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This paper develops a generalized autoregressive conditional correlation ~GARCC!
model when the standardized residuals follow a random coefficient vector auto-
regressive process+ As a multivariate generalization of the Tsay ~1987, Journal of
the American Statistical Association 82, 590– 604! random coefficient autoregres-
sive ~RCA! model, the GARCC model provides a motivation for the conditional
correlations to be time varying+ GARCC is also more general than the Engle ~2002,
Journal of Business & Economic Statistics 20, 339–350! dynamic conditional cor-
relation ~DCC! and the Tse and Tsui ~2002, Journal of Business & Economic
Statistics 20, 351–362! varying conditional correlation ~VCC! models and does
not impose unduly restrictive conditions on the parameters of the DCC model+
The structural properties of the GARCC model, specifically, the analytical forms
of the regularity conditions, are derived, and the asymptotic theory is established+
The Baba, Engle, Kraft, and Kroner ~BEKK! model of Engle and Kroner ~1995,
Econometric Theory 11, 122–150! is demonstrated to be a special case of a multi-
variate RCA process+ A likelihood ratio test is proposed for several special cases

The authors thank the co-editor, Bruce Hansen, and three referees for insightful suggestions and Manabu Asai,
Monica Billio, Massimiliano Caporin, Rob Engle, Shiqing Ling, Marcelo Medeiros, Adrian Pagan, Ruey Tsay,
Jun Yu, seminar participants at the Institute of Economics, Academia Sinica, Taiwan, Bank of Italy, Chiang Mai
University, Chinese University of Hong Kong, Complutense University, Ente Einaudi—Rome, Fondazione Eni
Enrico Mattei—Milan, Hong Kong University of Science and Technology, Kyoto University, National University
of Singapore, University of Adelaide, University of Auckland, University of Canterbury, University of Hong
Kong, University of Milan, University of New South Wales, University of Padua, University Pompeu Fabra,
University of Queensland, University of Venice “Ca’ Foscari,” and University of Vigo, and participants at the
New Frontiers in Financial Volatility Modelling Conference, Florence, Italy, May 2003, and the New Frontiers of
Statistics Workshop, Chinese Academy of Sciences, Beijing, China, July 2005, for helpful comments and discus-
sion+ The authors acknowledge the financial support of the Australian Research Council+ Address correspon-
dence to Offer Lieberman, Department of Economics, University of Haifa, Haifa 31905, Israel; e-mail:
offerl@econ+haifa+ac+il+

Econometric Theory, 24, 2008, 1554–1583+ Printed in the United States of America+
doi:10+10170S0266466608080614

1554 © 2008 Cambridge University Press 0266-4666008 $15+00



of GARCC+ The empirical usefulness of GARCC and the practicality of the like-
lihood ratio test are demonstrated for the daily returns of the Standard and Poor’s
500, Nikkei, and Hang Seng indexes+

1. INTRODUCTION

The empirical usefulness of the Engle ~1982! autoregressive conditional hetero-
skedasticity ~ARCH! model and the Bollerslev ~1986! extension of ARCH to
the generalized ARCH ~GARCH! model have inspired a new generation of mod-
els to capture time-varying conditional volatility in financial time series data+
Such success in modeling conditional volatility has led to several different
research developments+ One area of research concerns the flexibility of the mod-
els to capture the stylized facts or features that appear in financial time series
data+ This direction has led to several useful asymmetric extensions of GARCH,
including the Glosten, Jagannathan, and Runkle ~1992! asymmetric ~or thresh-
old! GARCH ~GJR! model, the Nelson ~1991! exponential GARCH ~EGARCH!
model, and the Ding, Granger, and Engle ~1993! asymmetric power GARCH
~APGARCH! model+ Although these univariate models can capture the exces-
sive kurtosis and asymmetric behavior that are often found in financial time
series, they do not analyze interdependent ~or spillover! effects in volatility across
different markets or assets+

To accommodate spillovers in conditional volatility, several different multi-
variate GARCH models have been proposed+ These include ~a! the diagonal
model of Bollerslev, Engle, and Wooldridge ~1988!; ~b! the vech, diagonal vech,
and Baba, Engle, Kraft, and Kroner ~BEKK! multivariate GARCH models of
Engle and Kroner ~1995!, which model the conditional covariances; ~c! the con-
stant conditional correlation ~CCC! multivariate GARCH model of Bollerslev
~1990!, the Ling and McAleer ~2003! vector ARMA-GARCH ~VARMA-
GARCH! model and the VARMA–asymmetric GARCH ~VARMA-AGARCH!
model of McAleer, Hoti, and Chan ~2008!, which assume conditional correla-
tions to be constant; and ~d! the Engle ~2002! dynamic conditional correlation
~DCC! and Tse and Tsui ~2002! varying conditional correlation ~VCC! models,
which relaxed the assumption of CCCs and model the dynamics of the condi-
tional correlations and conditional variances jointly+ With the exception of the
Tse and Tsui ~2002! VCC, each of these models has been programmed in stan-
dard econometric software packages such as RATS Version 6+

Parts of the multivariate GARCH literature have evolved without establish-
ing the structural and0or statistical properties of the underlying models+ Impor-
tant theoretical properties include sufficient conditions for stationarity and
ergodicity, sufficient conditions for the existence of moments, and sufficient
conditions for consistency and asymptotic normality of the quasi–maximum like-
lihood estimators ~QMLEs!+ Satisfying such conditions allows valid inferences
to be drawn and facilitates the subsequent testing of restrictions and diagnostic
testing of the auxiliary assumptions+
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The regularity conditions and asymptotic properties are typically either
assumed to hold or sufficient regularity conditions are established to ensure
that the asymptotic theory is applicable+ Exceptions to the rule are the VARMA-
GARCH and VARMA-AGARCH models, for which the structural properties
of the models have been developed, the analytical forms of the regularity
conditions have been derived, and the asymptotic theory for the QMLE has
been established under the second and fourth moments for consistency and
asymptotic normality, respectively, and the BEKK model, for which Comte
and Lieberman ~2003! showed consistency of the QMLE using the conditions
established in Jeantheau ~1998!, and asymptotic normality of the QMLE by
assuming the existence of eighth moments+

Multivariate GARCH models have not yet enjoyed the same popularity in prac-
tice as have their univariate counterparts+ Four major inhibiting factors would
seem to be ~a! the lack of a theoretical foundation for some of the multivariate
models; ~b! the interpretations of the multivariate models, which are not always
straightforward; ~c! the number of parameters in the multivariate models, which
can increase significantly with the number of assets and0or markets; and ~d! the
large number of parameters, which can lead to computational problems ~for use-
ful comparisons of alternative multivariate GARCH models, see, e+g+, Kroner and
Ng, 1998; McAleer et al+, 2008!+ Estimating the large number of parameters
jointly can cause numerical problems, and not all multivariate GARCH models
are able to accommodate convenient two-step estimation methods+ For further
details regarding the theoretical and computational properties of univariate and
multivariate, conditional and stochastic, volatility models, see McAleer ~2005!+

Apart from the practical difficulties in estimating the parameters, several of
the recently proposed multivariate GARCH models have assumed that the
conditional correlations of the standardized shocks remain constant over time+
Alternatively, some multivariate GARCH models, such as BEKK, model the
conditional covariances, so that the conditional correlations are inherently time
varying+ Recently, Engle ~2002! and Tse and Tsui ~2002! proposed closely related
multivariate GARCH models with time-varying conditional correlations+ Under
certain simplifying assumptions, the DCC model of Engle ~2002! can be esti-
mated using a two-step procedure, which has resolved some numerical difficul-
ties associated with estimating multivariate GARCH models+ Furthermore, both
DCC and the Tse and Tsui ~2002! VCC multivariate GARCH model lack explicit
structural properties and impose strong cross-equation parametric restrictions
on the conditional correlations+Although this can be beneficial in terms of reduc-
ing the number of parameters to be estimated, the effects of such restrictions
when they are false are unknown+ Thus, a test for the validity of such restric-
tions is warranted+

