
©2005 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195662274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

74 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 2, MAY 2005

Reconfigurable Web Service Integration in the
Extended Logistics Enterprise

Alex Talevski, Member, IEEE, Elizabeth Chang, Member, IEEE, and Tharam S. Dillon, Fellow, IEEE

Abstract—Transportation and warehousing logistics are activ-
ities that require strong information systems and computer sup-
port. This requirement has grown with the advent of e-commerce.
Companies such as FedEx and UPS now allow their customers to
track and monitor the fulfillment of their requested services on the
Internet. In order for such a system to be effective, the goods need
to be handled by the one corporation, with an integrated system.
This is rare in the case of Small to Medium sized Enterprise (SME).
With the advent of Business to Business (B2B), and Partner to
Partner (P2P) e-commerce, there has been an increasing tendency
for SMEs to set up consortia that represent several players in a
given field in order to contend with larger competitors. This paper
deals with the concept of an extended logistics enterprise and ex-
plores the software engineering issues underlying the development
of such complex systems.

Index Terms—Extended logistics enterprise, service integration,
service reconfiguration, systems interoperability.

I. INTRODUCTION

THE TERM “enterprise application” defines a class of ap-
plications that automate key business functions, such as

managing supply chains and customer relationships. Custom en-
terprise applications constitute the majority of software systems
and development. The Enterprise Application Market (EAM)
has been predicted to grow to US$78 Billion in 2004 where
the E-Business Relationship Management (ERM) and Supply
Chain Management (SCM) segments are of highest economic
importance, both representing more than 15% of the market
share.

The advent of the web has provided mechanisms for binding
organizations together, carrying out sales over great distances at
any time through new modes of marketing and enabled partner-
ships that were previously inconceivable. A consequence of this
connectivity and information richness is that we are now faced
with an increasingly competitive and rapidly evolving environ-
ment. We now require new business paradigms and organiza-
tion forms that transcend the previous static, closed models and
move to flexible, re-configurable, and collaborative models that
are able to respond to environment dynamics inherent within the
networked business economy.

Manuscript received August 13, 2004.
A. Talevski was with the Department of Computer Science and Computer En-

gineering, La Trobe University, Bundoora, Vic. 3083, Australia. He is now with
the School of Information Science, Curtin University, Perth, WA 684, Australia
(e-mail: Alex.Talevski@cbs.curtin.edu.au).

E. Chang is with the School of Information Science, Curtin University, Perth,
W.A. 6845, Australia (e-mail: change@cbs.curtin.edu.au).

T. S. Dillon is with the Faculty of Information Technology, Uni-
versity of Technology, Broadway, N.S.W., Australia 2007 (e-mail:
tharam5@it.uts.edu.au).

Digital Object Identifier 10.1109/TII.2005.844421

The extended enterprise represents a new business paradigm
and organizational form. Several factors characterize an ex-
tended enterprise, namely, the following.

— Collaboration: An increasingly collaborative approach
between individual enterprises.

— Infrastructure: A strong information infrastructure that
extends beyond the original closed walls of the individual
enterprise.

— Electronic interaction: Consumer/provider services cou-
pled with high connectivity and electronic handling of in-
formation.

— Reconfigurable and adaptive: Ability to self organize,
and reconfigure the underlying architecture.

— Multichannel marketing: Use of multiple channels for
sales and marketing.

— Data mining: Capture and utilization of business intelli-
gence from data and smart information use; these features
are being used by successful organizations, in collabora-
tive supply chains and virtual logistics consortia for mar-
keting, strategic partnerships, and selling of services.

A key factor in the success of such extended enterprises is
the creation of the underpinning information technology infra-
structure in order to integrate collaborating business partners.
Inter-changing information between logistics partners is a key
factor in being competitive.

A. Consortia

In recent times in B2B and P2P e-commerce, there has been
an increasing tendency to set up consortia among SMEs in order
to contend with larger competitors. Consortia consist of organi-
zations in a given field that get together and produce a single
site. These consortia fall into two classes.

— Companies getting together to form a single site to in-
crease traffic through this site as compared to other com-
petitor’s sites.

— Companies that have their own regions of operation but
could benefit by providing a service to customers that ex-
tends beyond their region of operation.

A new form of collaboration is likely to develop in the
near future leading to the concept of a virtual extended logis-
tics provider. This virtual provider assembles many logistic
providers into strategic alliances. Alliance partners combine
their facilities to achieve a warehousing and transportation
network that is geographically widely distributed, and provides
a greater range of services. Thus, an integrated extended lo-
gistics hub and portal that facilitates the utilization of these
products and services is essential. Such a central portal may

1551-3203/$20.00 © 2005 IEEE

TALEVSKI et al.: RECONFIGURABLE WEB SERVICE INTEGRATION 75

offer warehousing, logistics, auction, virtual market, and other
online facilities from a range of integrated partners.

