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Abstract

Pathwise predictability and predictors for discrete time processes are studied in deterministic

setting. It is suggested to approximate convolution sums over future times by convolution sums over

past time. It is shown that all band-limited processes are predictable in this sense, as well as high-

frequency processes with zero energy at low frequencies. In addition, a process of mixed type still

can be predicted if an ideal low-pass filter exists for this process.
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1 Introduction

We study pathwise predictability of discrete time processes in deterministic setting. It is well known that

certain restrictions on frequency distribution can ensure additional opportunities for prediction and in-

terpolation of the processes. The classical result is Nyquist-Shannon-Kotelnikov interpolation theorem

for the continuous time band-limited processes. It is also known that optimal prediction error for sta-

tionary Gaussian processes is zero for the case of degenerate spectral density. The related results can be

found in Wainstein and Zubakov (1962), Knab (1981), Papoulis (1985), Marvasti (1986), Vaidyanathan

(1987), Lyman et al (2000, 2001), Dokuchaev (2008,2010).

The present paper extends on discrete time setting the approach suggested for continuous time pro-

cesses in Dokuchaev (2008). We study a special kind of predictors such that convolution sums over
∗Signal Processing 92, iss. 10, pp.2571-2575. In Fast communications section.
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future are approximated by convolution sums over past times representing historical observations. We

found some cases when this approximation can be made uniformly over a wide class of input processes,

including all band-limited processes and high-frequency processes. For the processes of mixed type,

we found that the similar predictability can be achieved when the model allows a low pass filter that

acts as an ideal low-pass filter for this process. These results can be a useful addition to the existing

theory of band-limited processes. The novelty is that we consider predictability of both high frequent

and band-limited processes in a weak sense uniformly over classes of input processes. In addition, we

suggest a new type of predictor. Its kernel is given explicitly in the frequency domain.

2 Definitions

Let D = {z ∈ C : |z| ≤ 1}, Dc = C \D, T = {z ∈ C : |z| = 1},

We denote by ℓr the set of all sequences x = {x(t)}∞t=−∞ ⊂ C such that ∥x∥ℓr =(∑∞
t=−∞ |x(t)|r

)1/r
< +∞ for r ∈ [1,∞), ∥x∥ℓ∞ = supt |x(t)| < +∞ for r = +∞.

Let ℓ+r be the set of all sequences x ∈ ℓr such that x(t) = 0 for t = −1,−2,−3, ....

For complex valued sequences x ∈ ℓ1 or x ∈ ℓ2, we denote by X = Zx the Z-transform

X(z) =

∞∑
t=−∞

x(t)z−t, z ∈ C.

Respectively, the inverse x = Z−1X is defined as

x(t) =
1

2π

∫ π

−π
X

(
eiω

)
eiωtdω, t = 0,±1,±2, ....

If x ∈ ℓ2, then X|T is defined as an element of L2(T).

Let Hr be the Hardy space of functions that are holomorphic on Dc including the point at infinity

(see, e.g., Duren (1970)). Note that Z-transform defines bijection between the sequences from ℓ+2 and

the restrictions (i.e. traces) of the functions from H2 on T.

Definition 1 Let K be the class of all functions k ∈ ℓ∞ such that k(t) = 0 for t > 0 and K = Zk is

K(z) =
d(z)

δ(z)
, (2.1)

where d(·) and δ(·) are polynomials such that deg d < deg δ, and if δ(z) = 0 for z ∈ C then |z| > 1.

The class includes all kernels k representing the anti-causal linear constant-coefficient difference equa-

tions.

Definition 2 Let K̂ be the class of functions k̂ : ℓ+∞ such that the function K̂(·) = Z k̂ belongs to

H∞ ∩H2.
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It follows from the definitions that if k̂ ∈ K̂ then k̂(t) = 0 for t < 0.

We are going to study linear predictors in the form ŷ(t) =
∑t

s=−∞ k̂(t − s)x(s) for the processes

y(t) =
∑+∞

s=t k(t − s)x(s), where k ∈ K and k̂ ∈ K̂. The predictors use historical values of currently

observable process x(·).

Definition 3 Let X = {x(·)} be a class of sequences from ℓ∞, let r ∈ [1,+∞], and let K̃ ⊂ K be a

class of sequences.