The primary purpose of this paper is to develop a new generalized autoregres-
sive conditional correlation ~GARCC! model when the standardized residuals
follow a random coefficient vector autoregressive ~VAR! process+ The GARCC
model is a multivariate generalization of the Tsay ~1987! random coefficient
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autoregressive ~RCA! model and provides a motivation for the conditional cor-
relations to be time varying+ GARCC is also more general than the DCC and
VCC models, as it does not impose unduly restrictive conditions on the param-
eters of the conditional correlation model+ The structural and statistical proper-
ties of GARCC will also be derived, which include sufficient conditions for the
existence of moments and sufficient conditions for consistency and asymptotic
normality of the QMLE+ Furthermore, a formal test is proposed of a variety of
cross-equation restrictions that can be imposed on GARCC+ Empirical results
using daily returns of the Standard and Poor’s 500 ~S&P!, Nikkei, and Hang
Seng indexes from 1 January 1986 to 11 April 2000 show that these cross-
equation restrictions are violated+ Therefore, GARCC would seem to be a use-
ful addition to the multivariate GARCH literature for modeling time-varying
conditional correlations+

The plan of the remainder of the paper is as follows+ Section 2 presents the
GARCC model and provides a structural justification of the BEKK model+ The
structural properties are developed, the analytical forms of the regularity con-
ditions are derived, the asymptotic theory is established, and a likelihood ratio
~LR! test is proposed for several special cases of GARCC in Section 3+ The
empirical usefulness of GARCC and the practicality of the LR test are demon-
strated for the daily returns in the S&P, Nikkei, and Hang Seng indexes in Sec-
tion 4+ Section 5 provides some concluding comments+ Proofs of the proposition
and theorems are given in the Appendix+

2. MULTIVARIATE GARCH MODELS

Consider the following multivariate GARCH model:

Yt � EY, t�1~Yt !� «t , t � 1, + + + ,T,

«t � Dt
102ht ,

(1)

where Yt � ~ y1t , + + + , ykt !
' , «t � ~«1t , + + + , «kt !

' , ht � ~h1t , + + + ,hkt !
' , Dt �

diag~h1t , + + + , hkt ! is a diagonal matrix of conditional variances and the expec-
tation is taken with respect to $Yt : t � t % + Let Ht � ~h1t , + + + , hkt !

' be a k � 1
vector of conditional variances+ Ling and McAleer ~2003! proposed the VARMA-
GARCH model as follows:

�I � �
i�1

p

Fi Li�Yt � �I � �
i�1

q

Qi Li�«t , (2)

where Fi and Qi are k � k matrices, the roots of the characteristic polynomials
6Ik � �i�1

p Fi Li 6 and 6Ik � �i�1
q Qi Li 6 lie outside the unit circle, and L is the

lag operator+ Furthermore, the conditional variance vector is given as

Ht � W � �
i�1

r

Ai ?«t�i � �
j�1

s

Bj Ht�j , (3)
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where ?«t � ~«1t
2 , + + + ,«kt

2 !' , W is a k � 1 vector, and Ai and Bj are k � k matri-
ces, i � 1, + + + , r and j � 1, + + + , s+ Ling and McAleer ~2003! established the
structural and statistical properties, including the sufficient conditions for the
existence of moments and the sufficient conditions for consistency and asymp-
totic normality of the QMLE for the VARMA-GARCH model+ Assuming that
Eh, t�1~ht ht

'! � Qt , under the strict minimum phase condition the conditional
covariance matrix is given by

St [ EY, t�1~«t «t
'!� Dt

102 Qt Dt
102 +

In other words,

Qt � Dt
�102St Dt

�102 +

If the ht ’s are independently and identically distributed ~i+i+d+! with Qt � Gt ,
then «t has a constant conditional correlation+ If the Ai ’s and Bj’s are diagonal
matrices and ht ; iid~0,G! ∀t, then ~1!–~3! reduce to the CCC model of Bol-
lerslev ~1990!+

The BEKK model, among others, is concerned with modeling directly the
conditional covariance matrix, St , for which the ~implied! conditional correla-
tion matrix is also dynamic+ For this model, the conditional covariance and cor-
relation matrices are given by

St � S� A«t�1«t�1
' A' � BSt�1 B '

and

Gt � diag~St !
�102St diag~St !

�102,

which is typically not a constant matrix+
Using an extension of the Tsay ~1987! univariate RCA process, BEKK can

be derived from a vector RCA ~VRCA! process, as shown in the following
proposition+

PROPOSITION 1+

(i) For the process

«t � �
i�1

p

Ait «t�i � ht ,

where «t and ht are k � 1, ht ; iid~0,G! , ∀t, the Ait’s ~i � 1, + + + , p! ,
~t � 1,2, + + +! satisfy

E«, t�1~Ait ! � 0, ∀i, t,

E«, t�1~Ait, j1, l1
Ait, j2 , l2

' ! � Ai, j1, l1
Ai, j2 , l2

' ~ j1, j2 , l1, l2 � 1, + + + , k! , (4)

E«, t�1~Ait, j1, l1
Ajs, j2 , l2

! � 0, if i � j and/or t � s

~ j1, j2 , l1, l2 � 1, + + + , k! ,
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and ht and Ait are independent ∀i and ∀t, the conditional variance of
«t is

St � E«, t�1~«t «t
'!� �

i�1

p

Ai «t�i «t�i
' Ai

'� G.

(ii) The finite-order random coefficient moving average process

«t � ht � �
j�1

M

Djt ht�j ,

with the condition that the roots of 6I � �j�1
M Djt L j 6 lie outside the unit

circle with probability 1, is stationary and invertible, and there exists
an equivalent representation

«t � �
i�1

`

Ait «t�i � ht . (5)

(iii) The model (5) with the conditions (4) with indexes extending to infinity
has a conditional variance given by the BEKK model

St � S� A«t�1«t�1
' A' � BSt�1 B '

as long as the roots of 6I � B � B 6 lie outside the unit circle.

Proof. See the Appendix+

Remark. In conjunction with the theoretical results in Comte and Lieber-
man ~2003!, Proposition 1 provides strong justification for using BEKK to model
the conditional covariances directly+ ~See also Scherrer and Ribarits, 2007+!

An alternative approach to accommodate time-varying conditional correla-
tions is to allow the conditional covariance of the standardized residuals, Qt , to
change over time+ However, to maintain Ht as the vector of conditional vari-
ances for «t , Qt must satisfy the definition of a conditional correlation matrix+
Therefore, we must have

EY, t�1~hit
2! � 1, ∀t � 1, + + + ,T, ∀i � 1, + + + , k+

For this reason, Engle ~2002! modeled the time-varying conditional correlation
in DCC by defining the process of a k � k matrix Pt as

Pt � ~1 � f1 � f2 !P � f1ht�1ht�1
' � f2 Pt�1, (6)

and with this, the k � k conditional correlation matrix Qt is

Qt � diag~Pt !
�102Pt diag~Pt !

