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ABSTRACT 

This paper presents a probabilistic method for foreground 
segmentation that distinguishes moving objects from their 
cast shadows in monocular indoor image sequences. The 
models of background, shadow, and edge information are 
set up and adaptively updated. A Bayesian framework is 
proposed to describe the relationships among the 
segmentation label, background, intensity, and edge 
information. A Markov random field is used to boost the 
spatial connectivity of the segmented regions. The 
solution is obtained by maximizing the posterior 
probability density of the segmentation field. 

1. INTRODUCTION 

Detecting dynamic objects in image sequences is very 
important in such areas as surveillance and object-based 
coding. Accurate and efficient background removal is 
critical in these systems. Background subtraction based on 
intensity or color is a commonly used technique to 
identify foreground elements. 7he background'model is 
built from the data and objects are segmented if they 
appear significantly different from the background. 

To deal with illumination or object changes in the 
background, many researchers have abandoned 
nonadaptive methods of backgrounding. Friedman and 
Russell [2] classify each pixel by a probabilistic model of 
how that pixel looks when it is part of different classes 
and use an incremental EM algorithm to learn the pixel 
model. Stauffer and Crimson [6]'model each pixel as a 
mixture of Gaussians and update the model in an adaptive 
way. The Gaussian distributions are then evaluated to 
determine which are most likely to result from a 
background process. ' 

Besides the nonstationariness of the background, 
camouflage and shadow are two classic problems of 
subtraction. If regions of the foreground have similar 
colors as the background, they can be erroneously 
removed. In addition, shadows cast on the background 
can be erroneously labeled as foreground. For monocular 
color video sequences, false segmentation caused by 
shadows can be minimized by computing differences in a 
color space that is less sensitive to intensity change [8]. 
Moreover, edge information can be utilized to improve 

the quality and reliability of the results [3]. Stauder et al. 
[SI assumes that static edges caused by the background 
texture remain in regions covered by shadows and that 
penumbras exist at the boundary of shadows. However, 
this is sometimes not true due to the properties of the 
imaging process [4]. Mikic et al. instead approximate the 
change of the camera response for the shadowed region 
by a diagonal matrix. 

A unified framework of foreground segmentation, 
which combines the background, intensity, and edge 
information, is proposed in this paper. A generalized 
model is built for the appearance change under shadow. A 
Markov random field is employed to encourage the 
formation of continuous segmentation regions. The 
solution is obtained by maximizing the posterior 
probability density of the segmentation field. Experiments 
show that our method greatly improves the accuracy of 
Segmentation. 

2. MODEL 

Given the image sequence {gk) (k  E N), sdx) is denoted 
as the segmentation label for a point x within the image gk 
at time k. SAX) equals 1 for a background pixel, 2 for 
shadow, and 3 for foreground. Static shadows are 
considered to be part of the background. The entire 
segmentation field is expressed compactly as sk. 

In order to segment the foreground regions in a video 
sequence, the system should first model the background 
and shadow in the video scene. The edge information also 
helps detect the changes in the scene. 

2.1. Background 

Each pixel of an image acquired by the camera contains 
noise components. Assume that independent Gaussian 
noise corrupts each pixel in the scene, so that the 
observation model for the background becomes 

gdx) = + n k 4 ,  ifs&) = 1, ( 1 )  
where ,uhh.dx) is the intensity mean of a single pixel x 
within the background, and nk(x) is the independent zero- 
mean additive noise with variance u&(x)  at time k.  The 

parameter vector (,&AX), n& (x) )r is denoted as eh,Ax), 
and the entire background is expressed as Oh,X. 
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For a static background, a sequence of background 
images of the scene could he recorded and the intensity 
mean and variance of each pixel can be calculated. 

For a nonstationary background, the update method is 
based on the idea of Stauffer and Grimson (61. The recent 
history of each pixel, {gz(x) ) ID~,  is modeled as a mixture 
of Gaussians. Each time the Gaussian with the most 
supporting evidence and the least variance is chosen as 
the background model. 

2.2. Shadow 

Given the intensity mean of a background point, we use a 
linear transformation to describe the change of intensity 
for the same point when shadowed in the video frame at 
time k. 

gdx) =fly&) + ndx), ifsdx) = 2, 
P&) = a&&) + ck. 

(2a) 
(2h) 

When ax equals 1, the edge information will not change if 
the area is shadowed by the foreground. Moreover, if the 
image input is multi-channel (R, G, B), the chromaticity 
will remain unchanged under such a linear transformation 
when ck is zero. Therefore, the shadow model can be 
viewed as the generalization of the previous assumptions. 
With this model for the appearance change, we can easily 
derive the rules for estimating means and variances for 
the points under shadow. 

