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Abstract

In this paper, we consider the Cauchy problem for a generalized Boussi-

nesq equation. We show that, under suitable conditions, a global so-

lution for the initial value problem exists. In addition, we derive the

sufficient conditions for the blow-up of the solution to the problem.
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1. Introduction

Over the last couple of decades, a great deal of work has been carried out

worldwide to study the properties and solutions of Boussinesq type equations
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(see [3,6,7,8,9,10,11]). In this paper, we study the following Cauchy problem:

utt − ωuxx + uxxxx + [f(u)]xx = 0, (1.1)

and

u(0, x) = u0(x), ut(0, x) = u1(x), (1.2)

where u := u(t, x) : R+ ×R→ R, ω > 0 is a constant, f , u0, u1 : R→ R are

given functions and the subscripts denote partial differentiation. Note that

the partial differential equation (1.1) is a well-known generalized Boussinesq

equation that arises in the study of water waves (see [12, 17]), dense lattices

(see [13]) and anharmonic lattice waves (see [15]).

Problem (1.1)-(1.2) with ω = 1 has been previously considered in [3, 11].

Specially, the authors in [3] used Kato’s theory developed in [4, 5] to show

that the Cauchy problem (1.1)-(1.2) is locally well-posed. The solitary wave

solutions of equation (1.1) were also investigated and it was found that within

a certain range of phase speeds, those solutions are non-linearly stable. In

[11], based on the ground state of a corresponding non-linear Euclidean scalar

field equation (see Section 2 for a definition), sufficient conditions for solution

blow-up were established. In addition, when f(s) = |s|p−1s for some p > 1 in

(1.1), conditions guaranteeing the existence of a global solution for problem

(1.1)-(1.2) were derived.

One of the aims of this paper is to construct sufficient conditions for the

existence of a global solution for problem (1.1)-(1.2) when f is in a more

general form and ω is an arbitrary constant. To do this, we first generalize

Theorem 2.6 of [11]. As the method of proof employed in [11] is not suitable
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for the generalized problem considered here, we use a different approach to

establish this result. Based on the new result, sufficient conditions for the

existence of a global solution are established. The other aim of the work is

to derive conditions for the blow-up of the solution to problem (1.1)-(1.2)

for some more general cases of f . For this purpose, we propose a different

approach to derive a necessary inequality and consequently establish the

blow-up results. It should be addressed here that our blow-up results extend

those reported in [11] which is for the case f(s) = |s|p−1s (p > 1).

2. Preliminary results

Before proving our main results relating to problem (1.1)-(1.2), we will first

need to establish some preliminary lemmas involving a corresponding non-

linear Euclidean scalar field equation. Although the space domain of (1.1) is

R, we will study this corresponding equation in the more general setting RN .

The non-linear Euclidean scalar field equation that we will consider is

−∆φ + ωφ = f(φ), (2.1)

where φ ∈ H1(RN)\{0}, ω > 0 is a constant and f is a given function.

The function f is required to satisfy some conditions. More specifically, we

consider the following two cases:

Case 1. f(s) = |s|p−1s − |s|q−1s for some real numbers p and q satisfying
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1 < q < p < κ, where

κ =





N+2
N−2

, N ≥ 3,

+∞, N = 1, 2.

Case 2. f satisfies the following hypotheses:

(H1). f ∈ C1(R); f is odd; f ′(0) = 0 and f(s) ≥ 0 for all s ≥ 0.

(H2). If N ≥ 3, then lim
s→+∞

f(s)

s`
= 0 and lim sup

s→+∞

f ′(s)
s`−1

< +∞, where

` = N+2
N−2

; otherwise, there exists an ` ∈ (1,∞) such that

lim
s→+∞

f(s)

s`
= 0 and lim sup

s→+∞

f ′(s)
s`−1

< +∞.

(H3). There exists a real number θ ∈ (
0, 1

2

)
such that

F (s) :=

∫ s

0

f(τ)dτ ≤ θsf(s)

for all s ≥ 0.

(H4). The function
f(s)

s
is strictly increasing on (0, +∞).