�102+
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Furthermore, using the multivariate GARCH model in Ding and Engle ~2001!,
Engle ~2002! suggested a more general specification of Pt as

Pt � ~ik ik
'�F1 �F2 ! � P �F1 � ht�1ht�1

' �F2 � Pt�1, (7)

where ik is the k � 1 unit vector and P is the CCC matrix of hit if F1 and F2 are
equal to the null matrix+ It is clear that ~6! is nested within ~7!+ Although Engle
~2002! proposed ~7! as an alternative to ~6!, no formal statistical test has been
derived for determining the appropriate specification+ Moreover, Engle ~2002!
did not demonstrate how Qt could vary over time, and it is difficult to interpret
Pt as it is unclear how equation ~7! is derived+

In the following sections, GARCC is derived when the standardized residu-
als are assumed to follow a random coefficient VAR process+ The structural
properties of the GARCC model are developed, the analytical forms of the reg-
ularity conditions are derived, and the asymptotic theory is established+

2.1. The Generalized Autoregressive Conditional Correlation Model

In a model such as ~1!, the ht ’s are typically assumed to be either an i+i+d+ ran-
dom vector or a martingale difference process+ Not only is the i+i+d+ condition
often violated in practice, it also requires the conditional correlation matrix to
be static, thereby denying the possibility of dynamic conditional correlations+
We propose a specification that addresses this point+ Let

hit � �
l�1

L

filt nt hit�l � jit nt , (8)

where filt can variously be a constant, a deterministic function, or a random
variable and nt ; iid~0,1!+ Furthermore, let jt � ~j1t , + + + ,jkt !

' and assume that
jt ; iid~0,V!+ This structure is a multivariate extension of the RCA model in
Tsay ~1987! ~for the structural and statistical properties of finite-order RCA
process, see Nicholls and Quinn, 1980, 1981, 1982!+

The GARCC model has the following specification:

Yt � EY, t�1~Yt ;u!� «t , ~t � 1, + + + ,T !,

«t � Dt
102ht ,

Dt � diag~h1t , + + + , hkt !,

hit � ��
l�1

L

filt hit�l � jit�nt , ~i � 1, + + , k!, nt; iid~0,1!, ∀t,
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Ht � W � �
i�1

r

Ai ?«t�i � �
j�1

s

Bj Ht�j , (9)

jt � ~j1t , + + + ,jkt ! ; iid~0,V!,

ht � ~h1t , + + + ,hkt !
',

Qt � Eh, t�1~ht ht
'!,

Gt � diag$Qt %
�102Qt diag$Qt %

�102,

where u � R
a is the parameter vector for the conditional first moment and a

is the number of elements in u+ Because nt is iid ~0,1!, E Y, t�1~hit ! �
Eh, t�1~hit ! � 0, and under suitable conditions on filt ’s ~see Cases 1– 4, which
follow!, for all i and t,

EY, t�1~hit hjs ! � Eh, t�1~hit hjs !� 0, if t � s

and

EY, t�1~hit hjs ! � Eh, t�1~hit hjs !� �
l�1

L

filtfjlt hit�lhjt�l � vij , if t � s,

with vij � @V# i, j + Note that if the diagonal elements of Qt are not all equal to
one, then Qt is no longer a conditional correlation matrix and, more impor-
tantly, it implies that Ht is no longer a vector of conditional variances+ In this
case, the conditional variance of «t is diag~Dt

102 Qt Dt
102!, and the conditional

correlation matrix, Gt , is obtained by standardizing Qt + The random variable nt

can be interpreted as a common, or global, shock to all markets, whereas jit

can be interpreted as a shock that is specific to market i +
This paper considers four specific cases of the GARCC model+ Cases 1–3

are specializations of Case 4 and demonstrate that a time-varying conditional
correlation model can be derived when the standardized residuals follow a VAR
process with random coefficients+

The structural properties of the model are developed, the analytical forms of
the regularity conditions are derived, and the asymptotic theory is established
for Case 4+ As specializations of Case 4, the theoretical results also apply to
Cases 1–3+

2.2. Case 1. filt � f, L � 1

In this case, filt � f with 6f6 � 1, so that

hit � ~fhit�1 � jit !nt ∀ i � 1, + + + , k+ (10)

GENERALIZED AUTOREGRESSIVE CONDITIONAL CORRELATION 1561



This is equivalent to a first-order RCA ~RCA~1!! process where the random
coefficients are the same across all i + It follows from ~10! that

qijt � @Qt # i, j � Eh, t�1~hit hjt !� vij � f2hit�1hjt�1, (11)

or in matrix form,

Qt � V� f2ht�1ht�1
' + (12)

The parameter f2 denotes the short-run persistence of shocks to qijt , and the
conditional variance of «t is given by

E«, t�1~«it
2! � ~1 � f2hit�1

2 !hit , ∀t � 1, + + + ,T, ∀i � 1, + + + , k+

2.3. Case 2. filt � fi , L � 1

In this case, filt � fi with 6fi 6 � 1 ∀i , so that

hit � ~fi hit�1 � jit !nt ∀i � 1, + + + , k+ (13)

This is a generalization of Case 1 where the variance of the random coeffi-
cients can be different in each i � 1, + + + , k+ It follows from ~13! that

qijt � Eh, t�1~hit hjt !� vij � fijhit�1hjt�1,

where fij � fifj is a typical element of F, so that

Qt � V�F � ht�1ht�1
' + (14)

The parameter fij denotes the short-run persistence of shocks to qijt , and the
conditional variance of «t is given by

E«, t�1~«it
2! � ~1 � fi

2hit�1
2 !hit , ∀t � 1, + + + ,T, ∀i � 1, + + + , k+

2.4. Case 3. filt � f1
102dl , L � `

Let d1 � 1 and assume that dl ; iid~0,f2
l�1! ∀l � 2, with 6f16 � 1, 6f26 � 1+

We have

hit � �f1
102 �

l�1

`

dlhit�l � jit�nt , ∀i � 1, + + + , k+ (15)

As E~dldm! � E~dl !E~dm! � 0,

qijt � Eh, t�1~hit hjt !� vij � f1 �
l�1

`

f2
l�1hit�lhjt�l ∀i � 1, + + + , k, (16)

1562 MICHAEL MCALEER ET AL.



so that

Qt � V� f1 �
l�1

`

f2
l�1ht�lht�l

' + (17)

The parameter f1f2
l�1 denotes the short-run persistence of shocks to qijt , and

the conditional variance of «t is given by

E«, t�1~«it
2! � �1 � f1 �

l�1

`

f2
l�1hit�l

2 �hit , ∀t � 1, + + + ,T, ∀i � 1, + + + , k+

2.5. Case 4. filt � f1i dil , L � `

Let di1 � 1, ∀i � 1, + + + , k, and assume that for each i � 1, + + + , k and l � 2, dil ;
~0,f2i

l�1!, with 6f1i 6 � 1 and 6f2i 6 � 1, ∀i � 1, + + + , k+ Furthermore, assume
that for any l � m, dil is independent of dim and that E~dildjl !� ~f2if2j !