(i) We say that the class X is ℓr-predictable in the weak sense with respect to the class K̃ if, for any

k(·) ∈ K̃, there exists a sequence {k̂m(·)}+∞
m=1 = {k̂m(·,X , k)}+∞

m=1 ⊂ K̂ such that

∥y − ŷm∥ℓr → 0 as m→ +∞ ∀x ∈ X ,

where

y(t) =
+∞∑
s=t

k(t− s)x(s), ŷm(t) =
t∑

s=−∞
k̂m(t− s)x(s).

(ii) Let the set Z(X ) = {X(eiω) = Zx|T, x ∈ X} be provided with a norm ∥ · ∥. We say that the

class X is ℓr-predictable in the weak sense with respect to the class K̃ uniformly with respect to

the norm ∥ · ∥, if, for any k(·) ∈ K̃ and ε > 0, there exists k̂(·) = k̂(·,X , k, ∥ · ∥, ε) ∈ K̂ such that

∥y − ŷ ∥ℓr ≤ ε∥X∥ ∀x ∈ X , X = Zx.

Here y(·) is the same as above, ŷ(t) =
∑t

s=−∞ k̂(t− s)x(s).

We call functions k̂(·) in Definition 3 predictors or predicting kernels.

3 The main result

Let Ω ∈ (0, π) be given, and let

XL = {x(·) ∈ ℓ2 : X
(
eiω

)
= 0 if |ω| > Ω, X = Zx},

XH = {x(·) ∈ ℓ2 : X
(
eiω

)
= 0 if |ω| < Ω, X = Zx}.

In particular, XL is a class of band-limited processes, and XH is a class of high-frequency processes.
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3.1 Predictability of band-limited and high-frequency processes from L2

Let K0 be the class of all functions k ∈ ℓ∞ such that k(t) = 0 for t > 0 and that K = Zk can be

represented as

K(z) =
z + b

z + a
, (3.1)

for some real a ∈ (−∞,−1) ∪ (1,+∞) and b ∈ R.

Theorem 1 (i) The classes XL and XH are ℓ2-predictable in the weak sense with respect to the class

K0.

(ii) The classes XL and XH are ℓ∞-predictable in the weak sense with respect to the class K0 uni-

formly with respect to the norm ∥X(eiω)∥L2(−π,π).

(iii) For any q > 2, the classes XL and XH are ℓ2-predictable in the weak sense with respect to the

class K0 uniformly with respect to the norm ∥X(eiω)∥Lq(−π,π).

The question arises how to find the predicting kernels. In the proof of Theorem 1, a possible choice

of the kernels is given explicitly via Z-transforms.

4 On a model with ideal low pass-pass filter

Corollary 1 Assume a model with a process x(·) such that it is possible to decompose it as x(t) =

xL(t) + xH(t), where xL(·) ∈ XL and xH(·) ∈ XH . Then this observer would be able to predict

(approximately, in the sense of weak predictability with respect to the class K0) the values of y(t) =∑+∞
s=t k(t−s)x(s) for k(·) ∈ K by predicting the processes yL(t) =

∑+∞
s=t k(t− s)xL(s) and yH(t) =∑+∞

s=t k(t− s)xH(s) separately. More precisely, the process ŷ(t) = ŷL(t) + ŷH(t) is the prediction of

y(t), where yL(t) =
∑t

−∞ k̂L(t− s)xL(s) and yH(t) =
∑t

−∞ k̂H(t− s)xH(s), and where k̂L(·) and

k̂H(·) are predicting kernels which existence for the processes xL(·) and xH(·) is established above.

Let χL
(
eiω

)
= I{|ω|≤Ω} and χH

(
eiω

)
= 1 − χL

(
eiω

)
= I{|ω|>Ω}, where ω ∈ R; I denote the

indicator function.

The assumptions of Corollary 1 mean that there are a low-pass filter and a high-pass filter with the

transfer functions χL and χH respectively, with x(·) as the input, i.e., that the values xL(s) and xH(s)

for s ≤ t are available at time t, where

xL(·) = Z−1XL, XL

(
eiω

)
= χL

(
eiω

)
X

(
eiω

)
,

xH(·) = Z−1XH , XH

(
eiω

)
= χH

(
eiω

)
X

(
eiω

)
,
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and where X = Zx. It follows that the predictability in the weak sense with respect to the class K0

is possible for any process x(·) that can be decomposed without error on a band limited process and

a high-frequency process, i.e., when there is a low-pass filters which behave as an ideal filter for this

process. (Since xH(t) = x(t)−xL(t), existence of the low pass filter implies existence of the high pass

filter). On the other hand, Corollary 1 implies that the existence of ideal low-pass filters is impossible

for general processes, since they cannot be predictable in the sense of Definition 3.