In this paper, |·|l will denote the norm of Ll(RN), while ‖·‖H1(RN ) will denote

the norm of H1(RN). According to [1], if f is a continuously differentiable

function satisfying (H2) and f(0) = f ′(0) = 0, then the functionals

S(ψ; f, ω) :=

∫

RN

[1

2

∣∣∇ψ(x)
∣∣2 +

ω

2

∣∣ψ(x)
∣∣2 − F

(
ψ(x)

)]
dx
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and

R(ψ; f, ω) :=

∫

RN

[∣∣∇ψ(x)
∣∣2 + ω

∣∣ψ(x)
∣∣2 − ψ(x)f

(
ψ(x)

)]
dx

are well-defined on H1(RN). Normally, we will omit f and ω when referring

to those functions if the dependence is obvious.

Recall that a function ϕ ∈ H1(RN)\{0} is called a ground state of equa-

tion (2.1) if

(i) ϕ is a solution of (2.1); and

(ii) S(ϕ; f, ω) ≤ S(ψ; f, ω) whenever ψ is a solution of (2.1).

In other words, ϕ minimizes S over the class of solutions of (2.1). For Case 2,

it has been shown in reference [2] that such a ground state exists. This result

is extended further in the following two lemmas.

Lemma 1. Suppose that f satisfies the conditions listed in either Case 1 or

Case 2, and that ω > 0 and ψ ∈ H1(RN)\{0}. Then, there exists a unique

λ∗ ∈ (0, +∞) such that

R(λψ; f, ω)





> 0, if 0 < λ < λ∗,

= 0, if λ = λ∗,

< 0, if λ > λ∗.

In addition, S(λ∗ψ; f, ω) > S(λψ; f, ω) whenever λ 6= λ∗.
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Lemma 2. Let M := {ψ ∈ H1(RN)\{0} : R(ψ; f, ω) = 0}, ω > 0 and

suppose that f satisfies the conditions listed in either Case 1 or Case 2.

Then, there exists a solution ϕ to the following problem:

min
ψ∈M

S(ψ; f, ω). (2.2)

Moreover, the set of solutions of problem (2.2) coincides with the set of ground

states of equation (2.1).

Note that the results in the above two lemmas have been proved in [2] for

Case 2 and in [14] for Case 1 with ω = 1 and N ≥ 2. The proofs for the

remaining cases are given in the appendix.

In view of Lemma 2, we see that equation (2.1) has a ground state if ω > 0

and f satisfies the conditions listed in either Case 1 or Case 2. Accordingly,

set

d := min
ψ∈M

S(ψ). (2.3)

Next we will prove a preliminary result that will be used in derivation of

the conditions for the blow-up of the solution to problem (1.1)-(1.2). To do

this, the following additional condition is required for Case 2:

(H′
4) There exists a real number β > 1 such that the function f(s)

sβ is

increasing on (0,∞).

Note that the condition (H′
4) is stronger than the condition (H4). If f satisfies

the hypotheses (H1), (H2), (H3) and (H′
4), we refer to it as Case 2+. Hence,

Case 2+ is included in Case 2. It is also noted that if f(s) = |s|p−1s for some

real number p > 1, then f satisfies all the conditions listed in Case 2+.
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Lemma 3. Suppose that ω > 0 and f satisfies the conditions listed in ei-

ther Case 1 or Case 2+. If ψ ∈ H1(RN)\{0} satisfying R(ψ) < 0, then,

R(ψ) < (ρ + 1)
[
S(ψ)− d

]
, where ρ = q for Case 1 and ρ = β for Case 2+.

Proof. From Lemma 1, it follows that there exists a unique number λ∗ ∈ (0, 1)

such that R(λ∗ψ) = 0. Let

G(λ) := (ρ + 1)S(λψ)−R(λψ).

Now, we are in the position to prove that G(λ) is strictly increasing on (0,∞).

Noting that the function f is odd, we have

G(λ) =
ρ− 1

2
λ2

[
ω|ψ(x)|22 + |∇ψ(x)|22

]

+

∫

RN

[
λ|ψ(x)|f(

λ|ψ(x)|)− (ρ + 1)F
(
λ|ψ(x)|)

]
dx

and

G′(λ) =λ(ρ− 1)
[
ω|ψ(x)|22 + |∇ψ(x)|22

]

+ λ

∫

RN

|ψ(x)|2
[
f ′

(
λ|ψ(x)|)− ρ

f
(
λ|ψ(x)|)

λ|ψ(x)|

]
dx.

