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In this paper, we consider a fractional optimal control problem governed by system of 

linear differential equations, where its cost function is expressed as the ratio of a convex 

function and a concave function. This optimal control problem can, in principle, be 

solved by applying Dinkhelbach algorithm. However, it will lead to solving a sequence of 

hard DC programming problems. To overcome this difficulty, we introduce the reachable 

set for the linear system. In this way, the problem is reduced to a quasiconvex 

maximization problem in a finite demensional space. Based on a global optimality 

condition, we propose an effective algorithm for solving this fractional optimal control 

problem and we show that the algorithm generates a sequence of local optimal controls 

with improved cost values. The proposed algorithm is then applied to several test 

problems, where the global optimal cost value is obtained for each case.  
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1  Introduction 

Consider the fractional programming problem: 

 

 ( ) ,max ( )
f
g∈x

x
xD

             (1) 

where 1[ ,..., ]T n
nx x= ∈x R , D  is a convex compact subset in nR , ( )f x  is convex 

on D  and ( )g x  is concave on D , while ( )f x  and ( )g x  are positive definite for 

all ∈x D . 

 

The above problem, which is referred to as Problem (P1), has many applications in 
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engineering and economic. There are numerous methods in the literature for solving 

Problem (P1). They include variable transformation [1], direct nonlinear programming 

approach [2], and parametric approach [3]. Problem (P1) has been considered in [4-19], 

where f  is concave and g  is convex. Problem (P1) can, in principle, be solved by 

Dinkhelbach algorithm [12]. But in this way, the algorithm requires solving DC 

programming at each step which may be harder than solving the original Problem 1. In 

this paper, we consider a fractional optimal control problem governed by system of linear 

differential equations, where its cost function is expressed as the ratio of a convex 

function and a concave function. We introduce the reachable set for the linear system. In 

this way, the problem is reduced to a quasiconvex maximization problem in a finite 

demensional space. Based on a global optimality condition, we propose an effective 

algorithm for solving this fractional optimal control problem and we show that the 

algorithm generates a sequence of local optimal controls with decreasing cost values. The 

proposed algorithm is applied to several test problems, where the global optimal cost 

value is obtained for each case.  

 

The rest of the paper is organized as follows. In Section 2, the formulation of the 

quadratic fractional optimal control problem is given. The algorithm and numerical 

results for several test problems are presented in Section 3. Some concluding remarks are 

stated in Section 4. 

 

2  Fractional Optimal Control Problem 

Consider the following system of linear differential equations over the time horizon 

0[ , ]ft t . 

 

 0
0

( ) = ( ) ( ) ( ) ( ) (2 )
( ) = (2 )
t t t t t a
t b

+ +x A x B u C
x x

       

where 0t  and ft  are given with 0< < < ,ft t−∞ +∞  1 2( ) = [ ( ), ( ), , ( )]T n
nt x t x t x t ∈x  R , 

1 2( ) = [ ( ), ( ), , ( )]T r
rt u t u t u t ∈u  R  are, respectively, the state and control, and the 

elements of the matrix valued functions ( ) n nt ×∈A R , ( ) n rt ×∈B R and 1( ) nt ×∈C R  are 



piecewise continuous on 0[ , ]ft t . Let rU ⊂ R  be a compact and convex subset. Then, 

the set of admissible controls is defined by 

 { }2 0 0= ([ , ]) | ( ) , [ , ]n
f fL t t t U t t t∈ ∈ ∈ ∈u u uV     (3) 

where 2 0([ , ])fL t t  denotes the set of all square integrable functions defined on 0[ , ]ft t  

with values in nR . 

   The fractional optimal control problem, which is referred to as Problem (P2), may 

now be stated formally as follows. 

Problem (P2): Given the dynamic system (2), find an admissible control ∈u V  such 

that the cost function 

 ( ) 1

2

( ), ( )
( ) =

( ), ( )
f f

f
f f

t t
x t

t t d
ϕ

〈 〉

〈 〉 +

D x x
D x x

    (4) 

 

is minimized over V , where ,• •  denotes the inner product, 1D  is a symmetric 

positive definite matrix, 2D  is a symmetric negative definite matrix, d  is a positive 

constant such that ( )2 2( ) = ( ), ( ) > 0f f fg t t t d〈 〉 +x D x x  for all ∈u V , and  

( )1 1( ) = ( ), ( ) > 0f f fg t t t〈 〉x D x x  for all ∈u V . 

