w) ﬁw)D(“’)m ical and experimental wire dimensions/geometries. In par-
ticular, the error, as compared to the experiment, is signifi-
X[1-G(n,¢&)]dw, (13 cantly smaller than the differences between the values

obtained for different wire diameters. As such, this simple

where the functiorG depends on model can be used to reliably estimate the influence of di-

(1) the wire section geometry, ameter on the thermal conductivity. It seems that the bulk
(2) the ratio between the section characteristic length angroperties(dispersion curves and relaxation timean be
the phonon mean free patj and used to predict the thermal conductivity of nanowires down

(3) the roughness effect on the phonon-boundary scatterinp 37 nm. For the smallest wirgl=22 nm), the value of the
through the parameter. Asheghiet al.” have also pro- thermal conductivity at 300 K13 W m: K™3) is the same as
posed an equivalent expression for nanofilms. the one calculated by Zou and Balartdifor a nanowire of
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FIG. 5. Thermal conductivities of silicon nanowires vs temperature. DashedrIG. 6. Thermal conductivities of silicon nanofilms vs temperature. Dashed
lines: experimental dat#see Ref. 8 Continuous lines: our prediction lines: experimental datésee Ref. Y. Continuous lines: our prediction
model. Each kind of symbol corresponds to a different section characteristimodel. Each kind of symbol corresponds to a different film thickness.
length.

diameterd=20 nm. However, the variation of the eXperi- mental Va|ue§:32'33'|'he agreement between the model and
mental thermal conductivity of the smallest wire is com-the experimental results is excellent for the two thinnest
pletely different from those obtained for Iarger sections. Thle”mS (F|g 6) for which the experimenta| uncertainty has
behavior, which is not predicted by our model, remains to beyeen evaluated to be 5%.For the remaining films, the
experimentally confirmed and theoretically understood. Itmodel underestimates the thermal conductivity at high tem-
could be argued that as the wire diameter decreases, the Syferature. However, the qualitative variation of the thermal
tem approaches a one-dimensioiiaD) behavior. It may  conductivity is quite well reproduced, and the absolute val-
have a transition between the three-dimensi¢8B) and 1D yes remain within the range of the experimental uncertainty:
behaviors for diameters between 20 and 30 nm. This transpsoy, for the films of thickness 420 nm, 830 nm, and A6
tion can have a significant influence on the dispersion curvesRef. 7) and 12% for the 3zm-thick film 32
the relaxation time, and the SDECiﬁC heat. As the wire diam- In summary, we have shown in this section that a Simp|e
eter decreases, the influence of the surface defesises model based on the kinetic theory of phonons, using bulk
and so oi can also be much more important and stronglyproperties as an input, can very reasonably account for ex-
modifies the vibration modes, as well as their diffusion, perimental results concerning the thermal conductivities of
along the boundary surfaces. However, it remains puzzlingarious nanostructures. The geometry of the structure enters
that no such transition is observed in a film geometry, agnly through the sampling of the Brillouin zone. Other quan-
shown below. tities entering the thermal conductivity are not affected by
As for the wires, we consider that silicon nanofilms arethe geometry, at least for structures larger than 20-30 nm.
built from elementary crystal cells of silicon. The in-plane Thjs result is, in a sense, quite intuitive, since the bulk cal-
directions are defined by vectoes andas. The number of  cylation does not involve any intermediate length scale at

cells in thea; direction is equal to 90, 451, 1895, 3744, which a crossover to a different behavior should be expected.
7217, and 13 533 in order to have the same thicknesss

the six films that have been characteriZéd>*20 nm, 100
nm, 420 nm, 830 nm, 1.am, and 3um, respectively. The
number of cells in the, andaz directions should depend on
the largest dimension of the film. For the two thinner films
this dimension is about 100—5Q@m, but it is not known
for the other films. Actually, the thermal conductivity varies As mentioned in the Introduction, MD is a powerful tool
when the number of cells in the plane direction increases, buhat permits to take into account the variation of the vibra-
there is a minimum number of cells after which the thermaltional properties with the system size and the variation of the
conductivity remains constant. This minimum number ofanharmonicity with the temperature level. Of course, the
cells depends on the film thickness and temperature. We havfuality of the results directly depends on the quality of the
used 2400 cells for the 20-nm film thickness, 720 cells forlinteratomic potential used to calculate the interatomic forces.
the case of 100- and 420-nm film thicknesses, and 300 celtghe aim of this section is to propose a methodology to evalu-
for the larger film thickness. Regardless of the number ohte the quality of an interatomic potential. Our approach is
cells, since the larger dimension of the film is much greatebased on the observation of Sec. IlI, that even in nanostruc-
than its thickness, the distantéK) used in Eq(11) is equal  tures, thermal conductivity is essentially determined by bulk
to vibrational properties. Hence the general quality of an inter-

L(K) = e/sin 6, (K)]. (15) atomic potential with resp_ect to heat transf_er m(_)qeling in

1 nanostructures should be judged based on its ability to cor-

The in-plane thermal conductivity of these films is calculatedrectly reproduce those properties that are essential in heat
using Egs.(5) and (8)—(11) and compared with the experi- transfer in the bulk.