Note that, for both Case 1 and Case 2+, the function f(s)
sρ is increasing on

(0,∞). Thus, f ′(s) − ρf(s)
s
≥ 0 for each s > 0. Hence, G′(λ) > 0 for each

λ > 0. Consequently, we have that G(1) > G(λ∗). That is,

(ρ + 1)S(ψ)−R(ψ) > (ρ + 1)S(λ∗ψ)−R(λ∗ψ).
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Using the fact that R(λ∗ψ) = 0 and S(λ∗ψ) > d, we can obtain that

(ρ + 1)
[
S(ψ)− d

]
> R(ψ).

3. Main results

In this section, we will introduce an equivalent form for problem (1.1)-(1.2).

Then, on the basis of an existing local existence theorem, we construct condi-

tions for the existence of global solution for problem (1.1)-(1.2) under Case 1

and Case 2, and then establish the sufficient conditions for the blow-up of

the solution to problem (1.1)-(1.2) under Case 1 and Case 2+.

Now, we consider the following problem which is equivalent to prob-

lem (1.1)-(1.2):

ut = vx,

vt = ωux − uxxx − [f(u)]x ,



 (3.1)

subject to the initial conditions

u(0, x) = u0(x), v(0, x) = v0(x). (3.2)

Note that u1(x) in problem (1.1)-(1.2) and v0(x) in problem (3.1)-(3.2) satisfy

u1(x) = v′0(x).
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Set

E(u, v) :=

∫ +∞

−∞

[
ω

2
u2 +

1

2
u2

x +
1

2
v2 − F (u)

]
dx,

V (u, v) :=

∫ +∞

−∞
uvdx,

I1(u, v) :=

∫ +∞

−∞
udx,

I2(u, v) :=

∫ +∞

−∞
vdx.

According to [10, 11], it can be easily established that problem (3.1)-(3.2) is

always locally well-posed, and the above four functionals are invariant.

Theorem 1. (Local existence) [10,11] If f ∈ C1(R) such that f(0) = 0 and

(u0, v0) ∈ H1(R)× L2(R), then problem (3.1)-(3.2) possesses a unique weak

solution (u, v) in C
(
[0, T ); H1(R) × L2(R)

)
such that E(u, v) = E(u0, v0),

V (u, v) = V (u0, v0), I1(u, v) = I1(u0, v0) and I2(u, v) = I2(u0, v0). Moreover,

the interval of existence [0, T ) can be extended to a maximal interval [0, Tmax)

such that either

(i) Tmax = +∞; or

(ii) Tmax < +∞, lim
t→T−max

‖(u, v)‖H1(R)×L2(R) = +∞,

where ‖(u, v)‖H1(R)×L2(R) = ‖u‖H1(R) + |v|2 denotes the norm of H1(R) ×
L2(R).
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Remark 1. Note that Theorem 1 is slightly different from the ones reported

in [10,11] where ω = 1. Let g(s) := f(s)−ωs+s for each s ∈ R. If f ∈ C1(R)

such that f(0) = 0, then g ∈ C1(R) and g(0) = 0.

Now, we define two subsets of H1 (R) which will be proved to be invariant

under the flow generated by problem (3.1)-(3.2) for Cases 1 and 2. Let

K1 := {ψ ∈ H1(R) : S(ψ) < d, R(ψ) > 0}

and

K2 := {ψ ∈ H1(R) : S(ψ) < d, R(ψ) < 0},

where d is defined as (2.3). Suppose that (u0, v0) ∈ H1(R)× L2(R) are such

that E(u0, v0) < d. We will show that if ω > 0, f satisfies the conditions

listed in either Case 1 or Case 2 and u0 ∈ K1, then the corresponding solution

exists globally. Furthermore, if, in addition to satisfying the conditions listed

in either Case 1 or Case 2+, ω > 0 and u0 ∈ K2, then the corresponding

solution blows up in finite time. All these results are furnished precisely in

the following theorems.