It is well known [20] that the solution of system (2) can be written as:  

 [ ]
0

0
0( ) = ( , ) ( , ) ( ) ( ) ( )

t

t
t t t t dt t t t t+ +∫x u F x F B u C      (5) 

where ( , ) n nt t ×∈F R  is the fundamental matrix solution of the matrix equation  

 0
( , ) = ( ) ( , ), [ , ]f
t t t t t t
t
t t t∂

≥ ∈
∂

F A F    (6a) 

( , ) =t tF I     (6b) 

Here, I  denotes the identity matix. Note that ( )tx u  is an absolutely continuous 

vector-valued function of the time t . It satisfies (2a) almost everywhere on 0( , ]ft t  and  

the initial condition (2b). To continue, define 

 { }= ( ) = | = ( ),n
f ft t∈ ∈y y x u uRD D V  (7) 

D  is called the rechable set of system (2) with respect to ∈u V . Clearly, n⊂ RD  is a 



convex and compact set. Problem (P2) can be written as  

 ( )max ϕ
∈x

x
D

       (8) 

 

which is referred to as Problem (P3). Define  

  

 { }( , ) = | ( )L c cϕ ϕ∈ ≤x xD  (9) 

Clearly, ( , )L cϕ  is a convex set for each > 0c .    

 

Definition 1. [1] A function :h → RD  is said to be quasiconvex if the following 

inequality  

 ( ) { }(1 ) max ( ), ( )h h ha a+ − ≤x y x y  

is satisfied for all , ∈x y D  and [0,1]a ∈ .     

Lemma 1. [1] The function ( )h x  is quasiconvex on D  if and only if the set ( , )L h c  

is convex for each > 0c .   

   From Lemma 1, it is clear that the function ( )( )ϕ •x  is quasiconvex on D . Thus, 

Problem (P3) is a quasiconvex maximization problem. Now, we shall apply the global 

optimality conditions [1,3] to Problem (P3).   

 

Theorem 1. [3] Let  

 { }( ) = | ( ) =n
cE cϕ ϕ∈y yR  (10) 

Then,  

 ( ), 0ϕ′〈 − 〉 ≤y x y     (11) 

holds for all ( ) ( )Eϕ ϕ∈ zy  and ∈x D , where ϕ′  denotes the gradient. In addition, 

suppose that ( ) 0ϕ′ ≠y  holds for all ( ) ( )Eϕ ϕ∈ zy . Then, condition (11) is a sufficient 

condition for ∈z D  to be a global solution to Problem (P3).   

 

Clearly, condition (11) can be written equivalently as follows:  



1 2
2 1 21

2

( ) ( )( ) ( ) 0
( )

n i i
i

i i

x yg gg g
x x g=

  −∂ ∂
− ≤  ∂ ∂   

∑ y yy y
y

 (12) 

for all ( ) ( )Eϕ ϕ∈ zy  and ∈x D .   

 

Lemma 2. Suppose that for any feasible points , ∈x y D  such that the inequality  

 ( ), > 0ϕ′〈 − 〉y x y  

holds. Then, ( ) ( )ϕ ϕ≥x y .   

 

Proof. On the contrary, assume that ( ) < ( )ϕ ϕx y . Since ϕ  is quasiconvex, we have  

 ( ) { }(1 ) max ( ), ( ) = ( )ϕ a a ϕ ϕ ϕ+ − ≤x y x y y  

By Taylor's formula, there is a neighborhood of the point y  on which  

 ( ) ( )
( ) ( ) = ( ), 0,

o a
ϕ a ϕ a ϕ

a
 − 

′+ − − 〈 − 〉 + ≤ 
 

x y
y x y y y x y  

for sufficiently small > 0a , where   

 
0

( )
lim 0

o
a

a
a→

−
=

x y
. 

Therefore, ( ), 0ϕ′〈 − 〉 ≤y x y  which contradicts ( ), > 0ϕ′〈 − 〉y x y . This completes the 

proof.  