Clearly, processes x(·) ∈ XL ∪ XH are automatically covered by Corollary 1, i.e., the existence

of the filters is not required for this case. For instance, we have immediately that xL(·) = x(·) and

xH(·) ≡ 0 for band-limited processes.

5 Proofs

It suffices to present a set of predicting kernels k̂ with the desired properties. We will use a version of

the construction introduced in Dokuchaev (2008) for continuous time setting. This construction is very

straightforward and does not use the advanced theory of Hp-spaces.

Let K1 be the class of all functions k ∈ K0 such that K = Zk can be represented as

K(z) =
1

z + a
, (5.1)

for some real a ∈ (−∞,−1) ∪ (1,+∞).

If k ∈ K0, then K = Zk can be represented as

K(z) =
z + b

z + a
=
z + a+ b− a

z + a
= 1 +

c

z + a
,

with a ∈ (−∞) ∪ (1,+∞), b ∈ R, and c = b − a. It follows that the process y(t) for k ∈ K0 can

be represented as y(t) = x(t) + c
∑+∞

s=t k1(t − s)x(s), where k1 ∈ K1. Therefore, it suffices to prove

theorem for k ∈ K1 only.

Let k(·) ∈ K1 and K
(
eiω

)
= Zk be defined by (5.1) for some for a ∈ (−∞,−1) ∪ (1,+∞).

Let G = (−Ω,Ω), and let

α = −1 + a cos(Ω)

a+ cos(Ω)
. (5.2)

Let us show that α = f(a) ∈ (−1, 1). Clearly, the function

f(a) =
1 + a cos(Ω)

a+ cos(Ω)

is such that f ′(a) < 0 for all a such that |a| ≥ 1, f(−1) = −1, f(1) = 1, and f(±∞) = cos(Ω). These

properties imply that α = f(a) ∈ (−1, 1).
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Further, we have that 1 + αa+ (a+ α) cos(Ω) = 0, and

sign (a+ α)(1 + αa+ (a+ α) cos(ω)) > 0, ω ∈ G,

sign (a+ α)(1 + αa+ (a+ α) cos(ω)) < 0, ω ∈ (−Ω,Ω)\G. (5.3)

Set

V (z) = 1− exp

(
γsign (a+ α)

z + a

z + α

)
, K̂(z) = V (z)K(z), γ ∈ R. (5.4)

Lemma 1 (i) V (z) ∈ H∞ and K̂(z) = K(z)V (z) ∈ H∞ ∩H2.

(ii) If γ < 0 and ω ∈ [−Ω,Ω], then |V (eiω)| ≤ 2. If γ > 0 and ω ∈ [−π, π]\(−Ω,Ω), then

|V (eiω)| ≤ 2.

(iii) If ω ∈ (−Ω,Ω), then V (eiω) → 1 as γ → −∞. If ω ∈ [−π, π]\[−Ω,Ω], then V (eiω) → 1 as

γ → +∞.

(iv) For any ε ∈ (0,Ω), V (eiω) → 1 as γ → −∞ uniformly in ω ∈ [−Ω + ε,Ω − ε] as γ → −∞,

and V (eiω) → 1 as γ → +∞ uniformly in ω ∈ [−π, π]\(−Ω+ ε,Ω− ε).

Proof of Lemma 1. Clearly, V ∈ H∞, and (z+ a)−1V (z) ∈ H2 ∩H∞, since the pole of (z+ a)−1

is being compensated by multiplying with V . It follows that K(z)V (z) ∈ H2 ∩H∞. Then statement

(i) follows.

Further, for ω ∈ R,

eiω + a

eiω + α
=

(eiω + a)(e−iω + α)

|eiω + α|2
=

1 + aα+ ae−iω + αeiω

|eiω + α|2
.

Hence

Re
eiω + a

eiω + α
=

1 + aα+ (a+ α) cos(ω)

|eiω + α|2
.