To simplify the presentation, for the remainder of this section we will use
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the following notation:

u(t) := u(t, x),

ux(t) := ux(t, x),

v(t) := v(t, x).

Theorem 2. (Invariant sets) Suppose that ω > 0 and f satisfies the

conditions listed in either Case 1 or Case 2, and that (u0, v0) ∈ H1(R)×L2(R)

satisfying E(u0, v0) < d. Let (u, v) ∈ C
(
[0, Tmax); H

1(R) × L2(R)
)

be the

weak solution of problem (3.1)-(3.2). If, for each i ∈ {1, 2}, u0 ∈ Ki, then

u(t) ∈ Ki for 0 ≤ t < Tmax.

Proof. By virtue of Theorem 1, we have that E
(
u(t), v(t)

)
= E(u0, v0) < d

for each t ∈ [0, Tmax), which implies that S
(
u(t)

)
< d for each t ∈ [0, Tmax).

Hence, to prove u(t) ∈ K1, it suffices to show R
(
u(t)

)
> 0. Arguing by

contradiction, one can prove that R
(
u(t)

)
> 0 for each t ∈ [0, Tmax). Assume

that there is a t̄ ∈ [0, Tmax) such that R(t̄) ≤ 0. Noting that u0 ∈ K1, we see

R(u0) > 0. According to the continuity of R
(
u(t)

)
with respect to t, there

is a t∗ ∈ (0, t̄] such that R
(
u(t∗)

)
= 0. It follows from Lemma 2 and the

definition of d that S
(
u(t∗)

) ≥ d, which contradicts S
(
u(t∗)

)
< d.

Similarly, we can derive that if u0 ∈ K2, then u(t) ∈ K2, t ∈ [0, Tmax).
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Theorem 3. (Global existence in K1) Suppose that ω > 0 and f satisfies

the conditions listed in either Case 1 or Case 2. Then, if u0 ∈ K1 and

v0 ∈ L2(R) such that E(u0, v0) < d, problem (3.1)-(3.2) possesses a unique

weak solution (u, v) ∈ C
(
[0, +∞); H1(R)× L2(R)

)
.

Proof. As stated by Theorem 1, it suffices to prove that ‖u(t)‖H1(R) + |v(t)|2
is bounded for 0 ≤ t < Tmax. Since f satisfies (H3) (note that if f(s) =

|s|p−1s− |s|q−1s, then f satisfies (H3) by choosing θ = 1
q+1

), we have

S
(
u(t)

) ≥1

2

∫ +∞

−∞

[|ux(t, x)|2 + ω |u(t, x)|2] dx− θ

∫ +∞

−∞
u(t, x)f

(
u(t, x)

)
dx

=

(
1

2
− θ

) ∫ +∞

−∞

[|ux(t, x)|2 + ω |u(t, x)|2] dx + θR
(
u(t)

)

≥
(

1

2
− θ

)
min{1, ω}‖u(t)‖2

H1(R) + θR
(
u(t)

)
.

Applying Theorem 2 yields u(t) ∈ K1, i.e. S
(
u(t)

)
< d and R

(
u(t)

)
> 0 for

0 ≤ t < Tmax. Thus, ‖u(t)‖H1(R) is bounded on [0, Tmax) and S
(
u(t)

)
> 0.

On the other hand, combining E
(
u(t), v(t)

)
< d and S

(
u(t)

)
> 0, it is easily

verified that |v(t)|22 < 2d for 0 ≤ t < Tmax.

Theorem 4. (Solution blow-up in K2) Let ω > 0 and f satisfy the

conditions listed in either Case 1 or Case 2+. Suppose that u0 ∈ K2 and

v0 ∈ L2(R) such that E(u0, v0) < d and ξ−1û0 ∈ L2(R), where û0 denotes

the Fourier transform of u0. Let (u, v) ∈ C
(
[0, Tmax); H

1(R)×L2(R)
)

be the
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weak solution of problem (3.1)-(3.2). Then Tmax < +∞ and

lim
t→T−max

(‖u(t)‖H1(R) + |v(t)|2
)

= +∞.