IV. EVALUATION OF THE SW INTERATOMIC
POTENTIAL FOR HEAT TRANSFER MD SIMULATION
"IN SILICON
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TABLE I. Properties of bulk silicon.

Elastic constant§Mbar) Group velocitiegm/s) frequencieqTHz)
Melting
temperature LAat LAatX
(K) Cu Cu, C. LAt TAatl X LOatX TAatX
Expt. 1683 1.7 068 0.8 848(¢ 5860 4240 119 4.35'
SW  1665-1691 1.79 0.72 0.74 8790 5660 5600 13.9 7.9

“Reference 19.
PReference 34.
‘Reference 15.
YReference 35.
°Data calculated using the codeLr (see Ref. 40

In this section, silicon is still considered as the targetcurves obtained from the SW potentials. The curve is plotted
material. Reviews of interatomic potentials for silicon havein Fig. 3 to be compared to the experimental specific
already been publish&d®* and it seems that no empirical heat’’ > At low-temperature, the lower-frequency vibra-
model has been proposed since 1997. As explained by Baional modes constitute a large contribution to the internal
zant and Kaxirad? almost all the empirical potentials for energy. As the SW reproduces with a good accuracy the ex-
silicon fall into either the generic Stillinger—Weﬁ%(SV\/) or  perimental dispersion curves in the limit of small wave vec-
Tersoff* forms. A simpler potential, for which the energy of tors, it gives a good estimate of the specific heat at low
the system is the sum of a two- and three-body harmonitemperature. At higher temperatures, overestimating the fre-
terms, was earlier proposed by Harrigdihe SW model is quency range leads to an underestimation of the specific heat
considered in this section since the SW model has been usé§ between 25% and 10% for the SW potential when the
for the majority of dynamical heat transfer simulations, whiletemperature varies from 100 to 300 K.
the Harrison potential has just been used dficand the The above considerations pertain to the frequency range
Tersoff potential has never been used for such an applicationf the vibrational modes, and to the propagation of the

As phonon heat transfer is considered, the first essentigdhonons through the crystal. However, the thermal conduc-
ingredient of heat conductivity computations will be the dis-tivity also depends on phonon-phonon scattering, which is
persion curves. We first determine these curves for the SWue to the anharmonic nature of the interactions. The quality
potential and compare them with the experimental datagf the anharmonic contribution of the interatomic potential
which are used as a reference. can be evaluated through the variation of the atomic volume

Bulk silicon has a diamond structure, which is face-with the temperature, since thermal expansion is a purely
centered cubic and contains just two atoms in the primitiveanharmonic effect. As shown on Fig. 7, the variation of the
rhombohedral unit cell. Hence, the dispersion curves consisiensity of Si obtained with the SW potential is very close to
of one longitudinal-acoustic(LA) and two transverse- the experimental one. It can then be assumed that the phonon
acoustic(TA) branches, as well as one longitudinal-optical relaxation time due to the SW potential anharmonicity is the
(LO) and two transverse-opticdTO) branches, in each di- same as the value identified from the experimental values of

rection. For simplicity, only the dispersion curves in fie  the thermal conductivitySec. ). With this assumption, the
0, 0] direction are compared with the experimental ofre¥.
Using the conventional notation, the center of the Brillouin
zone is thd” point and the point on the limit of the Brillouin
zone in thd 1, 0, Q direction is nameX. In Fig. 2, only the 0.0203 -
acoustic branches are represented, and the two transverse

0.02035

modes are degenerated. The vibration frequenci€saaid X e 0.02025 1
are given in Table I, as the experimental data for the optical £ ¢202
and acoustic branches for comparison. g

The SW accurately reproduces the experimental acoustic § 0.02015
dispersion curves as long as the wave vector is smaller than 2 4 4001
0.4Kax Over this value, the SW model overestimates the §

vibrational frequencies and the group velocities for all 0.02005 1
modes. The vibration frequency of the TA modeXapoint is
largely overestimated. As the group velocities and the elastic
behavior are related, the elastic constants of silicon obtained 0.01995 v T
with the SW potential are compared to the experimental val- 0 500 1000 1500
ues (Table ). As expected, the SW potentials give a good temperature (K)

eStlma.te of the elastic Cons.tants' . . FIG. 7. Variation of the atomic volume as a function of the tempergsee
USI-ng Eq.(6), the specific heat of silicon is calcul:_ited aS Ref. 19. Circles: experimental values; squares: SW potential; the lines are
a function of the temperature based on the set of dispersioguides for the eyes.
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10000 1= ' * surface defects, efcor an inaccurate description of the heat
\ transfer by the model due, for instance, to the deviation of
1000 1, the phonon dispersion with respect to the bulk.
The model has also been used to evaluaferiori the
~ 1001 performance of the SW potential in MD simulations of heat
M transfer. Using the dispersion curves of the SW potential and
E 104 the relaxation time identified from the experimental values of
ot R the thermal conductivity, the model show that the SW should
11 overestimate thermal conductivities by an amount that varies
between 100% and 15% as the temperature varies between 2
0.1 and 300 K. In practice, to predict the results that should be
obtained with MD, the thermal conductivity has to be calcu-
0.01 . . : T lated assuming a constant distribution function for the
0 200 400 600 800 1000 phonons. Under these conditions, the model predicts that
Temperature (K) MD heat transfer simulations should lead to a much larger
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