Then statements (ii)-(iv) follow from (5.3). This completes the proof of Lemma 1. �
Proof of Theorem 1. For x(·) ∈ ℓ2, let X = Zx, k = Z−1K, k̂ = Z−1K̂,

y(t) =
∞∑
s=t

k(t− s)x(s), ŷ(t) =
t∑

s=−∞
k̂(t− s)x(s).

Let Y = Zy, let V and K̂ be as defined above, and let Ŷ = K̂X .

Let us consider the cases of XL and XH simultaneously. For the case of the class XL, consider γ < 0

and assume that γ → −∞. Set Γ = [−Ω,Ω] for this case. For the case of the class XH , consider γ > 0

and γ → +∞. Set Γ = [−π,−Ω] ∪ [Ω,+π] for this case.
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Let x(·) ∈ XL or x(·) ∈ XH . In both cases, Lemma 1 gives that |V
(
eiω

)
| ≤ 2 for all ω ∈ Γ. If

γ → −∞ or γ → +∞ respectively for XL or XH cases, then V
(
eiω

)
→ 1 for a.e. ω ∈ Γ, i.e., for a.e.

ω such that X
(
eiω

)
̸= 0.

Let us prove (i). Since K
(
eiω

)
∈ L∞(−π, π), K̂

(
eiω

)
∈ L∞(−π, π), and X

(
eiω

)
∈ L2(−π, π),

we have that Y
(
eiω

)
= K

(
eiω

)
X

(
eiω

)
∈ L2(−π, π) and Ŷ

(
eiω

)
= K̂

(
eiω

)
X

(
eiω

)
∈ L2(−π, π).

By Lemma 1, it follows that

Ŷ
(
eiω

)
→ Y

(
eiω

)
for a.e. ω ∈ R, (5.5)

as γ → −∞ or γ → +∞ respectively for XL or XH cases. We have that

|K̂
(
eiω

)
−K

(
eiω

)
| ≤ |V

(
eiω

)
− 1||K

(
eiω

)
| ≤ 2|Km

(
eiω

)
|, ω ∈ Γ, (5.6)

|Ŷ
(
eiω

)
− Y

(
eiω

)
| ≤ 2|Y

(
eiω

)
| = 2|K

(
eiω

)
||X

(
eiω

)
|, ω ∈ Γ. (5.7)

By (5.5),(5.7), and by Lebesque Dominance Theorem, it follows that

∥Ŷ
(
eiω

)
− Y

(
eiω

)
∥L2(−π,π) → 0, i.e., ∥ŷ − y∥L2(−π,π) → 0 (5.8)

as γ → −∞ or γ → +∞ respectively for XL or XH cases, where ŷ = Z−1Ŷ .

Let us prove (ii)-(iii). Take d = 1 for (ii) and take d = 2 for (iii). If X
(
eiω

)
∈ Lν(−π, π) for

ν > d, then Hölder inequality gives

∥Ŷ
(
eiω

)
− Y

(
eiω

)
∥Ld(−π,π) ≤ ∥K̂

(
eiω

)
−K

(
eiω

)
∥Lµ(Γ)∥X

(
eiω

)
∥Lν(Γ), (5.9)

where µ is such that 1/µ+1/ν = 1/d. By (5.6) and by Lebesque Dominance Theorem again, it follows

that

∥K̂
(
eiω

)
−K

(
eiω

)
∥Lµ(Γ) → 0 ∀µ ∈ [1,+∞), (5.10)

as γ → −∞ or γ → +∞ respectively for XL or XH cases. Then, by (5.9)-(5.10), it follows that the

predicting kernels k̂(·) = k̂(·, γ) = Z−1K̂ are such as required in statements (ii)–(iii). This completes

the proof of Theorem 1. �
Corollary 1 follows immediately from Theorem 1.

6 On the prediction error generated by a high-frequency noise

Let us estimate the prediction error for the case when predictor (5.4) designed for a band-limited process

is applied to a process with a small high-frequency noise.

Let Ω ∈ (0, π) and ν ∈ [0, 1) be given. Let us consider a process x(·) ∈ ℓ∞ such that |X(iω)| ≤ 1

for ω ∈ G and |X(iω)| ≤ ν for ω ∈ [−π, π]\G , where X = Zx and G = (−Ω,Ω).