B. Requirements

This new class of virtual logistic providers will require a new
level of IT support. Due to the diverse environment that this class
of consortia operates in, there exists a special need for runtime
inter-organizational system integration, information exchange
and communication. Collaborating services need to be identi-
fied by each partner and then integrated with the central portal.
However, several factors represent major issues in developing
such a hub and portal. Both technical and other environmental
issues exist.

C. Technology

A problem faced in developing a system such as the one dis-
cussed, is the complexity of service integration and reconfigu-
ration occurring on different layers [11]. The heterogeneity in
these layers is primarily caused by different:

— operating systems;
— hardware devices;
— network technologies;
— middleware technologies;
— communication and interaction protocols;
— programming languages;
— services and interfaces;
— underlying architectures;
— data and document formats.
Other problems include:

— business processes and procedures;
— business requirements and wants;
— business structures;
— business cultures;
— standards (laws, languages, documents, etc.).

This problem becomes a multidimensional one when non-
functional properties such as security, availability, and transac-
tions, are interwoven within the application. One of the most
challenging aspects of this problem is that collaboration must
take place despite the disparate systems being used.

II. EXISTING APPROACHES

Existing solutions of partner integration and collaboration
have utilized mostly middleware-oriented approaches.

— Server side redirection: Server side redirection is used
to readdress a user from a native site to a foreign one
when a user’s requested services cannot be satisfied lo-
cally. This type of an approach is typically simple to setup,
and has low cost. However server side redirection is a non
integrated approach where no collaborative business pro-
cesses are considered.

— Remote method/procedure invocation: Remote
method/procedure invocation systems typically employ
a client/server infrastructure that increases the interop-
erability, portability, and flexibility of an application, by
allowing the application to be distributed over multiple
heterogeneous platforms. However, such systems incur

high setup costs, have no service discovery repository
and a non standardized interaction scheme is used.

— Third party message brokers: Third-party message
brokers utilize an open framework that specifies how
organizations can exchange business documents in a
straightforward way. Interchange standards define busi-
ness documents such as invoices, bills, and purchase
orders. These brokers are normally well-tested solutions
that are available off-the-shelf. However, the document
formats that are used cannot be easily read by a person
and business processes are not considered.

— Component-based technologies: Component-based
technologies allow for both communication and ma-
nipulation of objects over a network connection. They
provide a framework for creating, distributing, and man-
aging components. Disparate components communicate
through an interface broker. These technologies have
matured significantly over the years, but currently do
not provide standardized interaction protocols, and are
generally incompatible.

The technologies mentioned above are merely tools that fa-
cilitate point-to-point connection and communication between
organizations. On their own, they do not provide a framework
for service integration and reconfiguration. Furthermore, these
technologies do not yet provide end-to-end solutions that sup-
port extended enterprises.

III. SERVICE-ORIENTED ARCHITECTURE (SOA)

A service is a unit of work done by a service provider to
achieve desired end results for a service consumer. Services map
to distinct business domains. A software service is generally im-
plemented as a course-grained software entity. This service typ-
ically interacts with applications and other services through a
loosely coupled (often asynchronous), message-based commu-
nication model. Interaction with services is performed over well
defined interfaces that are considered consumer/provider.

A SOA is a way of connecting applications across a network
via a common interaction protocol. SOA is an architectural style
whose goal is to achieve loose coupling among interacting soft-
ware agents by employing two architectural constraints.

— A small set of simple and ubiquitous interfaces to all par-
ticipating software agents.

— Service interaction is constrained through a structured in-
teraction scheme. A schema limits the vocabulary and
structure of messages. This schema allows new versions
of services to be introduced without breaking existing
services.

SOA defines how those service interfaces are located, ex-
ecuted, managed, monitored and secured. The interfaces are
often published in a directory which allows application devel-
opers to browse collections of services, select those of interest,
and assemble them to create the desired functionality. SOA
encourages that larger applications are divided into smaller
discrete modules, and that these fine grained modules are used
to produce course-grained services that can be easily integrated
by others. In this way, services and clients can be changed
independently of one another. In theory, this lets developers

76 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 2, MAY 2005

map distinct business process as services that can be chained
together in order to realize certain collaborative behavior.

A service-oriented architecture requires three fundamental
operations: publish, find and bind. Companies implementing
Web Services may take on Service Provider, Broker, and/or Re-
questor roles. This concept of publish-find-bind is shown in
Fig. 1.

A service is a course-grained software entity. Interactions
with a service are governed by an interface contract. SOAs are
comprised of four primary roles.

— Service provider: A service provider implements a ser-
vice specification. It publishes this specification via a
service directory, and is utilized by a service consumer.
Traditionally, this is referred to as a server.

— Service consumer: A service consumer finds provided
services which are published by a service directory that
it binds to. Traditionally, this is referred to as a client.

— Services directory: A service directory is a specific kind
of service provider that acts as a registry for service infor-
mation, and allows for the searching of service provider
interfaces and service locations.