Proof. Here we use proof by contradiction. Suppose that Tmax = +∞. Ac-

cording to [11], it follows from ξ−1û0 ∈ L2(R) that

ξ−1û ∈ C1
(
[0,∞); L2(R)

)
.

Let

I(t) := |ξ−1û(t, ξ)|22, t ∈ [0,∞).

Then,

I ′(t) = 2
(
ξ−1û(t, ξ), ξ−1ût(t, ξ)

)
(3.3)

and

I ′′(t) = 2|v(t)|22 − 2R(u(t)), (3.4)

where
(
ξ−1û(t, ξ), ξ−1ût(t, ξ)

)
=

∫ +∞
−∞ ξ−1û(t, ξ)ξ−1ût(t, ξ)dξ. Using the Cauchy-

Schwarz inequality, it follows from (3.3) that [I ′(t)]2 ≤ 4I(t)|v(t)|22 for t ∈
[0,∞). Let ρ = q for Case 1 and ρ = β for Case 2+. We have for each
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t ∈ [0,∞) that

I ′′(t)I(t)− ρ + 3

4
[I ′(t)]2

≥ −I(t)
[
(ρ + 1)|v(t)|22 + 2R

(
u(t)

)]

= −I(t)
{

2(ρ + 1)
[
E(u0, v0)− S

(
u(t)

)]
+ 2R

(
u(t)

)}
.

Noting that E(u0, v0) < d, we have from above that

I ′′(t)I(t)− ρ + 3

4
[I ′(t)]2

≥ −I(t)
{

2(ρ + 1)
[
d− S

(
u(t)

)]
+ 2R

(
u(t)

)}
.

It follows from Theorem 2 that R
(
u(t)

)
< 0. Thus, using Lemma 3, we

can obtain that I ′′(t)I(t) − ρ+3
4

[I ′(t)]2 > 0. Define J(t) := [I(t)]−
ρ−1
4 , then

J ′′(t) < 0 for each t ≥ 0.

Now, we will prove that there exists a t∗ > 0 such that I ′(t∗) > 0. If not,

then, for all t ≥ 0, I ′(t) ≤ 0. From (3.4) and R
(
u(t)

)
< 0, it follows that

I ′′(t) > 0 for all t ≥ 0. Note that

lim
t→∞

I ′(t) = I ′(0) +

∫ ∞

0

I ′′(s)ds

exists. Hence, there is a sequence {tn} such that

lim
n→∞

I ′′(tn) = 0.
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Combining (3.4) and R
(
u(t)

)
< 0, we get

lim
n→∞

R
(
u(tn)

)
= 0. (3.5)

Using Lemma 3 again yields that

(ρ + 1)
[
E(u0, v0)− d

] ≥ (ρ + 1)
[
S
(
u(tn)

)− d
]

> R
(
u(tn)

)
.

By virtue of (3.5), we have E(u0, v0) ≥ d, which leads to a contradiction.

For such a t∗, J(t∗) > 0 and J ′(t∗) < 0. Noting that J ′′(t) < 0 for t ≥ 0,

there exists a t̂ ∈
(
0,− J(t∗)

J ′(t∗)

]
such that J(t̂) = 0. Hence,

lim
t→t̂−

I(t) = +∞. (3.6)

Combining (3.3) and the Cauchy-Schwarz inequality, we see that, for each

t ∈ [0, t̂),

d [I(t)]
1
2

dt
=

1

2
[I(t)]−

1
2 I ′(t) ≤ 1

2
[I(t)]−

1
2 2 [I(t)]

1
2 |v(t)|2 = |v(t)|2,

from which we obtain that, for each t ∈ [0, t̂),

[I(t)]
1
2 < [I(0)]

1
2 +

∫ t

0

|v(τ)|2dτ.

Thus, in view of (3.6), we obtain

∫ t̂

0

|v(τ)|2dτ = +∞,
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which implies that there exists a sequence {τn} such that 0 < τn < t̂,

lim
n→∞

τn = t̂ and

lim
n→+∞

|v(τn)|2 = +∞.

This contradicts Tmax = +∞. Therefore, Tmax < +∞ and

lim
t→T−max

(‖u(t)‖H1(R) + |v(t)|2
)

= +∞.