 

Lemma 3. Let ( )ϕ x be a function defined by (4). Then, it holds that    

 1 2

2

2( ( ))( ) =
, d
ϕϕ −′

〈 〉 +
D D x xx
D x x

    (13) 

Proof. The proof follows readily from the definition of the function ( )ϕ x . 

 

In the numerical computation, we need to find a point ( ) ( )Eϕ ϕ∈ zy  in order to check the 
validity of the optimality condition (11). To do this, we prove the following assertion. 
 

 

Lemma 4. Let ∈z D  and n∈h R  such that ( ), < 0ϕ′〈 〉z h . Then, there exists a positive 

number > 0a  such that  



 ( )= ( )Eϕa ϕ+ ∈ zy z h  

   

Proof. By the definition of ( )ϕ x , we have ( ) > 0ϕ x  for all ∈x D . By Lemma 3, it 

follows that condition ( ), < 0ϕ′〈 〉z h  can be written as  

( )1 2 ( ) , < 0ϕ〈 − 〉D D z z h  (14) 
In order to find an a  satisfying ( ) ( )Eϕ ϕ∈ zy ,  we need to solve the equation  

 ( ) = ( )ϕ a ϕ+z h z  (15) 

where ∈z D  and n∈h R , while 

 1

2

,( ) = .
, d

ϕ 〈 〉
〈 〉 +

D z zz
D z z

 (16) 

Or equivalently,  

 2 1( ) , ( ) = ,dϕ ϕ〈 〉 + 〈 〉z D z z z D z z   (17) 

Since 1 1=TD D  and 2 2=TD D , it follows that the expression  

 1

2

( ), = ( )
( ), ( ) d

a a ϕ
a a

〈 + + 〉
〈 + + 〉 +

D z h z h z
D z h z h

(18) 

becomes  

 
2

1 1 1
2

2 2 2

, 2 , ,

= ( ) , 2 ( ) , ( ) , ( )d
a a

ϕ aϕ a ϕ ϕ

〈 〉 + 〈 〉 + 〈 〉

〈 〉 + 〈 〉 + 〈 〉 +

D z z D z h D h h
z D z z z D z h z D h h z

(19) 

Substituting (17) into (19), we obtain 

 2 2
1 1 2 22 , , = 2 ( ) , ( ) ,a a aϕ a ϕ〈 〉 + 〈 〉 〈 〉 + 〈 〉D z h D h h z D z h z D h h  

Since 0a ≠ , we have  

 2 1 1 2

1 2 1 2

2[ ( ( ) ) , ] 2 ( ( ) ) ,= =
, ( ) , , ( ) ,
ϕ ϕa

ϕ ϕ
〈 − 〉 〈 − 〉

−
〈 〉 − 〈 〉 〈 〉 − 〈 〉

z D D z h D z D z h
D h h z D h h D h h z D h h

 (20) 

Furthermore, since ( ) > 0ϕ z  and 2 < 0D , it is clear that 

 1 2, ( ) , > 0ϕ〈 〉 − 〈 〉D h h z D h h (21) 

This, in turn, implies that > 0a . Thus, the proof is completed.  

 

Remark 1. Note that the condition assumed in Lemma 4 (i.e., ( ), < 0ϕ′〈 〉z h ) is fulfilled 

if we take = −h x z  where z  is a local maximum point and ∈x D . Thus, it follows 



that ( ), 0ϕ′〈 − 〉 ≤z x z , ∀ ∈x D . 

Let *u  be an admissible control which is a global optimal control to Problem (P3) and 

let *x  be the corresponding solution of system (2). 

 

Introduce an auxiliary function ( )Π y  defined by  

 ( ) = ( ), ,max nϕ
∈

′Π 〈 − 〉 ∈
x

y y x y y R
D

   (22) 

Then, based on Theorem 1, we can derive the global optimality conditions for Problem 

(P2) in the following theorem. 

 

Theorem 2. A control * ∈u V  is a global optimal control to Problem (P2) if and only if  

 { }*( )
max ( ) | ( ) 0E

ϕ
ϕΠ ∈ ≤

x
y y (23) 

where * * *= ( , ) ( )f ft t∈x x u D .  