— Service broker: A service broker is also a specific kind of
service provider that can pass on service requests to one
or more additional service providers.

In order to efficiently design, develop, and utilize services, a
few best practice characteristics should be followed.

— Coarse-grained: Operations on services should be imple-
mented to encompass more functionality and operate on
larger data sets, compared with component-interface de-
sign.

— Interface-based design: Services implement separately
defined interfaces. The benefit of this is that multiple ser-
vices can implement a common interface and a service
can implement multiple interfaces.

— Discoverable: Services need to be discoverable by unique
identity, interface and by service type.

— Single instance: Unlike component-based systems,
which may instantiate multiple components as required,
a service is a single, always running instance.

— Loosely coupled: Services should interact by using stan-
dardised, system independent, message-based methods
such as XML technologies.

— Asynchronous: Asynchronous message passing is rec-
ommended. It is, however, not absolutely required.

A. Objects, Components, and Services

Structured design processes when large scale systems are
concerned have in the past revolved around function/data
decomposition. However, such systems are susceptible to high
maintenance costs as even minor modifications may result in
the introduction of bugs throughout the software. Systems built
using function/data methods often exhibit characteristics of
poor quality. More recently, the object-oriented (OO) approach
has been adopted to provide a more natural progression to a
solution. By using the OO paradigm, changes to the system
can be localized, and therefore will have little side-effect on

Fig. 1. Service publish-find-bind.

the overall system. This typically results in a system of higher
quality and lower cost.

Component systems adhere to the principle of divide and
conquer for managing complexity. Components are the smallest
possible reusable software. They are self-managing, indepen-
dent and ideally can be reused in multiple environments.
Through a components’ interface, it is possible to compose a
component with other components and integrate this composite
component into a system in a straightforward way. Composite
component architectures are formed from layered components
where components at the lower layers provide services to the
components above them, through middleware.

An interface represents the point of interaction or communi-
cation between two software entities. In both component and
service development, the notion and concept of an interface is
the key to a successful implementation. However, SOAs abstract
the component interfaces further, in order to expose a particular
service. The following are the key interface-related definitions.

— Interface: An interface defines a set of public method
signatures that are logically grouped. An interface de-
fines an entry point, as well as the contract between the
provider/consumer of a service.

— Published interface: An interface that is uniquely identi-
fiable and made available through a registry for clients to
dynamically discover.

— Public interface: An interface that is available for clients
to use but is not published, thus requiring static knowledge
on the part of the client.

— Dual interface: Frequently interfaces are developed as
pairs, such that one interface depends on another.

In many ways, the terminology for services is much the same
as the terminology used to describe component-based develop-
ment; however, there are specific terms used to define service
elements. As compared to components, the service-oriented ap-
proach implies a further abstraction through an additional appli-
cation architecture layer. A service exposes an external view of
a system, while having internal reuse and composition through
the use of components.

There are several key differences between services, compo-
nents and objects, and many shared concepts.

Services
— Language Independent
— Platform Independent

TALEVSKI et al.: RECONFIGURABLE WEB SERVICE INTEGRATION 77

— Self Describing
— Location Transparent

Components
— Contain Infrastructure Services
— Language Independent
— Platform Dependent

Objects
— Contain Underlying Logic
— Language Dependent
— Platform Dependent

Recent Gartner research has highlighted the importance of
service-oriented architectures in solving the business integra-
tion issue. There is a growing realization that integration is best
solved using a service-oriented architecture.

B. Service Integration and Interaction

A service topology is a pattern for composing a distributed
application where the

— physical network identifies the physical infrastructure
connecting the computing devices;

— logical network utilizes a point-to-point topology that ab-
stracts the participants from the physical infrastructure.

The service topology abstracts the participants from both the
physical and logical network. Two key service interaction
topologies exist.

— Connectors: Connectors direct the output of one service
into the input of another service in a point-to-point fashion
where the participants are directly interconnected with
each other rather than using a centralized intermediary.

— Orchestrations: Orchestrations utilize a high-level
scripting language to control the sequence and flow of
service execution, using a hub and spoke topology. Hub
& Spoke is a topology that refers to the use of a central
hub to coordinate interacting services. The orchestration
server may use an orchestration script to govern the
interactions that will occur between services.

Research has shown that in order to overcome information
sharing issues we must look into the use of structured docu-
ment formats. The Extensible Markup Language (XML) and
Resource Description Framework (RDF) have both proved to
be suitable in overcoming such issues. Both XML and RDF
provide an information sharing medium for system interopera-
tion through structured data formats The formalization of the
representation of these data structures is made possible using
an XML-Schema. XML-Schema is a W3C recommendation
that places rules that XML documents must adhere to in order
to be validated and accepted for further processing.