~l�1!02 ,
∀i, j � 1, + + + , k+ We have

hit � �f1i �
l�1

`

dilhit�l � jit�nt , ∀i � 1, + + + , k,

and

qijt � Eh, t�1~hit hjt !� vij � f1ij�hit�1hjt�1 � �
l�2

`

f2ij
l�1hit�lhjt�l�,

∀i, j � 1, + + + , k, (18)

where f1ij � f1if1j and f2ij � ~f2if2j !
102 are typical elements of F1 and F2,

respectively, so that

Qt � V�F1 � �ht�1ht�1
' � �

l�2

`

F2
l�1 � ht�lht�l

' �+ (19)

Hence, f1ijf2ij
l�1 is the short-run persistence of shocks to qijt , and the condi-

tional variance of «t is given by

E«, t�1~«it
2! � �1 � f1i

2 �h1t�1
2 � �

l�2

`

f2i
l�1hit�l

2 ��hit ,

∀t � 1, + + + ,T, ∀i � 1, + + + , k+

Cases 3 and 4 demonstrate that a time-varying conditional correlation model
can be derived from an infinite vector RCA process in the standardized residuals+
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3. STRUCTURAL AND STATISTICAL PROPERTIES

This section develops the structural properties of Case 4 of GARCC, derives
the analytical forms of the sufficient conditions for the existence of moments,
and establishes the sufficient conditions for consistency and asymptotic normal-
ity of the QMLE+ As Cases 1–3 are specializations of Case 4, the structural and
statistical properties of these special cases also follow+ Finally, a LR test is
proposed to test the parametric restrictions for various special cases of GARCC+

3.1. Theory

Denote the parameter vector

l � ~u ',t ',r ' !',

t � vech~W,A1, + + + ,Ar ,B1, + + + ,Bs!, r � vech~V,F1,F2!, and the true param-
eter vector as l0+ It is assumed that the parameter space L is a compact sub-
space of euclidean space such that l0 is an interior point in L+We do not consider
in this paper the situation in which the parameter is on the boundary of the
parameter space+ In the case where more than one parameter is on the bound-
ary, the asymptotic distribution of the maximum likelihood estimator is gener-
ally nonstandard ~see Chant, 1974, eqn+ ~8!; Andrews, 2001, eqns+ ~3+14! and
~4+16!!+

For each l � L, we make the following assumptions+

Assumption 1. E Y, t�1~Yt ! is stationary and possesses an �t -measurable
second-order stationary solution+

Assumption 2. All the elements of Ai and Bj are nonnegative, i � 1, + + + , r,
j � 1, + + + , s; each element of W has positive lower and upper bounds over l;
and all the roots of 6Ik � �i�1

r Ai Li � �i�1
s Bi Li 6 � 0 are outside the unit cir-

cle+ Moreover, Ik � �i�1
r Ai Li and �i�1

s Bi Li are left coprime and satisfy other
identifiability conditions given in Ling and McAleer ~2003!+

Assumption 3. The functions D and Q are such that ∀l � L and ∀l0 � L,
Dt,l � Dt,l0

and Qt,l � Qt,l0
, almost surely ~a+s+!, if and only if l � l0+

Assumption 4. F1 and F2 are positive semidefinite matrices, and ~1 � f2i !
sn

4sji
4 � 1 � ~f1i � f2i ! ∀i � 1, + + + , k where E~nt

4! � sn
4+

Assumption 5. ∀i � 1, + + + , k, ∃ci � ~0,1! such that dil are independent ran-
dom variables with support @�ci

l , ci
l# ∀l � 1+

Note that Assumption 3 is an identifiability condition, analogous to Assump-
tion A4 of Jeantheau ~1998!+ Assumption 5 provides sufficient conditions to
ensure the existence of a stationary solution to ~19!+ The structural properties
of the model are developed and the analytical forms of the regularity condi-
tions are derived in Theorems 1 and 2, respectively+
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THEOREM 1+ Under Assumptions 1, 2, 4, and 5, Case 4 possesses an �Y, t-
measurable second-order stationary solution $Yt ,«t ,Ht % that is unique, given
the Yt , where �Y, t is a s-field generated by $Yk : k � t %. The solution $Ht % has
the following causal representation:

Ht � W � �
j�1

`

c '�	
i�1

j

DAt�1�i�pt�j , a.s., (20)

where pt � @~ Iht W !
',0, + + + ,0,W ',0, + + + ,0# ~r�s!k�1

' , that is, the subvector con-
sisting of the first k components is Iht W and the subvector consisting of the
~rk � 1!th to ~r � 1!mth components is W; Iht � nt

2 diag~h1t
2 , + + + ,hkt

2 ! , c ' �
~0, + + + ,0, Ik,0, + + + ,0!m�~r�s!k, with the subvector consisting of the ~rk � 1!th to
~r � 1!kth columns being Ik, and

DAt � �
Iht A1 J Iht Ar Iht B1 J Iht Bs

Ik~r�1! Ok~r�1!�k Ok~r�1!�ks

A1 J Ar B1 J Bs

Ok~s�1!�kr Ik~s�1! Ok~s�1!�k

� .

Proof. See the Appendix+

THEOREM 2+ Let the assumptions of Theorem 1 hold. If r@E~ DAt
�m!# � 1,

with m being a strictly positive integer, then the 2mth moments of $Yt ,«t % are
finite, where DAt is defined as in Theorem 1 and A�m is the Kronecker product
of the m matrices A.

Proof. See the Appendix+

Given these structural properties, the statistical properties of the model are
established in Theorems 3–5, with sufficient multivariate log-moment condi-
tions for consistency in Theorem 3, sufficient second-order moment conditions
for consistency in Theorem 4, and sufficient conditions for asymptotic normal-
ity in Theorem 5+

The QMLE of the model is obtained by maximizing, conditional on the ini-
tial values of ~Yt ,«t ,Qt !, the following log-likelihood function:

LT ~l! �
1

T �
t�1

T

lt ~l!,

lt ~l! � �
1

2
~ ln6Dt

102 Qt Dt
102 6� «t

'~Dt
102 Qt Dt

102!�1«t !, (21)
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where lt~l! takes the form of the Gaussian log-likelihood function, so that the
QMLE is given as

Zl � argmax
l�L

LT ~l!+ (22)

Maximization of ~21! leads to the following consistency result+

THEOREM 3+ Denote Zl as the QMLE of l. Under Conditions C1–C6 in the
Appendix, Zl rp l.

Proof. See the Appendix+

An alternative proof of consistency of the QMLE based on second moments
is to verify the sufficient conditions of Theorem 4+1+1 in Amemiya ~1985!, as
demonstrated for the VARMA-GARCH model in Ling and McAleer ~2003!+

THEOREM 4+ Denote Zl as the QMLE of l0. Under Conditions D1–D3 in
the Appendix, Zl rp l0.

Proof. See the Appendix+

Given the consistency of Zl, the following theorem provides sufficient condi-
tions for asymptotic normality+

THEOREM 5+ Let Yt be generated by model (9), with filt as defined in Case
4. Given the consistency of Zl for l0, under Conditions E1–E3 in the Appendix,
MT ~ Zl � l0!

d
&& N~0,S0

�1VlS0
�1! .