2.3. Edge 

For the kth frame gk, e+(x) is denoted as the frame edge 
vector at site x. eg,k(x) = ( ej,k(x),ei,k(x))T, where 

e i , r ( x )  is the intensity difference of the two horizontally 

neighboring points within the frame, and e; ,k(x)  is the 
vertical difference. The entire filed is expressed as ex,k. 

Similarly, we can define the background edge vector 
er,dx) at site x, eh,dx) = (&(XI ,&(x))’. From the 
background model, we know that eh,k(x) is of bivariate 
normal distribution with mean &,,Ax) and covariance 
matrix &dx) for each site x. &h(x) and E,dx)  are 
determined by the intensity means and variances of the 
four neighboring background points. The parameter 
vector (&.Ax), &(x))7 is denoted as &,k(x), and the entire 
field at time k i s  expressed as 0.k. The background edge 
information can he calculated from Oh.k. The edge 
model can be used to locate changes in the structure of the 
scenes as edges appear, disappear, or change direction. 

3. ALGORITHM 

Given the current frame gk, frame edge field e,k,  
background eh,k, and background edge field we wish 
to compute the maximum a posreriori (MAP) estimation 

of  the segmentation field sk. Naturally the background (or 
background edge) information is independent on the label 
field. Using the Bayes’ rule and ignoring the constants 
with respect to the unknowns, 

ik = arg m a x p h  I eh ,k ,  

~ argyxp(gk .  e,k I sk. e,,)p(sx, e+k) 

= arg maxpkk, eg,k I eh,k, Be,,, sk) P ( S ~  

gr, 
.‘i 

- 

(3) 
s* 

The likelihood model p ( g k ,  eR,k I eh,k, O..x, sk) and the prior 
model p(sJ should be defined for the video sequence. 

3.1. Likelihood 

Assuming conditional independence between spatially 
distinct observations, we factorize the likelihood model as 

pkx, e,,t I ehh e+, sk) 

= np(sk(x) ,e , ,k (x)  I eh,k(x),e.k (x).sk(x)), (4) 
XGX 

where X is the spatial domain of the video scene. Given 
the segmentation label, background, and background edge 
information, we further assume that the image intensity 
and image edge are conditionally independent on each 
other at each site. Thus, the likelihood can be factorized 
as the product of the intensity likelihood and edge 
likelihood. 

p k d x b  %,Ax) I e b , k ( x ) .  %Ax), sk(x)) 
=p(gdx) I eh,dx), sdx)) p(e,&) I e&), sk(x)). ( 5 )  
When site x is in the background, we can calculate the 

intensity likelihood using the background model. 
&dX) 1 eh,dx), skx) = 1) 

= N(gk (x);pbJ (x), c ; , k  (XI) 2 (6) 
where N(z;  m, E) is a Gaussian density with argument z, 
mean m, and covariance E. 

When site x is shadowed, the density can he calculated 
by the shadow model. 

PMX) I eh.k(X). SAX) = 2 )  
= N ( g k ( x ) ; a k f l b k ( x ) + C k , c ~ , X ( X ) ) .  (7) 
When site x is in the foreground, the background has 

no influence on the image intensity information. Uniform 
distribution is assumed for the pixel. The conditional 
probability density becomes 

I 
PLW I e , m  s A w  = 3) 

(8) = p W x )  I s,Ax) = 3) =- . 
Y,, 

Here [0, ymar] is the intensity range for every point x in 
the scene. 

For each point x, denote the set of its four nearest 
neighboring points by M,. Considering the spatial 
connectivity of the image, we assume that the four 
neighboring points have the same segmentation labels. 
Thus the edge likelihood can be approximated by 

p ( e 8 m  I e , , w   AX)) 
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=p(e ,dx)  I e&), sdu) = SAX), Vu E W .  

p(e&) I e&), sdx) = I )  
= N(e,,k(~);p,,(x),~~,k(x)) . (10) 

p(e&) I e&), sAx) = 2)  
= N(e,,,(x);a,p,,(x),Z,,(x)) . (11) 

p(e&) I e&), sLx) = 3) 

2 )(--- 2 

(9) 
Similarly, the edge likelihood can be derived from the 
models in section 2. 

=(--- 1 I &(x)l 1 I e;,k(x)l) 

= N(&(~);O,?) N(e:,,(x);O,&). 6 (12) 

Y,,, Y,, Ymax Yma 
2 2 

The approximation in the last step of (12) is achieved by 
moment matching. 