Just-in-time integration can be used to connect or orches-
trate services. Just-in-time integration among collaborations of
web services enables available services to be bound dynami-
cally during runtime. In this case a service consumer describes
the required capabilities of a service and uses a services direc-
tory to locate such a service. Once a service has been located,
just-in-time integration can be used to bind to it.

Businesses are not required to replace their existing in-
frastructures in order to adopt a service framework. Service

implementations benefit from the ability to wrap legacy appli-
cations. Wrapping is a technique in which legacy code is given
an interface that facilitates interoperation with other software
applications that are based on a different technology. Wrapping
enables legacy systems to interoperate with newer technologies
and services.

Once connection and documents interchange issues are
solved, it should be possible to plug-in services that appear on
a network into a single information bus. Applications are then
composed of a collection of collaborating services. A system
is then able to evolve through the addition of new services
where each service provides access to coarse-grained business
processes.

C. Extended Enterprise

A service network is an application level network that lever-
ages the concepts of SOA. The service network is composed of
service consumers and providers. A service network is made
possible by the standardization of service interaction. This
model of integrating corporations via service is often called the
extended enterprise. The extended enterprise is a concept that
promotes the use of application level interaction between com-
panies to enable near real-time integration. Thus, applications
at one company become extensions to the applications at their
trading partners, and vice-versa. The extended enterprise lever-
ages the concepts of SOA as infrastructure for collaborating
parties.

D. Web Services

Service-oriented methodologies are currently employed in
many system design approaches, in particular among business
collaboration systems. An emerging technology that aims at
addressing some of the service integration complexity issues is
web services. Several major players in the e-business develop-
ment community including IBM, Microsoft, Hewlett Packard,
Compaq, and Userland, have adopted this approach.

The web service technology is based on the SOA concepts,
focusing on the interactions of services over networks. It
is widely considered to be the next-generation distributed
computing model. Web services are an evolution in the way
we architect, design, implement and deploy service-oriented
systems. A web service is a software application that is network
distributed and identified by a URI. Web service interfaces and
binding are capable of being defined, described and discovered
by XML artefacts.

The guiding principles for Web Services are

— service-oriented architecture;
— standardized specification and interaction;
— use of meta-languages.
Web services enable collaborating business-trading partners

to interact in a straightforward way via the Extended Enterprise.
Web services leverage three key technologies.

— Universal Description Discovery and Integration
(UDDI): Service repository.

— Web Service Definition Language (WSDL): Service In-
terface Definition.

78 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 2, MAY 2005

— Simple Object Access Protocol (SOAP): Interaction
Protocol.

1) Service Repository: UDDI is a global meta directory for
locating web services by enabling robust queries against rich
metadata. UDDI is an industry specification for building flex-
ible, interoperable XML Web service registries. It provides a
means to describe trading partners and the services they provide.
UDDI is often viewed as the “yellow-pages” of web services.
Registries (also called directories), are repositories where in-
formation about trading partner profiles or services is stored. A
trading partner profile is a digital method for determining how,
and to what extent, a company can trade online. The profile may
include technical capabilities, security requirements, transports,
and message correlation mechanisms, as well as the business di-
alects spoken. The profile serves as a basis for creating a trading
agreement. The agreement is a digital agreement that specifies
how the participants will conduct online business.

2) Service Interface Definition: WSDL is an XML format
for describing network service interfaces that operate through
the use of messages containing either document-oriented or pro-
cedure-oriented information. The operations and messages are
described abstractly, and then bound to a concrete network pro-
tocol and message format. WSDL is extensible to allow descrip-
tion of services and their messages regardless of what message
formats or network protocols are used to communicate.

WSDL descriptions contain the following.

— Types: a container for data type definitions using some
type system.

— Message: an abstract, typed definition of the data being
communicated.

— Operation: an abstract description of an action supported
by the service interface.

— Port Type: an abstract set of operations supported by the
service.

— Binding: a concrete protocol and data format specifica-
tion for a particular port.

— Port: a service interface defined as a combination of a
binding and a network address.

— Service: a collection of related service interfaces.

In many cases, the WSDL for a service is stored in the service
repository. Registries can be public (open to everyone), or pri-
vate (available to a single company or to a trading community).

3) Interaction Protocol: SOAP is a lightweight protocol in-
tended for exchanging structured information in a decentralized,
distributed environment. SOAP is responsible for the transport
and delivery of web service invocations. SOAP messages are
sent between service consumer and service provider to bind
these services. SOAP messages are usually transported over the
widely used HTTP protocol. A SOAP Server is a server that
hosts web services and acts as a provider of services. SOAP
Servers have support for SOAP as well as WSDL. The SOAP
Server is the primary participant in a Service Network

4) Types of Web Services: Conceptually, we can create and
utilize two types of web services.

Programmatic web service—Programmatic web ser-
vices provide their services in the form of operations

Fig. 2. Programmatic web service.