Proof. See the Appendix+

3.2. Tests of Restrictions

In view of ~16! and ~18!, Case 3 is a restricted version of Case 4 with f1i � f1

and f2i � f2, ∀i � 1, + + + , k+ It is important to test whether these restrictions
hold in practice+

Formally, the null hypothesis of Case 3 against GARCC in Case 4 is
given by

H0 :f1ij � f1, f2ij � f2 , ∀i, j � 1, + + + , k+ (23)

As F1 and F2 are k � k symmetric matrices, when «t is normally distributed,
the LR statistic is given by

2T ~LT ~ ZlU !� LT ~ ZlR !! 

a
x2~k~k � 1!� 2!, (24)

where ZlU and ZlR denote the unrestricted and restricted estimates, respectively,
and k~k � 1! � 2 is the number of parametric restrictions in ~23!+

1566 MICHAEL MCALEER ET AL.



The usefulness of the LR test in ~24! is demonstrated through an empirical
example in the next section using Cases 3 and 4 of GARCC+

4. EMPIRICAL EXAMPLE

4.1. Estimation of DCC and GARCC

This section estimates DCC and various special cases of GARCC using the
S&P, Nikkei, and Hang Seng daily returns+ The daily data were obtained through
DataStream DataBase Services, with the sample from 1 January 1986 to 11
April 2000, giving 3,726 observations+ The sample volatilities for each of the
returns are calculated as

vt � ~ yt � Ty!2,

where yt denotes the stock return ~or the log-difference of the stock index! and
Ty is the sample mean of yt +

The sample standard deviations for the returns of S&P, Nikkei, and Hang
Seng are 0+0102, 0+0137, and 0+0176, respectively+ Thus, S&P appears to be
less volatile than either Nikkei or Hang Seng, especially during the early to
late 1990s before the Asian economic and financial crises+ Although Nikkei
seems to be more volatile than S&P, the volatility is relatively low compared
with Hang Seng, which seems to be the most volatile+ Nikkei seems to have
more positive shocks than S&P and Hang Seng+ There are some obvious outli-
ers and extreme observations for all three indexes, with Hang Seng appearing
to have the largest number of outliers+ S&P appears to have fewer extreme obser-
vations and outliers than Nikkei and Hang Seng+

An obvious similarity among the three indexes is the enormous decrease in
returns at observation 474, which corresponds to the share market crash in Octo-
ber 1987+ This is also the most obvious outlier in the three indexes+ The second
largest decrease in returns is observation 894 for Hang Seng, which corre-
sponds with the Tianenman Square incident in Beijing on 4 June 1989+ It is
evident that the three markets can be affected by some common factors or shocks
~nt !, such as the share market crash in October+ However, outliers such as 4 June
1989 affected only Hong Kong and hence are market specific ~jit !+ The distinc-
tion between such outliers can then be characterized by the distributions asso-
ciated with nt and jit +

In this example, the conditional mean of the GARCC model is assumed to
be an AR~1! process for each return, that is,

yit � ui0 � ui1 yit�1 � «it +

Furthermore, r � s � 1, with both A1 and B1 being diagonal matrices+ This is
equivalent to having the returns follow a univariate GARCH~1,1! process+
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Estimates for the DCC model can be found in Table 1+ All three returns
exhibit strong long-run persistence as a � b is close to one in all cases+ Fur-
thermore, the log-moment condition, E @ log~ahit

2 � b!# � 0, i � 1, + + + , k, is
satisfied in all cases, which suggests that the QMLE are consistent and asymp-
totically normal+

Moreover, Zf1 and Zf2 in DCC are statistically significant, as shown in Table 1+
This indicates that the conditional correlations between returns are not con-
stant+ Furthermore, the short-run persistence of shocks to the time-varying con-
ditional correlations is statistically significant at the 0+01 level, albeit at a small
value, with long-run persistence of shocks to the conditional correlations being
statistically significant at 0+993 � 0+01 � 0+983+ The corresponding estimates
for Cases 3 and 4 of GARCC are given in Tables 2 and 3, respectively+

As shown in Table 2, the estimates of the conditional mean and the GARCH
component for GARCC Case 3 are very similar to those of DCC, with the excep-
tion of the Zb estimates+ In the case of GARCC, the Zb estimates are typically
much lower than their DCC counterparts, which implies that GARCC Case 3
suggests a lower long-run persistence in the conditional variance contributed
from the GARCH component+

Table 1. DCC

Parameter estimates S&P Nikkei Hang Seng

Zu0 8+683 10+867 15+824
~6+991! ~11+953! ~8+883!

Zu1 0+022 �0+007 0+08
~1+356! ~�0+428! ~4+879!

[v 1+09E-6 2+823E-6 6+815E-6
~3+881! ~5+017! ~7+614!

[a 0+074 0+133 0+145
~17+99! ~21+654! ~26+16!

Zb 0+919 0+866 0+844
~195+653! ~153+237! ~171+804!

Log-moment �0+007 �0+012 �0+019
Second moment 0+993 0+999 0+988

Estimates of the Pt equation

Zf1 0+010
~10+615!

Zf2 0+983
~533+51!

Mean log-likelihood �9+121

Note: The two entries for each parameter are their respective estimate and the Bollerslev
and Wooldridge ~1982! robust t-ratio+
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The estimates Zf1 and Zf2 are both statistically significant, with short-run per-
sistence of 0+014 and long-run persistence of 0+994 � 0+014 � 0+980+ This also
indicates that the conditional correlations between the returns vary over time+

As shown in Table 3, the estimates in the conditional mean for GARCC Case 4
are similar to the other two models+ The a ~b! estimates in the GARCH com-
ponent are generally lower ~higher! than for the other two cases+ However, both
the log-moment and second moment conditions are satisfied for GARCC Case 4,
indicating that the QMLE are consistent and asymptotically normal+

The short-run persistence of shocks to the time-varying conditional correla-
tions is generally statistically significant, namely, at 0+074 between S&P and
Nikkei ~SP, NK!, 0+007 between S&P and Hang Seng ~SP, HS!, and 0+017
between Nikkei and Hang Seng ~NK, HS!, whereas the corresponding long-run
persistence of shocks to the time-varying conditional correlations is 0+400 �
0+074 � 0+326 for ~SP, NK!, �0+05 � 0+007 � 0+057 for ~SP, HS!, and 0+169 �
0+017 � 0+152 for ~NK, HS!+ It is interesting to note that neither Zf1, ~NK,HS! nor
Zf2, ~NK,HS! is statistically significant, indicating that the conditional correlation

between Nikkei and Hang Seng is likely to be constant over time, whereas the
conditional correlations between S&P and Nikkei, and between S&P and Hang
Seng, are time varying+ This demonstrates the advantage of GARCC Case 4

Table 2. GARCC: Case 3 with filt � f1
102dl

Parameter estimates S&P Nikkei Hang Seng

Zu0 8+494 10+402 14+998
~7+518! ~13+626! ~8+912!

Zu1 0+023 �0+006 0+079
~1+422! ~�0+352! ~4+753!

[v 1+068E-5 1+225E-5 1+601E-5
~4+771! ~4+811! ~7+117!

[a 0+070 0+146 0+135
~15+776! ~19+029! ~18+833!

Zb 0+790 0+795 0+823
~53+039! ~77+784! ~152+197!

Log-moment �0+069 �0+043 �0+037
Second moment 0+860 0+940 0+958

Estimates of the Qt equation
Zf1 0+014

~11+341!
Zf2 0+980

~617+119!

Mean log-likelihood �9+031

Note: The two entries for each parameter are their respective estimate and the Bollerslev and
Wooldridge ~1982! robust t-ratio+
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over both GARCC Case 3 and DCC, as the latter two models do not permit the
conditional correlations to vary between different pairs of stock indexes+

As the LR statistic in ~24! is 81+97, it is clear that the null hypothesis in ~23!
is strongly rejected at conventional levels+ Thus, short- and long-run persis-
tence are not the same for shocks to the conditional correlations for the three
indexes, so that Case 4 is superior to Case 3 and hence is also superior to Cases
1 and 2+ Furthermore, Theorem 5 shows that the QMLE for Case 4 is asymp-
totically normal+ Therefore, the results in Table 3 show that the conditional cor-
relation between Nikkei and Hang Seng is constant over time, as Zf1, ~NK,HS! and
Zf2, ~NK,HS! are not statistically significant+ However, the conditional correlation

between S&P and Hang Seng is time varying, with both Zf1, ~SP,HS! and Zf2, ~SP,HS!

being statistically significant+

Table 3. GARCC: Case 4 with filt � f1idil

Parameter estimates S&P Nikkei Hang Seng

Zu0 8+510 10+067 14+960
~8+459! ~30+685! ~7+694!