Proof. The validity of Theorem 2 is equivalent to that of the optilimality condition (11). 

From Theorem 2, we can conclude that if there exist a process ( , )x u   and ( ) ( )Eϕ ϕ∈ xy  

such that  

 ( ), > 0ϕ′〈 − 〉y x y      (24) 

then the control u  is not a global optimal control to Problem (P2), where = ( )ftx x u   , 

= ( )ftx x u , and , ∈u u V  
 

Example 1. Consider the problem  

 ( )
2 2
1 2

1 2

(1) (1)max (1) =
2 (1) 4 (1)
x x
x x

ϕ
 +
 + 

x    (25) 

or the equivalent problem  

 ( )
2 2
1 2

1 2

(1) (1)min (1) =
2 (1) 4 (1)
x x
x x

ϕ
 +
− − + 

x    (26) 

 where 

 1 1

2 2

=
=

x u
x u








   (27a) 



with initial condition 

1

2

(0) = 0
(0) = 1

x
x





(27b) 

The set of admissible control is defined by 

 { }2
2 1 2= ([0,1]) | 0 ( ) 7,0 ( ) 4, [0,1]L u t u t t∈ ∈ ≤ ≤ ≤ ≤ ∈u uV    (28) 

We can easily check that this problem has three controls 0 = [0,4]Tu , 1 = [7,4]Tu  and 
2 = [7,0]Tu  which satisfy the maximum principle. Now let us check whether the control 
0 = [0,4]Tu  is a global optimal or not. To do this, we first solve system (27) for 0=u u , 

yielding  

 1 2( ) = 0, ( ) = 1 4 , [0,1]x t x t t t+ ∈  

Thus, 1(1) = 0x , 2 (1) = 5x  and ( ,1) = 5 / 4ϕ x . The level set ( ) ( )Eϕ ϕx  at the point 

0(1, )x u  is  

 
2 2

2 1 2
( (1))

1 2

5( ) = | = .
2 4 4
y yE
y yϕ ϕ

 +
∈ + 

x y R  

It is easy to verifi that ( (1))= [5 / 2,5] ( )T Eϕ ϕ∈ xy . 

 

Now, we find a point [6, 4]T= ∈u V . Let x  be the corresponding trajectory obtained 

from (27). That is, 

 1 2( ) = 6 , ( ) = 1 4 , [0,1]x t t x t t t+ ∈   

Then, 1(1) = 6x , 2 (1) = 5x . 

Now, taking the partial derivative  of ϕ  with respect to the components of x , we 

obtain  

 

( )

( )

2 2
1 1 2 2

2
1 1 2

2 2
2 1 2 1

2
2 1 2

(1) 2 8 2=
(2 4 )

(1) 4 4 4=
(2 4 )

x x x x x
x x x
x x x x x
x x x

ϕ

ϕ

∂ + −
 ∂ +

∂ + −

 ∂ +

 

Computing ( ),ϕ′〈 − 〉y x y   , we obtain  



( ) ( )
2 2 2 2
1 1 2 2 2 1 2 1

1 1 2 22 2
1 2 1 2

2 8 2 4 4 4( ), =
(2 4 ) (2 4 )

y y y y y y y yx y x y
y y y y

ϕ + − + −′〈 − 〉 − + −
+ +

y x y
       

      
   

 

 875= > 0
2500

 

This implies that the control 0 = [0,4]Tu  is not a global control to our problem. 

 

In fact, the control 1 = [7,4]Tu  is a global control with the cost value of 

( )1(1, ) = 74 / 37ϕ x u .  

 

Before we derive an algorithm to solving Problem (P2), we need to compute ( )Π y  for 

any n∈y R . 

 

First, we consider the linear optimal control problem, which is referred to as Problem 

(P4).  

 ( ),max ϕ
∈

′〈 〉
x

y x
D

   (29) 

Consider the following system of differential equations 

 
=

( ) = '( )

T

ft
 −
 −

ψ A ψ
ψ φ y


   (30) 

Corresponding to n∈y R . This system, which is known as the co-state system, has a 

unique piecewise differentiable solution ( ) = ( )t tψ y y , defined on 0[ , ]ft t , where 

[ ]1( , ) = ( ), , ( ) T
nt t tψ ψψ y  . ( )tψ  is referred to as the co-state. Problem (P4) can be 

solved by using the results presented in the following theorem.   