Fig. 3. Interactive web service.

without a user interface. They are integrated into applica-
tions that have existing user interface tiers. These types of
web services enable the developer at the requesting end to
customize a user interface specifically for their business
requirements. A conceptual model for programmatic web
services is shown in Fig. 2.
Interactive web services—An interactive web service
exposes its provided services in the form of operations
along with a user interface. These types of web services
simplify the development of applications at the service re-
questor end, but may limit business workflow integration.
A conceptual model for interactive web services is shown
in Fig. 3.

The advent of B2B collaborations has created avenues for the
SMEs to form consortia as a competitive approach.

Previous practices in system development have tended to pro-
duce monolithic, tightly coupled applications, and subsystems
that are susceptible to bugs as modifications are made to any one
subsystem.

Recent developments, such as web services facilitate decen-
tralized, loosely coupled systems that are capable of dynamic
binding. These types of systems provide flexibility with their
just-in-time integration of services and have been widely ac-
cepted by the e-business community. However, much of the
software industry’s focus so far has been on the underlying
technology for implementing Web services and their interac-
tions. There has been very little attention to the appropriate
practices and tools required for constructing enterprise level
software solutions that are composed of collaborating ser-
vices. While web services provide a framework that facilitates
point-to-point integration of services, on their own they do not
provide a framework for service plug and play. This technology
does not fully support end-to-end development of enterprise

TALEVSKI et al.: RECONFIGURABLE WEB SERVICE INTEGRATION 79

Fig. 4. e-Hub architecture (one eHub is shown).

applications that are composed out of collaborating services.
The complexity of service integration and reconfiguration has
burdened the adoption of such systems.

In order to achieve a warehousing and transportation net-
work that is geographically widely distributed and provides a
greater range of services, consortia partners require a new flex-
ible information technology framework that facilitates straight
forward service integration and reconfiguration in a cost ef-
fective manner. We propose a distributed Meta model driven
framework that eases service integration and reconfiguration,
and redirects this task away from the software developer to the
softwares user.

IV. ARCHITECTURAL REQUIREMENTS

Logistics can basically be separated into the following.

— Transportation logistics, which is the movement of
goods to the right place in the right quantities.

— Warehousing and storage logistics, which is the storage
of goods at the right place in order to meet uncertain con-
ditions and demand.

The overall distributed supply chain application architecture
consists of one or more eHubs that are connected to different
companies in their own geographical area of operation. The
schematic for the architecture shown in Fig. 4 illustrates the in-
teractions of the different communities (one eHub is shown). It
is intended that the architecture would be layered so that each
corporation would at any time be able to replace its electronic

Warehouse Management System (eWMS) or electronic Logis-
tics Management System (eLMS) layers without affecting the
rest of the system.

V. DISTRIBUTED META FRAMEWORK

As shown in Fig. 5, the presented framework explicitly iden-
tifies an enterprise service. Through its interfaces an enterprise
service exposes both its provided and required operations. In
this way it is possible to make changes to any of the connected
service internals as long as the changes continue to adhere
to the interface contract. An interface contract specifies the
pre-conditions that must be met by a client prior to invoking a
server operation and the post-conditions that it will receive as
a return from the server. We have used the Unified Modeling
Language (UML) to illustrate our framework. However, in
the future it may be necessary to define a different notation
system.

A. Interfaces

An interface is a collection of operations that specify a ser-
vice. Interfaces are seen as a provider and a consumer [12]. The
concept of required and provided interfaces is essential to en-
abling software plug and play. It is possible to replace or modify
a services’ internals as long as the implementation adheres to
the interface contract. An interface contract specifies the ser-
vice interface, its exposed attributes and operations, the interac-
tion protocol and the pre and post-conditions that must be met
in order for enterprise applications to interoperate. Each enter-
prise application will expose multiple services and each service

80 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 2, MAY 2005

Fig. 5. Enterprise service.

will expose one or more provided interfaces and zero or more
required interfaces.

A services’ provided and required interfaces can be obtained
by querying a central Meta data repository or the web-service
itself.

— Provided interfaces expose the underlying provided op-
erations and attributes that represent the services that a
service provides. Services are operations that can be ac-
cessed through the provided interface by a client. The re-
sults of a call to a provided operation should be docu-
mented as post-conditions of that operation.

— Required interfaces. A service may also request a list of
services that it requires in order to perform. A service may
request either operations or attributes through its required
interfaces. The requirements of a web-service whether at-
tributes or operations should be documented in the com-
ponents pre-conditions.

Operations and attributes are either provided or required by a
component.

— Operation. An operation is the implementation of a spe-
cific service function that represents the dynamic behavior
of that service.

— Attributes. An attribute is a named property value that
describes the characteristics of a service.