Zu1 0+023 �0+011 0+093
~1+409! ~�0+684! ~5+568!

[v 5+200E-6 1+831E-6 6+65E-6
~3+658! ~4+520! ~6+645!

[a 0+023 0+087 0+073
~8+482! ~15+836! ~11+991!

Zb 0+971 0+911 0+901
~304+957! ~169+476! ~135+149!

Log-moment �0+026 �0+077 �0+088
Second moment 0+943 0+837 0+817

Estimates of the Qt equation

Zf1, ~SP,SP ! 0+056 Zf2, ~SP,SP ! 0+680
~2+959! ~2+466!

Zf1, ~SP,NK ! 0+074 Zf2, ~SP,NK ! 0+326
~6+297! ~2+494!

Zf1, ~SP,HS! 0+007 Zf2, ~SP,HS! �0+057
~1+724! ~�5+818!

Zf1, ~NK,NK ! 0+100 Zf2, ~NK,NK ! 0+198
~6+561! ~0+999!

Zf1, ~NK,HS! 0+017 Zf2, ~NK,HS! 0+152
~1+439! ~1+132!

Zf1, ~HS,HS! 0+061 Zf2, ~HS,HS! 0+772
~7+809! ~9+243!

Mean log-likelihood �9+020

Note: The two entries for each parameter are their respective estimate and the Bollerslev and
Wooldridge ~1982! robust t-ratio+
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The plot of the estimated conditional correlations between each return from
each model can be found in Figures 1–3, with the summary statistics in
Tables 4– 6+ The conditional correlations from DCC and GARCC Case 3 are
very similar in all three cases+ However, the conditional correlations from DCC
Case 4 are different from the other two models, as both DCC and GARCC
Case 3 have imposed unjustified restrictions on the parameters in the condi-
tional correlation model+

The means of the conditional correlations between S&P and Nikkei are 0+268,
0+267, and 0+291 for DCC, GARCC Case 3, and GARCC Case 4, respectively+
Although the means of the correlations are similar for the three models, the
ranges of the conditional correlations for the three models are quite different+
In the case of DCC, the range of conditional correlations between S&P and
Nikkei is @0+003, 0+688# , whereas the ranges of the conditional correlations for
GARCC Case 3 and Case 4 are @�0+052, 0+742# and @�0+266, 0+934# , respec-
tively+ It is interesting to note that some conditional correlations from GARCC
are negative, whereas the conditional correlations estimated using DCC are all
positive+ Thus, hedging strategies derived under DCC and GARCC could be
quite different+

Figure 2 contains the dynamic paths of the conditional correlations between
S&P and Hang Seng for the three models+ As in the previous case, the condi-
tional correlations between S&P and Hang Seng from DCC and GARCC Case
3 are very similar+ The mean correlations are 0+319, 0+318, and 0+319 for DCC,
GARCC Case 3, and GARCC Case 4, respectively+ The conditional correla-
tions between S&P and Hang Seng for the three models are positive throughout

Table 4. Summary statistics for conditional correlations between S&P and
Nikkei

Model Mean Variance Skewness Kurtosis Minimum Maximum

DCC 0+268 0+008 0+885 6+037 0+003 0+688
GARCC Case 3 0+267 0+011 0+729 5+563 �0+052 0+742
GARCC Case 4 0+291 0+004 0+359 12+413 �0+266 0+934

Table 5. Summary statistics for conditional correlations between S&P and Hang
Seng

Model Mean Variance Skewness Kurtosis Minimum Maximum

DCC 0+319 0+008 �0+164 2+690 0+085 0+537
GARCC Case 3 0+318 0+011 �0+268 2+714 0+034 0+576
GARCC Case 4 0+319 0+001 �2+264 12+709 0+032 0+379
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Figure 1. Conditional correlations between S&P and Nikkei+
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Figure 2. Conditional correlations between S&P and Hang Seng+
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Figure 3. Conditional correlations between Nikkei and Hang Seng+
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the entire sample+ However, GARCC Case 3 has the highest variance, with the
range of the conditional correlations being @0+034, 0+576# , followed by DCC
with variance and range being 0+008 and @0+085, 0+537# , respectively+ GARCC
Case 4 has the lowest variance at 0+001, with the range of conditional correla-
tions being @0+032, 0+379# +

The dynamic paths of the conditional correlations between Nikkei and Hang
Seng can be found in Figure 3+ As in the previous cases, the dynamic paths are
very similar between DCC and GARCC Case 3+ The means of the conditional
correlations are 0+260, 0+261, and 0+267 for DCC, GARCC Case 3, and GARCC
Case 4, respectively+ However, some of the conditional correlations from DCC
and GARCC Case 3 are negative, whereas the conditional correlations from
GARCC Case 4 are all positive+ The variance of the conditional correlations
from GARCC Case 4 is still the lowest at 0+001, with the range given by @0+027,
0+308# + This is followed by DCC, with the variance and range of the condi-
tional correlations being 0+009 and @�0+003, 0+474# , respectively+ The variance
and range of the conditional correlations from GARCC Case 3 are 0+013 and
@�0+049, 0+512# , respectively+

5. CONCLUDING REMARKS

This paper presented and motivated a Generalized Autoregressive Conditional
Correlation ~GARCC! model when the standardized residuals follow a random
coefficient VAR process+ GARCC was developed as a multivariate generaliza-
tion of the Tsay ~1987! random coefficient autoregressive ~RCA! model, which
provided a motivation for the conditional correlations to be time varying+ The
GARCC model was shown to be more general than the Engle ~2002! dynamic
conditional correlation ~DCC! and the Tse and Tsui ~2002! varying conditional
correlation ~VCC! models, and GARCC does not impose strong parameteric
restrictions on the conditional correlation model+ The structural and statistical
properties of the GARCC model were developed, which included the analyti-
cal forms of the regularity conditions and the asymptotic properties of the
QMLE+ This was particularly important as many of the multivariate GARCH
models in the literature lack structural and statistical properties+

Table 6. Summary statistics for conditional correlations between Nikkei and
Hang Seng

Model Mean Variance Skewness Kurtosis Minimum Maximum

DCC 0+260 0+009 �0+308 2+434 �0+003 0+474
GARCC Case 3 0+261 0+013 �0+260 2+448 �0+049 0+512
GARCC Case 4 0+267 0+001 �2+172 12+031 0+027 0+308
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A LR test was proposed for several special cases of GARCC+ The empirical
usefulness of GARCC and the practicality of the LR test were demonstrated
for the daily returns of the S&P, Nikkei, and Hang Seng indexes+ It was shown
that standard cross-equation restrictions were violated+ Thus, the test suggested
in this paper should serve as a useful diagnostic check of various special cases
of GARCC and also of the DCC and VCC models+

There are some useful extensions of GARCC for future research+ Outliers
could usefully be accommodated by choosing appropriate vector RCA process
for the standardized residuals and by investigating the effects of extreme obser-
vations and outliers on the QMLE+ Filtering common outliers from market-
specific outliers would seem to raise a serious challenge+ Another extension
would be to incorporate time-varying nonlinear coefficients in the VAR pro-
cess for the standardized residuals, which would be useful if regime switching
behavior were to be present in the conditional correlations across assets or
markets+
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APPENDIX