4. Conclusion

In this paper, we have studied the solution to the Cauchy problem for a gen-

eralized Boussinesq equation. Based on the ground state of a corresponding

non-linear Euclidean scalar field equation, we constructed two invariant sets.

We have then established the sufficient conditions under which a unique so-

lution exists globally if the initial function u0 belongs to the first invariant

set, while the solution blows up if u0 belongs to the second invariant set.
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6. Appendix

Proof of Lemma 1. We prove the lemma for Case 1. Firstly, it follows from

the definitions of S and R that, for each λ ∈ [0,∞),

S(λψ) =

∫

RN

(1

2
λ2|∇ψ(x)|2 +

ω

2
λ2|ψ(x)|2 − 1

p + 1
λp+1|ψ(x)|p+1

+
1

q + 1
λq+1|ψ(x)|q+1

)
dx

and

R(λψ) =

∫

RN

(
λ2|∇ψ(x)|2 + ωλ2|ψ(x)|2 − λp+1|ψ(x)|p+1 + λq+1|ψ(x)|q+1

)
dx.

A straightforward calculation shows that

dS(λψ)

dλ
=

R(λψ)

λ
. (5.1)

Now, define

g(λ) := λp−1 − aλq−1 − b,

where a =
|ψ|q+1

q+1

|ψ|p+1
p+1

and b =
ω|ψ|22 + |∇ψ|22

|ψ|p+1
p+1

. Then,

g′(λ) = (p− 1)λp−2 − a(q − 1)λq−2 = (p− 1)λq−2

[
λp−q − a(q − 1)

p− 1

]
. (5.2)
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Set λ0 :=

[
(q−1)|ψ|q+1

q+1

(p−1)|ψ|p+1
p+1

] 1
p−q

> 0. It is clear from (5.2) that

g′(λ)





< 0, if λ ∈ (0, λ0),

= 0, if λ = λ0,

> 0, if λ ∈ (λ0, +∞).

Consequently, g(λ) is strictly decreasing on [0, λ0] and strictly increasing

on (λ0, +∞). Since g(0) < 0 and lim
λ→+∞

g(λ) = +∞, there exists a unique

λ∗ ∈ (λ0, +∞) such that

g(λ)





< 0, if λ ∈ (0, λ∗),

= 0, if λ = λ∗,

> 0, if λ ∈ (λ∗, +∞).

As R(λψ) = −λ2|ψ|p+1
p+1g(λ), we derive that R(λ∗ψ) = 0, R(λψ) > 0 for

λ ∈ (0, λ∗), and R(λψ) < 0 for λ > λ∗. In addition, from (5.1), we have

dS(λψ)

dλ





> 0, if λ ∈ (0, λ∗),

= 0, if λ = λ∗,

< 0, if λ ∈ (λ∗, +∞).

Hence, it follows that S(λ∗ψ) > S(λψ) whenever λ 6= λ∗. ¤

Proof of Lemma 2. Similar to Lemma 1, we prove this lemma for Case 1.

Multiplying both sides of (2.1) by φ, integrating over RN and using Green

formula, we see that any solution of (2.1) belongs to M . If ψ ∈ M , then we
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have that, for 1 < q < p,

S(ψ) =
1

2
|∇ψ|22 +

ω

2
|ψ|22 −

1

p + 1
|ψ|p+1

p+1 +
1

q + 1
|ψ|q+1

q+1

>
1

2
|∇ψ|22 +

ω

2
|ψ|22 −

1

p + 1

(|ψ|p+1
p+1 − |ψ|q+1

q+1

)

=

(
1

2
− 1

p + 1

) (|∇ψ|22 + ω|ψ|22
)

(5.3)

> 0.

Hence, S is bounded below on M . Accordingly, let {vn} ⊂ M be a minimizing

sequence such that lim
n→+∞

S(vn) = inf
ψ∈M

S(ψ).