B. Service Security

Access to enterprise services is restricted through a certificate
scheme. As a part of a clients’ request, the client must provide a
certificate. Based on this certificate certain, interfaces are hidden
and disabled. In conventional qualification based classification,
the means is a secret ticket that permits permission to anything
presenting it, and so the qualifications are required to be rigor-
ously restricted. A SPKI [13] certificate format focuses on au-
thorization rather than authentication. Specific authorization is
granted to a public key, without necessarily requiring identity
of the holder of the corresponding private key. The public key is
used to identify the key holder. Consequently, it does not need
to be treated as secret and to be strictly controlled.

The following items are stored in the SPKI certificate (Fig. 6)
[14].

— Version: The version number.
— Serial number: A unique number for identifying the cer-

tificate.
— Signature algorithms identifier: Information on the sig-

nature algorithm.
— Issuer: The certification authority that issues the certifi-

cate.
— Validity period: The period of time during which the cer-

tificate is valid.
— Subject: The owner of the public key.

TALEVSKI et al.: RECONFIGURABLE WEB SERVICE INTEGRATION 81

— Subject public key information: Information on the sub-
ject’s public key.

— Issuer unique identifier: Optional field for identifying
the issuer uniquely.

— Subject unique identifier: Optional field for identifying
the subject uniquely.

— Extension fields: This is for including additional data.
— Digital signature: The digital signature for the above

fields.
In this way, it is possible to do the following.

— Expose only a proportion of an enterprise service’s oper-
ations by customizing the privileges of its provided inter-
face through the use of certificates. This makes it possible
to provide varying grades of functionality based on, for
example, the price paid by the client user.

— Restrict the users of an enterprise service through a certifi-
cate scheme; thus, security is improved for sensitive data.

— Introduce a special developer portal that can offer de-
velopers access to the code, compilers, GUI tools, and
documentation they need to do their jobs. Testing and
debugging can be performed remotely on special testing
interfaces not permitted for use by normal users of the
enterprise service. In this way, it is possible to monitor
and classify bugs and performance issues associated with
each service.

C. Configuration—Attribute Connectors

Attribute connectors (Fig. 7) are used to glue required and
provided attributes together. Once glued, a required attribute al-
ways requests the value it requires from the provided attribute
that it is glued to. Attribute connectors can be used to connect
required service attributes to provided ones, or to a static value
provided by the user. An attribute adaptor can be used to convert
a provided attribute that is of the wrong type so that it satisfies
the requirements of a required attribute [15]. Attribute adaptors
are not discussed in this paper.

D. Composition—Operation Connectors

Like attribute connectors, operation connectors (Fig. 8) are
used to glue required and provided operations together. Once
glued, a required operation always calls the provided operations
that it is glued to. Operation connectors can be used to connect
required service operations to provided ones or to a static return
value as provided by the user. Operation adaptors may be used
when a provided operation has an incompatible return type or
parameters and needs conversion [15]. Operation connectors are
not discussed in this paper.

VI. PROTOTYPE SYSTEM

We have developed a prototype electronic Warehouse Man-
agement System (eWMS) in order to test the feasibility of
our approach. The eWMS is an online order capturing and
tracking system that allows users to manage their supply-chain.
The system is able to dynamically integrate a number of
heterogeneous warehouse services. Users of the system are
able to perform enquiries about their Lot Balance, Lot Move-
ment, Accounts Payable, and Order Status, as well as being

Fig. 6. Certificate XML schema.

Fig. 7. UML Meta model for component attribute connector.

Fig. 8. UML Meta model for component operation connector.

able to submit online orders such as warehouse booking,
goods transfer, and goods delivery. The eWMS is aimed at

82 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 2, MAY 2005

Fig. 9. eWMS architecture overview.

Fig. 10. eWMS service provider architecture.

the extended enterprise by providing an infrastructure for the
integration and reconfiguration of services that are provided by
warehousing SMEs. An overview of the eWMS architecture is
shown in Fig. 9.

A. eWMS Service Manager

The eWMS Service Manager deals with service requests
from users. It is responsible for the interaction between the
available services originating from WMS consortia partners.
The eWMS Service Manager refers to the XML service and
interaction specifications. This data is used to interconnect
consortia partners. Fig. 10 displays the components that make
up the eWMS Service Manager.

The eWMS Service Manager utilizes the Service Request
Handler, Web Service Request Generator, and the Service Re-
sponse Generator modules in order to integrate collaborating
consortia partners.

— Service request handler: The Service request handler
is responsible for the handling of eWMS service re-
quests made by the user of the system. It translates
these requests and locates the corresponding service
and interaction specifications from which a web ser-
vice request is generated.

— Web service generator: The creation of web service
requests from the input specifications is carried out
by the web service request generator. The web service
generator directly communicates with provided WMS
services. Once a request has been received from the
WMS service it is sent to the response generator.

— Response generator: The response generator accepts
responses from WMS services and translates them for
display on the eWMS user interface.

A Service Integration Manager (Fig. 11) is used as an ad-
ministration tool for specifying service interaction. The required
eWMS service specifications are shown on the left while the
provided WMS service specifications are shown on the right.
The middle section is used to specify the service interconnec-
tions between provider and consumer.