 

Theorem 3. [1] Let ( ) = ( )t tψ ψ y , 0[ , ]ft t t∈ , be a solution of the co-state system (30) 

for n∈y R . Let ( ) = ( )t tz z y  be an admissible control. ( )tz is an optimal control to 

Problem (P4), then it is necessary and sufficient that 

 ( ), ( ) ( ) = ( ), ( ) ( )min
V

t t t t t t
∈

〈 〉 〈 〉
u

ψ y B z y ψ y B u  (31) 



for almost every 0[ , ]ft t t∈ .  

On the basis of Theorem 3, the value ( )Π y  can be computed by using the 

following algorithm. 

 

Algorithm 1. 

Step 1. Solve the co-state system (30) for a given n∈y R . Let ( ) = ( )t tψ ψ y be 

the solution. 

Step 2. Find the optimal control ( ) = ( )t tz z y  as the solution of the problem  

 ( ), ( ) ( )min t t t
∈
〈 〉

u
ψ B u

U
 

        at each 0[ , ]ft t t∈ . 

Step 3. Find a solution ( ) = ( )t tx x z  of system (2) for ( ) = ( )t tu z y . 

Step 4. Find ( ) = ( )f ft tx x z  by (5) with = ft t . 

Step 5. Compute ( )Π y  by the formula ( ) = ( ), ( )ftϕ′Π 〈 − 〉y y x y . 

 

3  Solution Computation 

  

Definition 2. For a given integer m , let mAz  be the set defined by  

 { }1 2
( )= , , , | ( ) , = 1,2, ,m m iA E i mϕ ϕ∈ ∩z zy y y y 2D  

Then, it is called an approximation set, where = ( ), ft ∈z x u u V .  

 

Lemma 5. Suppose that there exist a feasible point ∈z D and a point i mA∈ zy  such that  

 ( ), > 0j j jϕ′〈 − 〉y u y  

Then, ( ) > ( )jϕ ϕu z , where ( ), = ( ),maxj j jϕ ϕ
∈

′ ′〈 〉 〈 〉
x

y u y x
D

.   

Proof. The proof follows readily from Lemma 2. 

 

The algorithm for solving Problem (P2) may now be stated as follows. 



 

 Algorithm 2  

 

Step 1. Let := 0k  and let k ∈u V  be an arbitary given control. Starting with the 

control ku , we find a local optimal control ku  by using the optimal control software 

package, MISER3 [21, 22]. 

Step 2. Find = ( )k k
ftx x u  by solving system (2) for = ku u . 

Step 3. Construct the approximation set m
kA

x
 as follows:  

 { }1 2

( )
== , , , | ( ) ( ), = 1,2, , .m m i

k k fA E t i m
ϕ

ϕ∈ ∩
x x

y y y y 2D  

 

Step 4. Solve the linear optimal control problems  

 
( )

( ), , = 1,2, , .max i

t f

i mϕ
∈

′〈 〉
x

y x 2
D

 

 

Step 5. Compute ( )iΠ y , = 1,2, ,i m2 , by Algorithm 1. 

Step 6. Compute kη :  

 
1

= ( ) = ( )maxi i
k

i m
η

≤ ≤
Π Πy y . 

             Let = ( )j j jtz z y  be the solution of the problem:  

 0( ), ( ) = ( ), ( ) ( ) , [ , ],minj j j
ft t t t t t t t

∈
〈 〉 〈 〉 ∈

u
ψ B z ψ B u

U
 

             where  

 
( ) = ( ) ( )

( ) = '( )

j T j

j j
f

t t t
t

 −
 −

ψ A ψ
ψ φ y


 

Step 7. If 0kη ≤ , then terminate. ku  is a global approximate solution; otherwise, 

go to next step. 

Step 8. Set 1 := ( )k j jt+u z y  and := 1k k + . Then, go to Step 2. 