7



Assume that predictor (5.4) is constructed under the hypothesis that ν = 0 (i.e, that x(·) is a band-

limited processes from XL), for some a ∈ R\[−1, 1]. For an arbitrarily small ε > 0, we can find

γ = γ(ε) such that if the hypothesis that ν = 0 is correct, then

∥ŷ − y∥ℓ∞ ≤ ε

2π
, (6.1)

where y(·) and ŷ(·) are such as in Definition 3.

Let us estimate the prediction error for the case when ν > 0. We have that

∥ŷ − y∥ℓ∞ ≤ 1

2π
∥Ŷ

(
eiω

)
− Y

(
eiω

)
∥L1(−π,π),

where Y = Zy and Ŷ = Z ŷ. Let Ω1 = Ω− ε/4 and G1 = (−Ω1,Ω1). By the assumptions on X , we

have that

∥Ŷ
(
eiω

)
− Y

(
eiω

)
∥L1(−π,π) ≤ I1 + I2 + νI3,

where

I1 = κ

∫
G1

eγψ(ω)dω, I2 = κ

∫
G\G1

eγψ(ω)dω, I3 = κ

∫
(−π,π)\G

eγψ(ω)dω,

and where κ = maxω ||K(eiω)|,

ψ(ω) = sign (a+ α)Re
eiω + a

eiω + α
.

Note that ψ(ω) > 0 for ω ∈ G. Let ψ0 = minω∈G1 ψ(ω), and let γ = − log(2κ/ε)/ψ0. Then I1 ≤ ε/2.

Further, I2 ≤ κmes (G\G1) = ε/2. Therefore, (6.1) holds if ν = 0.

The value I1 + I2 represents the forecast error when ν = 0; this error can be done arbitrarily small

with γ selected as above when ε→ 0.

Let us estimate I3. Clearly, |ψ(ω)| ≤ 1 +
∣∣∣ a−α
eiω+α

∣∣∣ ≤ µ, where µ = 1 + |a− α|/(1− α). Hence

I3 ≤ κ

∫
(−π,π)\G

eγµdω = κ

∫
(−π,π)\G

e
log(2κ/ε)

ψ0
µ
dω = 2κ(π − Ω)e

log(2κ/ε)µ
ψ0 .

Hence

νI3 ≤ 2κν(π − Ω)

(
2κ

ε

) µ
ψ0

.

The value νI3 represents the additional error caused by the presence of unexpected high-frequency noise

(when ν > 0). It can be seen that if ε → 0 than this error is increasing as a polynomial of ε−1 with the

rate depending on α (defined by Ω and a). If Ω → π then |α| → 1 and µ→ +∞, and, for a given ε, the

error is increasing exponentially in µ.
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7 Concluding remarks

• By (5.2), α → ±1 as Ω → π, and the predictor suggested above loses its feasibility as Ω → π.

(In particular, ∥k̂∥ℓ∞ → +∞).

• If k(·) is a real valued function, then k̂ is also real valued. It follows from the fact that K (z̄) =

K (z), and, therefore, K
(
e−iω

)
= K (eiω).

• A similar approach can be applied to the case when X(z) vanishes on some connected set I ⊂ T.

In this case, the classes K0 and K1 have to be replaced by similar classes with complex a ∈ Dc.

For real valued kernels, it could be meaningful to include the functionsK represented by the sums

of two simple fractions, to ensure that the process Z−1k is real (i.e, that K (eiω) = K
(
e−iω

)
).

• The predictors obtained above require the past values of x(s) for all s ∈ (−∞, t]. In practice,∑t
s=−∞ k̂(t − s)x(s) can be approximated by

∑t
s=−M k̂(t − s)x(s) for large enough M >

0. In addition, the corresponding transfer functions can be approximated by rational fraction

polynomials.

• The system for the suggested predictors is stable, since the corresponding transfer functions have

poles in the domain {|z| < 1} only. However, the suggested predictors are not robust. For

instance, if the predictor is designed for the class XL and it is applied for a process x(·) /∈ XL
with small non-zero energy at the frequencies outside [−Ω,Ω], then the error generated by the

presence of this energy is increasing if γ → ∞.

• The results of this paper can be applied to discrete time stationary random Gaussian processes.

In particular, assume that the spectral density of the underlying process x(t) vanishes outside the

interval [−Ω,Ω] ⊂ (−π, π). It is known that the minimal (optimal) predicting error is zero in

this case. The sequence of the predictors constructed above represents a sequence of suboptimal

predictors leading to vanishing prediction error.
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