The service and interaction specifications represent two types
of information required to implement the dynamic integration of
web services:

— required and provided service specification;
— the interaction specification.

Fig. 12 illustrates the relationship between service specifica-
tions and interaction specifications.

— Service specifications: The service specification is an
XML document that defines a web service and its inter-
face.

— Provided service interface: A provided service interface
is a defined set of service operations provided by a web
service.

— Required service interface: A required service interface
is defined as a set of service operations required by a web
service.

— Service operations: Service operations are the
fine-grained services that a web service provides or
requires. Every service operation defined contains infor-
mation about the input and output parameters as well as
the pre- and post-conditions that are associated with the
service operation.

TALEVSKI et al.: RECONFIGURABLE WEB SERVICE INTEGRATION 83

Fig. 11. eWMS service configuration user interface.

Fig. 12. eWMS enterprise integration conceptual model.

— Interaction specifications: Interaction specification doc-
uments specify the interactions between required and pro-
vided services. A connection between the two services
makes up a module specification.

The initial interaction involves the customer selecting a ware-
house, in which to do business with. Once the warehouse has
been selected, the available web services and their service op-
erations are presented. After selection of the service operation,
the customer is presented with an input form generated by the
eWMS. Here, the customer can input the required information
and submit it to the system for processing. Upon receiving the

data submitted from the customer, the eWMS service provider
locates the appropriate interaction specifications and intercon-
nection is performed. Not all information required by a con-
necting service is provided by the customer input. Information
may also be provided via other internal eWMS services.

VII. CONCLUSION

Due to the complexity of integrating heterogeneous enterprise
services, the lack of a framework for expressing service collab-
oration makes such service-oriented software more difficult to
integrate, reconfigure, and evolve. In order to take the notion
of service integration further, we need to develop a model of
inter-enterprise workflow that is capable of consuming services.
This paper presents a framework for service integration in an ex-
tended logistics enterprise.

REFERENCES

[1] W. Brenner, R. Zarnekow, and H. Wittig, Eds., Intelligent Software
Agents: Foundations and Applications. Berlin/Heidelberg, Germany:
Springer-Verlag, 1998.

[2] Aglets. website. [Online] Available: www.trl.ibm.co.jp/aglets/
[3] Voyager. website. [Online] Available: www.objectspace.com/voyager/
[4] FTP. website. [Online] Available: www.ftp.com/
[5] Odyssey. website. [Online] Available: www.genmagic.com
[6] JATLite. website. [Online] Available: java.stanford.edu/java_agent/html
[7] T. Sandholm and Q. Huai, “Nomad: mobile agent system for an Internet-

based auction house,” IEEE Internet Comput., vol. 4, no. 2, pp. 80–86,
Mar.-Apr. 2000.

[8] J. M. Andreoli, F. Pacull, and R. Pareshi, “Xpect: a framework for elec-
tronic commerce,” IEEE Internet Comput., vol. 1, no. 4, pp. 40–48,
Jul.-Aug. 1997.

[9] C. Yeung, T. Pang-Fei, and J. Yen, “A multi-agent based Tourism Kiosk
on internet,” in Proc. 31st Hawaii Int. Conf. System Sciences 1998, vol.
4, Kohala Coast, HI, 1998.

[10] P. Dasqupta, N. Narasimhan, L. E. Moser, and P. M. Smith, “MAGNET:
Mobile agent for networked electronic trading,” IEEE Trans. Knowl.
Data Eng., vol. 11, no. 4, pp. 509–525, Jul.-Aug. 1999.

[11] M. Stal, “Web services: Beyond component-based computing,”
Commun. ACM, vol. 45, no. 10, pp. 71–76, Oct. 2002.

[12] N. Medvidovic and R. Taylor, “Separating fact from fiction in software
architecture,” in Proc. Int. Software Architecture Workshop, Orlando,
FL, Nov. 1998.

[13] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
(1999) SPKI (Simple Public Key Infrastructure). [Online] Available:
www.ietf.org/rfc/rfc2693.txt

[14] H. Chan, R. Lee, T. Dillon, and E. Chang, E-Commerce Fundamentals
and Applications’. New York: Wiley, 2001.

[15] D. Rine, N. Nada, and K. Jaber, “Using adapters to reduce interaction
complexity in reusable component-based software development,” in
Proc. Symp. Software Reusability, Los Angeles, CA, May 1999.

Alex Talevski (M’05) has recently completed his
Ph.D. thesis, entitled “Reconfigurable Plug and Play
Component-Based Software.”

His research interests include component-based
software engineering, software tailoring and evo-
lution, e-commerce, extended enterprises, and
self-adaptive neural networks. He has successfully
lead several commercial software development
projects through to completion. He has published
more than 13 refereed papers in international jour-
nals and conferences, two of which have won best

paper awards.