Proof of Proposition 1. Under the assumptions of Proposition 1, the process

«t � �
i�1

p

Ait «t�i � ht (A.1)

gives

~E«, t�1~«t «t
'!!j1, j2

� �E«, t�1��
i�1

p

�
m�1

p

Ait «t�i «t�m
' Amt

' ��
j1, j2

� Gj1, j2

� �
i�1

p

�
m�1

p

�
l1�1

k

�
l2�1

k

~«t�i «t�m
' !l1, l2

E«, t�1 Ait, j1, l1
Amt, l2 , j2

' � Gj1, j2

� �
i�1

p

�
l1�1

k

�
l2�1

k

~«t�i «t�i
' !l1, l2

Ai, j1, l1
Ai, l2 , j2

' � Gj1, j2
,

or, in matrix form,

E«, t�1~«t «t
'! � �

i�1

p

Ai «t�i «t�i
' Ai

'� G+
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Part ~ii! of the proposition is obvious+ As for part ~iii!, for model ~5!, under the condi-
tions ~4!, with the relevant indexes extending to infinity,

St [ E«, t�1~«t «t
'!� �

i�1

`

Ai «t�i «t�i
' Ai

'� G+

Therefore

vec~St ! � �
i�1

`

~Ai � Ai !vec~«t�i «t�i
' !� vec~G!+

Now consider the BEKK model

St � S� A«t�1«t�1
' A' � BSt�1 B '+

This is equivalent to

vec~St ! � vec~S!� ~A � A!vec~«t�1«t�1
' !� ~B � B!vec~St�1!+ (A.2)

Under the condition that the roots of 6I � ~B � B!6 lie outside the unit circle, ~A+2! is
equivalent to

vec~St ! � ~I � ~B � B!L!�1vec~S!

� ~I � ~B � B!L!�1~A � A!vec~«t�1«t�1
' !

� vec~G!� �
i�1

`

~Ai � Ai !vec~«t�i «t�i
' !,

say+ Therefore, we have established equivalence between the BEKK model and the
infinite-order RCA+ This completes the proof+ �

Proof of Theorem 1. Let Xt � ~ ?«t
' , + + + , ?«t�r�1

' ,Ht
' , + + + ,Ht�s�1

' !' + It is straightforward
to show that

Xt � DAt Xt�1 �pt , (A.3)

where pt is defined as in ~20!+ By recursive substitution of ~A+3!, it follows that

Xt � pt � �
j�1

` �	
i�1

j

DAt�1�i�pt�j

and Ht � c 'Xt , where c ' � ~0, + + + ,0, Ik,0, + + + ,0!k�~r�s!k+ Let

ST, t � pt � �
j�1

T �	
i�1

j

DAt�1�i�pt�j

and denote the mth element of ~	 i�1
j DAt�1�i !pt�j by sT, t+ Then

E6sT, t 6 � em
' E��	

i�1

j

DAt�1�i�pt�j� ,
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where em � ~0, + + + ,0,1,0, + + + + ,0!k~r�s!�1
' and 1 appears in the mth position+ As ht is not

i+i+d+, it follows that

E6sT, t 6� em
' �	

i�1

j

E~ DAt�1�i !�E~pt�j !+

Let Ft and Q be k~r � s! matrices such that

Ft � � Iht 0k�k~r�s�1!

0k~r�s�1!�k Ik~r�s�1!�k~r�s�1!
�

and

Q � �
A1 J Ar B1 J Bs

Ik~r�1! Ok~r�1!�k Ok~r�1!�ks

A1 J Ar B1 J Bs

Ok~s�1!�kr Ik~s�1! Ok~s�1!�k

� +
Then DAt can be written as

DAt � Ft Q+

Hence,

em
' E��	

i�1

j

DAt�1�i�pt�j� � em
' E��	

i�1

j

Ft�1�i Q�pt�j� ,
and using Assumption 2,

em
' E��	

i�1

j

Ft�1�i Q�pt�j� � em
' E��	

i�1

j

Ft�1�i�pt�j� +
So,

�	
i�1

j

Ft�1�i�pt�j � � 	
i�1

j

Iht�1�i 0k�k~r�s�1!

0k~r�s�1!�k Ik~r�s�1!�k~r�s�1!
�





 ~ Iht�j W !

0

J

0

W

0

J

0 





+
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Therefore, it is sufficient to focus only on the submatrix,

	
i�1

j

Iht�1�i ~ Iht�j W ! � E�	
i�1

j

Iht�i�W+

Notice that the mth row of the matrix E@	 i�1
j Iht�i # is

E�	
i�1

j

hmt�i
2 � � 	

i�1

j

E@hmt�i
4 #102,

where the inequality can be achieved by Hölder’s inequality+ Under the definition of
Case 4 and Assumption 5,

Eh, t�1~hmt
2 ! � �

l�1

`

f1mf2m
l�1hmt�l

2 � sjm
2 ,

Eh, t�1~hmt
4 ! � sn

4��
l�1

`

E~dl
4!hmt�l

4 � f1mf2m
l�1hmt�l

2 � sjm
4 �, (A.4a)

� �
l�1

`

f1mf2m
l�1sn

4hmt�l
4 � f1mf2m

l�1sn
4hmt�l

2 � sn
4sjm

4 + (A.4b)

Now, consider the following sequence:

kmt � �
l�1

`

f1mf2m
l�1kmt�l � sn

4sjm
4 , (A.5)

where 0 � kmt�l � `, ∀l � N
�+ Under the assumption that f1m �f2m � 1, the sequence

~A+5! converges to a finite number, namely,

kmt r
~1 � f2m !sn

4sjm
4

1 � ~f1m � f2m !
� cmt , tr `+

Under Assumptions 4 and 5, cmt � 1, and there exists a sequence $kmt�l %l�1
` such that

kmt�l � sn
4~hmt�l

2 � hmt�l
4 !, where hmt�l

2 � �h, t�1 and hmt�l
4 � �h, t�1, ∀l � N

�+
Therefore

E«, t�1~hmt
4 ! � cmt +

The law of iterated expectations then implies that each component of
em
' E @~	 i�1

j DAt�1�i !pt�j # is O~ Sr j!+ Note that the characteristic polynomial of E~ DAt! has
all roots outside the unit circle by Assumption 2, and the moments of dil follow a geo-
metric progression with finite limits by Assumption 5, ∀i � 1, + + + , k+ Furthermore, each
element in DAt and pt is nonnegative+ Therefore, each component of ST, t converges a+s+ as
T r `, as does ST, t+ Hence, there exists an �t-measurable second-order solution «t to
~3!, where ht follows a VAR process with random coefficients, as defined in Case 4+

To show uniqueness, let «t
* be another �t -measurable second-order stationary solu-

tion of ~3!+ Thus, Xt
* � DAt Xt�1

* � pt
*, where Xt

* � ~ ?«t
*, + + + , ?«t�r�1

* ,Ht
*, + + + ,Ht�s�1

* !' ,
with ?«t

* � ~~«1t
* !', + + + , ~«kt

* !' !' , and
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Ht
* � W � �

i�1

r

Ai ?«t�i
* � �

j�1

s

Bj Ht�j
* +

Let Ut � Xt � Xt
*, which is first-order stationary by Assumption 1+ Furthermore, Ut �

~	 i�0
T DAt�1�i !Ut�j + As each element in DAt is nonnegative, by Assumption 5 it follows

that

E6umt 6 � E6ek
'�	

i�0

T

DAt�1�i�Ut�j 6r 0 as Tr `,

where umt is the mth component of Ut + Therefore, Ht � Ht
* and ?«t � ?«t

*+ Hence, the
solution is unique+As Ht � c 'Xt , it follows that the unique causal representation is given
by

Ht � W � �
j�1

`

c '�	
i�1

j

DAt�i�pt�j�1, a+s+ �

The following results will be used in the proof of Theorem 2+

LEMMA 1+ Suppose that E~7jt7!2m � ` and r@E~ DAt
�m!# � 1. Then there exists a

vector M � 0 such that @Ik � E~ DAt
�m!' #M � 0, where a vector B � 0 means that each

element of B is positive.