Let ψ∗ denote the Schwarz spherical rearrangement of a function |ψ|.
From [2], ψ∗ is the spherically symmetric non-increasing (with respect to |x|)
function having the same distribution function as |ψ| such that

∫

RN

|∇ψ∗(x)|2dx ≤
∫

RN

|∇ψ(x)|2dx

and

∫

RN

|ψ∗(x)|ldx =

∫

RN

|ψ(x)|ldx

for each l ∈ (1,∞). Therefore,

S(ψ∗) ≤ S(ψ) (5.4)

for each ψ ∈ H1(RN). In addition, it is easy to check that, for each real

number γ > 0, (γψ)∗ = γψ∗.
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For a given n, it follows from Lemma 1 that there exists a unique real

number νn > 0 such that R(νn(v∗n)) = 0. Let un = νn(vn)∗ = (νn(vn))∗.

Then, according to (5.4) and Lemma 1, we get

S(un) = S
((

νn(vn)
)∗) ≤ S

(
νn(vn)

) ≤ S
(
vn

)
.

Therefore, the spherically symmetric non-increasing sequence {un} is a min-

imizing sequence in M as well.

By virtue of (5.3), we have S(un) >
(

1
2
− 1

p+1

)
(|∇un|22 + ω|un|22). Hence,

the boundness of sequence {S(un)} implies that sequence {un} is uniformly

bounded in H1(RN). Applying the compactness lemma of W. Strauss [16]

(see also [1]), there exists a subsequence of {un}, relabeled by {un} for nota-

tional convenience, such that, for 1 < l < `,

un ⇀ u∞ weakly in H1(RN),

un → u∞ a.e. in RN ,

un → u∞ strongly in Ll+1(RN),

(5.5)

where ` is as defined in assumption (H2). Arguing by contradiction, we

can conclude that u∞ 6= 0. Suppose that u∞ = 0. Noting that un con-

verges almost everywhere to 0 as n → ∞, it is clear from R(un) = 0

that lim
n→∞

‖un‖H1(RN ) = 0. Thus, un strongly converges to 0 in H1(RN)

as n → +∞. On the other hand, R(un) = 0 implies that

min{1, ω}‖un‖2
H1(RN ) ≤ |∇un|22 + ω|un|22 + |un|q+1

q+1 = |un|p+1
p+1.
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Applying Sobolev’s inequality, it follows

|un|p+1 ≤ c‖un‖H1(RN ),

here and thereafter, c denotes various positive constants. Noting that p > 1,

we can obtain that

c ≤ ‖un‖H1(RN ),

which leads to a contradiction.

According to Lemma 1, there is a unique real number µ > 0 such that

R(µu∞) = 0. Let φ := µu∞. In view of (5.5), we have

µun ⇀ φ weakly in H1(RN),

µun → φ a.e. in RN ,

µun → φ strongly in Ll+1(RN).

(5.6)

Noticing that R(un) = 0, Lemma 1 gives that S(µun) ≤ S(un). As S is

weakly sequential lower semi-continuous on H1(RN), we have

S(φ) ≤ lim inf
n→+∞

S(µun) ≤ lim
n→+∞

S(un) = inf
ψ∈M

S(ψ).

Note that φ ∈ M . Hence φ is a solution of problem (2.2).

Now, we will prove that φ satisfies (2.1). Since φ solves problem (2.2),

there exists a Lagrange multiplier Λ such that

S ′(φ) = ΛR′(φ). (5.7)
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We claim that Λ = 0, which implies that φ is a solution of (2.1). Indeed, it

follows from [1] that S and R are continuously Frechet-differentiable and

< S ′(φ), φ > =

∫

RN

[
|∇φ(x)|2 + ω|φ(x)|2 − |φ(x)|p+1 + |φ(x)|q+1

]
dx = R(φ) = 0,

< R′(φ), φ > = 2|∇φ|22 + 2ω|φ|22 − (p + 1)|φ|p+1
p+1 + (q + 1)|φ|q+1

q+1

< 2|∇φ|22 + 2ω|φ|22 − (p + 1)|φ|p+1
p+1 + (p + 1)|φ|q+1

q+1

= (1− p)(|∇φ|22 + ω|φ|22)
< 0,

where < ·, · >=< ·, · >(H−1(RN ),H1(RN )). Therefore, the solutions of problem

of (2.2) are also ground states of (2.1). Recalling that each solution of (2.1)

belongs to M , we can conclude that the set of ground states of (2.1) coincides

with the set of solutions of problem (2.2) . ¤
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