84 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 2, MAY 2005

Elizabeth Chang (M’93) is a Professor in Informa-
tion Technology (IT) and Software Engineering at
Curtin University of Technology, Perth, WA, Aus-
tralia. She is the Director of the Centre for Frontier
Technology for Extended Enterprises, Curtin Busi-
ness School, and was Founder of the Centre for IT
Applications and Logistics Informatics, Newcastle
University, Newcastle upon Tyne, U.K. Her research
interests include ontology-based software engi-
neering, object/component-based development trust,
security and risks in e-business, XML, web services,

P2P and middleware for e-commerce, usability (including web usability)
and object-oriented user interface engineering. As a Project Manager, she
has successfully managed several commercial-grade IT projects for industry,
taking them through the entire software life cycle to project completion. She
has published over 100 scientific conference, journal, and numerous invited
keynote papers at international conferences and has written two books.

Tharam S. Dillon (M’83–SM’87–F’98) is the Dean
of Faculty of Information Technology, University
of Technology Sydney (UTS), Sydney, NSW, Aus-
tralia. He is currently also the Director of the eXel
Research Lab. Previously, he was the Foundation
Professor of Computer Science and the Director
of the Applied Computing Research Institute at
La Trobe University, Bundoora, Vic., Australia.
He has worked with industry and commerce in
developing systems in telecommunications, health
care systems, e-commerce, logistics, power systems,

and banking and finance. He is Chairman of the IFIP Working Group 2.12 on
Web Semantics. He has published more than 400 papers in international and
national journals and conferences, has written five books, edited five books,
and has published 17 chapters in edited books. His research interests include
data mining, internet computing, e-commerce, hybrid neuro-symbolic systems,
neural nets, software engineering, database systems, computer networks, and
trusted computing.

Dr. Dillon is Co-Editor-in-Chief of three international journals and was an
Advisory Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS for five
years. He is on the Advisory Editorial Board of Applied Intelligence and Com-
puter Communications. He is a Fellow of the Institution of Engineers (Australia)
and the Australian Computer Society.

	toc
	Reconfigurable Web Service Integration in the Extended Logistics
	Alex Talevski, Member, IEEE, Elizabeth Chang, Member, IEEE, and
	I. I NTRODUCTION
	A. Consortia
	B. Requirements
	C. Technology

	II. E XISTING A PPROACHES
	III. S ERVICE -O RIENTED A RCHITECTURE (SOA)
	A. Objects, Components, and Services

	Fig.€1. Service publish-find-bind.
	B. Service Integration and Interaction
	C. Extended Enterprise
	D. Web Services
	1) Service Repository: UDDI is a global meta directory for locat
	2) Service Interface Definition: WSDL is an XML format for descr
	3) Interaction Protocol: SOAP is a lightweight protocol intended
	4) Types of Web Services: Conceptually, we can create and utiliz

	Fig.€2. Programmatic web service.
	Fig.€3. Interactive web service.
	Fig.€4. e-Hub architecture (one eHub is shown).
	IV. A RCHITECTURAL R EQUIREMENTS
	V. D ISTRIBUTED M ETA F RAMEWORK
	A. Interfaces
	Fig.€5. Enterprise service.

	B. Service Security
	C. Configuration Attribute Connectors
	D. Composition Operation Connectors

	VI. P ROTOTYPE S YSTEM

	Fig.€6. Certificate XML schema.
	Fig.€7. UML Meta model for component attribute connector.
	Fig.€8. UML Meta model for component operation connector.
	Fig.€9. eWMS architecture overview.
	Fig.€10. eWMS service provider architecture.
	A. eWMS Service Manager

	Fig.€11. eWMS service configuration user interface.
	Fig.€12. eWMS enterprise integration conceptual model.
	VII. C ONCLUSION

	W. Brenner, R. Zarnekow, and H. Wittig, Eds., Intelligent Softwa
	Aglets . website . [Online] Available: www.trl.ibm.co.jp/aglets/
	Voyager . website . [Online] Available: www.objectspace.com/voya
	FTP . website . [Online] Available: www.ftp.com/
	Odyssey . website . [Online] Available: www.genmagic.com
	JATLite . website . [Online] Available: java.stanford.edu/java_a
	T. Sandholm and Q. Huai, Nomad: mobile agent system for an Inter
	J. M. Andreoli, F. Pacull, and R. Pareshi, Xpect: a framework fo
	C. Yeung, T. Pang-Fei, and J. Yen, A multi-agent based Tourism K
	P. Dasqupta, N. Narasimhan, L. E. Moser, and P. M. Smith, MAGNET
	M. Stal, Web services: Beyond component-based computing, Commun.
	N. Medvidovic and R. Taylor, Separating fact from fiction in sof
	C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T.
	H. Chan, R. Lee, T. Dillon, and E. Chang, E-Commerce Fundamental
	D. Rine, N. Nada, and K. Jaber, Using adapters to reduce interac