Proof. Note that E~7jt7!2m � ` n E~7ht7!2m � ` by Assumption 5, so that @Ik �
E~ DAt

�m!' #M � 0 is invertible+ As every element in E~ DAt
�m! is nonnegative, there is a

vector L1 � 0 such that

M � @Ik � E~ DAt
�m!' #�1L1 � L1 � �

i�0

`

@E~ DA0t
�m!' # iL1 � 0+

Thus, @Ik � E~ DAt
�m!' #M � L1 � 0+ �

Remark 1. Lemma 1 extends the results of Lemma A+2 in Ling and McAleer ~2003!,
which assumes that the standardized shocks are i+i+d+

Proof of Theorem 2. Using the results on finite moments in Tweedie ~1988!, Lemma
A+3 in Ling and McAleer ~2003!, and Lemma 1 given previously, Hölder’s inequality
implies that Ep1

7«t72 � ~Ep1
7«t72k !10k � `, where p1 are the stationary distributions of

$«t % + Furthermore, Ep2
7Yt72 � ` by Assumption 1+ Thus, $Yt ,«t % is a secondary station-

ary solution of ~9!+ Moreover, the solution $Yt ,«t % is unique and ergodic by Theorem 1+
Therefore, $Yt ,«t % satisfying model ~9! has finite 2mth moment+ �

Proof of Theorem 3. It is sufficient to verify the following conditions for consis-
tency in Jeantheau ~1998!+

C1. L is compact+

C2. ∀l � L, the model admits a unique strictly stationary and ergodic solution Yt +

C3. There exists a deterministic constant c � 0 such that, ∀t and ∀l � L, 6Ht 6 � c+

C4. Assumption 3+

C5. Yt , Ht , and Qt are continuous functions of the parameter l+

C6. El0
6log~6Ht 6!6 � ` ∀l0 � L+
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Under Theorem 1, ~9! admits a unique strictly stationary and ergodic solution of Yt

~C2!+ Furthermore, the model is identifiable under Assumption 3 ~C4!+ Note that the
determinant of the conditional covariance matrix is given as

6E«, t�1~«t «t
'!6 � 6Dt

102 Qt Dt
102 6� 6Dt 6 6Qt 6+

As each element in W, Ai , and Bj is strictly positive ∀i � 1, + + + , r and ∀j � 1, + + + , s,
there exists a constant c1 � 0 so that 6Dt 6 � c1 ∀t+ Moreover, because each element in
V, F1, and F2 is positive, and Qt is positive definite, by construction, there exists a
constant c2 � 0 such that 6Qt 6 � c2+ Let c � c1 c2; then there exists a constant c � 0
such that 6E«, t�1~«t «t

'!6 � c ∀t and ∀l � L, where L is a compact subspace of euclid-
ean space ~C1 and C3!+ By the square integrability of Xt , El0

~vech~Ht,l!! � `, which
establishes C6 ~for details, see Comte and Lieberman, 2003, p+ 67!+ Under Assumption
1, C6, and the representation ~7!, E~Yt 6�t�1!, Ht , and Qt are continuous functions of the
parameter l ~C5!+ �

Proof of Theorem 4. It is sufficient to verify the following conditions in Theo-
rem 4+1+1 in Amemiya ~1985!+

D1. L is compact+

D2. LT ~l! is continuous in l � L for Yt and is a measurable function of Yt ∀l � L+

D3. T �1LT ~l! converges to a nonstochastic function L~l! in probability uniformly
in l � L as T r `, and L~l! attains a unique global maximum at l0+

Condition D1 is equivalent to C1, and D2 follows from C5, and so D1 and D2 are
satisfied under Theorem 3+ To verify D3, it is convenient to introduce the unobserved
process $~«t

*,Ht
*,Qt

*! : t � 0,61,62, + + +% + Define the unobserved log-likelihood func-
tion conditional on the infinite past observations:

LT
u ~l! �

1

T �
t�1

T

lt
*~l!,

lt
*~l! � �

1

2
~ ln6Dt

*102 Qt
*Dt
*102 6� «t

*'~Dt
*102 Qt

*Dt
*102!�1«t

*' !,

where Dt
* � diag~h1t

* , + + + , hkt
* !+ Furthermore,

]Qt
*

]r '
� ~Ik �F2 L!�1~Ik ,Qt�1

* � Ik !,

with the following recursive equation:

U1t � F2 U1t�1 � V1t ,

where U1t � ]Ht
*0]r ' and V1t � ~Ik ,Qt�1

* � Ik!+ Hence, if U1t c � 0, then V1t c � 0 a+s+
By Assumptions 3–5, it is straightforward to show that, if V1t c � 0, then c � 0+ This
result and Lemma 4+2 in Ling and McAleer ~2003! imply that L~l! exists ∀l � L and
supl�L 6LT

* ~l! � L~l!6 � op~1!+ Moreover,
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~Qt
*� Qt !6r�r0

�
]Qt
*

]r ' �r0

~r� r0 !� 0

if and only if r� r0+ This result and Lemma 4+4 in Ling and McAleer ~2003! show that
L~l! has a unique maximum at l0+ Furthermore, C3 implies that

T �1 �
i�1

T

E sup
l�L
6ln6Dt

*102QtDt
*1026 � ln6Dt

102QtDt
10266 � o~1!+

Lemma 4+6 in Ling and McAleer ~2003! implies that 6LT
* ~l! � LT ~l!6 � op~1!+ Thus,

sup
l�L
6LT ~l!� L~l!6 � sup

l�L
6LT
* ~l!� L~l!6� sup

l�L
6LT
* ~l!� LT ~l!6� op~1!+

Therefore, LT
* ~l! rp L~l! uniformly in L ~D3!+ �

Proof of Theorem 5. Given the consistency of Zl for l0 in Theorems 3 and 4, it is
sufficient to verify the following conditions of Theorem 4+1+3 in Amemiya ~1985!+

E1. ]2LT 0]l]l' exists and is continuous in an open, convex neighborhood of l0+

E2. T �1~]2LT 0]l]l' !6lT
converges to a finite nonsingular matrix S0 � ET �1~]2LT 0

]l]l' !6l0
in probability for any sequence lT , such that Zl rp l0+

E3. T �102~]LT 0]l!6l0

d
&& N~0,Vl!, where Vl� lim ET �1~]Lt 0]l!6l0

� ~]Lt 0]l' !6l0
+

By Theorems 3 and 4, Zl is consistent for l0+ It follows from the conditions in Theo-
rem 3 that ]2LT 0]l]l' exists and is continuous in L+ As Qt is a function of r, it follows
that

]lt
*

]r
� �

1

2

]vec'~Qt !

]r
vec~Qt

�1 � Qt
�1 Dt

*�1«t
*«t
*'Dt

*�1 Qt
�1!+

Lemma 5+4 in Ling and McAleer ~2003! can be used to verify that

E sup
l�L
7]2LT 0]t]r ' 7 � `

and

E sup
l�L
7]2LT 0]r]r ' 7 � `

~E1 and E2!+ Under the assumption that E~jt
4! � `, which implies E~ht

4! � `, using
the central limit theorem of Stout ~1974! and the Cramér–Wold device, it follows that

T �102 �
t�1

T ]lt

]l
d
&& N~0,Vl!,

where Vl � ` ~E3!+ �
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