3.2. Prior 

The prior model p(s,) represents the prior probability of 
the segmentation field. We model sb as a Markov random 
field to form spatial constraints from the neighborhood. 
The distribution is given by a Gibbs density that has the 
following form [7]: 

p ( s 3 ~ e e x p f ~ C ~ ( s ~ ( x ) 1 x ~ ~ )  1, (13) 
csc 

where C is the set of all cliques c, and V is the clique 
potential function at time k. A clique is a set of points that 
are neighbors of each other. The clique potential depends 
only on the pixels that belong to clique c. Spatial 
connectivity is imposed by the following two-pixel clique 
potential. 

I 
V(.YAX), Sk(Y)) =- (1 ~ m x )  ~ .Y~Y))) ,  (14) 

I IX-Y /Im 

where 4.) is the Dirac delta function, and 1/.11_ denotes the 
max-norm. Thus two neighboring pixels are more likely 
to belong to the same class than to different classes. The 
constraint becomes stronger with decreasing distance 
between the neighboring sites. 

3.3. Optimization 

Combining the above models, the Bayesian MAP estimate 
is obtained by minimizing the objective function. 

F d s 3  = CU,,,(x,s,(xN + CU,,,(X,S, (x)) + 
X E S  E X  

1 cV(s,(X),sk(Y))> (15) 
IX,Y I t C  

where U&, s&)) = -In pkd4 I eh,dxb ~I IW),  and 
U&, SAX)) = -In p(e,Ax) I e,&), s d x ) ) .  The parameter 
1 and initial values of a,  and c, are manually determined. 
A reflects the importance of spatial connectivity. Each 
time after the segmentation of the kth frame, the linear 
transformation of the shadow model can be adaptively 
updated from the set {(gdx), b,(x)) j ik (x )  = 2 ) when 
shadow area is detected. Moreover, the size of the 
neighborhood will affect the segmentation results (see 
figure 1 and section 4). 

The objective function does not have a unique 
minimum since it is nonconvex in terms of SAX). 
Obviously, there is no simple method of performing the 
optimization. To arrive at a sub-optimal estimate, we use 
a local technique known as iterated conditional modes 
(ICM) algorithm [I]. The ICM scheme employs the 
greedy strategy in the iterative minimization. Given the 
observed data and the other labels, the algorithm 
sequentially updates the label by locally minimizing the 
objective function at each site. 

111 - 939 

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on May 20,2010 at 00:30:09 UTC from IEEE Xplore.  Restrictions apply. 



c 
b,”.. a 

48 , 
( 4  ( 4  

Fig. 3. Segmentation results of the ‘‘laboratory’’ sequence 

4. RESULTS AND DISCUSSION 

Test results of two indoor sequences, the “aerobic” 
sequence and the “laboratory” sequence, are shown in 
figure 2 and 3, respectively. Figure 2a shows two frames 
of the “aerobic” sequence, 2b the segmentation result of 
the simple background subtraction method, 2c the result 
of our algorithm without using edge information, 2d the 
result of the proposed method, and 2e the foreground 
detected by our method. The gray regions. indicate 
moving cast shadows. In figure 2c and 2d, the 24-pixel 
neighborhood is used. Figure 3a shows two frames of the 
‘‘laboratory’’ sequence, 3b the result of simple background 
subtraction, 3c the result of the proposed method using 
the 8-pixel neighborhood, 3d the result of the proposed 
method using the 48-pixel neighborhood, and 3e the 
foreground detected by our method. 

Comparing with the results of simple background 
subtraction, the accuracy of the calculated object location 
is greatly improved by the proposed approach. The 
moving cast shadows are exactly removed from the 
foreground. The flickering background pixels, which are 
detected as foreground by simple background subtraction, 
are correctly classified by our algorithm. The open 
cabinet in the second ‘‘laboratory’’ image is classified as 
background after a period of background updating. 

The camouflage region separates the person into two 
parts in figure 2c. This problem is successfully overcome 
in figure 2d by incorporating the edge information. Figure 
3c and 3d shows the influence of the neighborhood size. 
Strong spatial constraints should be employed when the 
noise in the scene is heavy. 

5. CONCLUSION 

In this paper we have presented a probabilistic approach 
for foreground segmentation and shadow detection in 
indoor image sequences. In our work, we could identify 
two sources of spatial information when detecting objects 
and shadows. The first is the edge information, the 
differences help locate changes in the scene. The second 

source of information is spatial connectivity, objects and 
shadows usually form continuous regions. On the other 
hand, the temporal information helps adaptively update 
the models from previous segmentation results. 

Experimental results show that our method 
successfully deals with changing background, camouflage 
and shadows in video sequences. Moreover, the algorithm 
can be easily implemented for color image sequences. 
How to automatically initialize the parameters in the 
model is our future study. 
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