 

Lemma 6. Suppose that there is a point j m
kA∈

x
y  for ( )k

ft∈u D  such that 



( ), ( , ) > 0j j j
ftϕ′〈 − 〉y x z y , where jz  satisfies 

( )
( ), ( ) = ( ),minj j j

f
t f

tϕ ϕ
∈

′ ′〈 〉 〈 〉
x

y x z y x
D

. 

Then, it holds that 

 ( ) ( )( ) > ( )j k k
f ft tϕ ϕx z x z  

Proof. From Lemma 2, we have  

 ( ), ( ) > 0j j j
ftϕ′〈 − 〉y x z y  

 Thus,  

 ( ) ( ) ( )1( ) = ( )j j k k
ft tϕ ϕ ϕ≥x z y x u .  

This completes the proof. 

Theorem 4. If > 0kη  for all = 1,2, ,k s2 , then the sequence { }( )kJ u  constructed by 

Algorithm 2 is a monotonically increasing sequence, i.e.,  

 1( ) ( ), = 1,2, ,k kJ J k s+ ≥u u 2  

where ( )( ) = ( )k k
fJ tϕu x u .  

 

Remark 2. If the functions ( )1 ( ) > 0fg tx  and ( )2 ( ) > 0fg tx  for all n∈x R , then it 

follows from (20) that 

 { }1 2

( )
= , , , | ( ), = 1,2, ,m m i

k kA E i m
ϕ

ϕ∈
x x

y y y y 2  

 where =i k i
iha+y x , > 0ia , = 1,2, ,i m2 , and  

 
( )( )( ) ( )

( )( )
2 1

1 2

2 ,
=

, ,

k k k k i
f f

i i i k k i i
f

t t

t

ϕ
a

ϕ

 〈 − 〉  
〈 〉 − 〈 〉

x u D D x u h

D h h x u D h h
  

 

 Numerical Examples  

 

In this section, Algorithm 2 is used to solve two fractional optimal control problems. The 

computer used in the numerical computation is DELL desktop computer with Intel Core 

I5 CPU (2.67GHZ) and 3GB RAM. All the calculations are done within the Matlab 

environment. The optimal control software package, MISER 3, is used for our local 



search in Step 1. The two fractional optimal control problems are shown as following. 

 

Example 1. Consider an optimal control, where the cost function 

( ) 1

2

(2), (2)(2) =
(2), (2) 15000

ϕ 〈 〉
〈 〉 +

D x xx
D x x

, 

where 

1 2

1 2 2 1
= , =

1 3 1 4
−   

   − −   
D D  

is maximized over { }2 | 4 7, 1, 2, [0, 2]iu i t= ∈ − ≤ ≤ = ∈u RV  subject to the dynamic 

system 

1 2 1

2 1 2

=
=

x x u
x x u

+
 +




 

with initial condition 1 2(0) = (0) = 0x x . 

  

Example 2. Consider an optimal control, where the cost function 

 ( ) 1

2

(1), (1)(1) =
(1), (1) 10000

ϕ 〈 〉
〈 〉 +

D x xx
D x x

 

is maximized over { }2
1 2| 1 1, 1,2, 3 4 6, [0,1]iu i u u t= ∈ − ≤ ≤ = + ≤ ∈u RV  subject to the 

dynamic system 

 1 1 2 1 2

2 1 2 1 2

=
= 2 2 3

x x x u u
x x x u u

− − +
 − + + −




 

with initial condition 1 2(0) = 2, (0) = 1x x .  

 

Based on the local optimal controls obtained by MISER 3, the two optimal control 

problems are solved using the optimization procedures listed in Algorithm 2. Global 

optimal solutions are found for both of the two problems, see Table 1. 

 

Table 1   

Example Local value Global value Computing 



of ψ  of ψ  time 

(min:sec) 

1 1.4958 004e −  3.3348 000e +  00 :11.1144  

2 1.6639 001e −  2.0531 001e −  00 : 02.8093  

  

  

 

4  Conclusions 

Fractional optimal control problem has been considered. The problem was reduced to a 

quasiconvex maximization problem subject to linear constraints. Based on the global 

optimality conditions and properties of the quasiconvex function, we derived an effective 

algorithm for solving the problem globally. The numerical results are given to illustrate 

the applicability of the algorithm proposed. 
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