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Abstract. The exploitation of usable power from vibration environments shows potential 

benefit for recharging batteries and powering wireless transmission. In this paper, we present a 

novel technique for simulating the electromechanical cantilevered piezoelectric bimorph beam 

system with two input base transverse and longitudinal motions for predicting power 

harvesting. The piezoelectric bimorph beam with tip mass was modelled using the Euler-

Bernoulli beam assumptions. The strain fields from transverse bending and longitudinal forms 

can affect the physical behaviour of the polarity and electric field in terms of the series and 

parallel connections of the piezoelectric bimorph, in such way that each connection has two 

vector configurations of X-poling and Y-poling due to input base motions. This situation must 

be correctly identified to form the piezoelectric couplings. The piezoelectric couplings can 

create the electrical force and moment of each piezoelectric layer in the mechanical domain. At 

this point, we introduce a new method of modelling the piezoelectric bimorph beam under two 

input base-motions using coupling superposition of the elastic-polarity field for predicting 

power harvesting. The constitutive dynamic equations were derived using the weak form from 

the Hamiltonian theorem, with Laplace transforms being used to obtain the multi-mode 

frequency response functions (FRFs) relating the input mechanical vibrations with the output 

dynamic displacement, velocity and power harvesting. The power harvesting predictions under 

parallel connection at frequencies close to the fundamental bending frequency demonstrate a 

possibility of being able to produce around 0.4 mW per unit input base transverse acceleration 

of 3 m/s
2
. Furthermore, it is shown that varying the load resistance from 20 kΩ to 200 kΩ 

affects the amplitude of power harvesting as well as resulting in a shift of the first natural 

frequency from 76 Hz to 79 Hz.  

1. Introduction  

In the last few years, the investigation of energy conversion techniques utilising the ambient vibration 

environment has been of great interests for many researchers. The energy extracted from the vibrating 

environments can be utilised for powering an electronic circuit as it can be capable of supplying direct 

current into a rechargeable battery or electrical power storage device. It can then be subsequently used 

for powering wireless sensor communication. The common energy harvester techniques can be 

achieved by using electromagnetic [1], electrostatic [2] and piezoelectric [3] transductions.  Although, 

there have been numerous research publications to discuss the energy harvesting development, the 

study of piezoelectric harvester has been of great interest for many researchers because the 

piezoelectric component has potential benefit in the applications of micro-scale designs, compact 
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configuration, high sensitivity with respect to low vibration and practical to use. In comparison, the 

electromagnetic devices have complex design configurations for the magnet and coil components and 

also need high vibration velocities to create high magnetic flux in order to obtain electric voltage as 

shown by Faraday’s law. It also tends to be incompatible for micro-scale use. Moreover, the 

electrostatic concept can be compatible to micro-scale but has complex design configurations for the 

two plate capacitor components and requires the use of external voltages.  

The concept of the electromechanical piezoelectric power harvester has wide ranging applications 

with current research emphasis investigating new theoretical and mathematical developments along 

with experimental studies. The extensive review of piezoelectric power harvester with different 

application models have been discussed by [3,4]. The experimental study of different types of 

piezoelectric components bonded onto cantilevered aluminium beam is given in [5]. Moreover, the 

mathematical and experimental developments of the piezoelectric bimorph beam based on input 

transverse excitation have been of major interest for investigating novel power harvester models.  

Extensive modelling of the piezoelectric bimorph beam using the Rayleigh-Ritz method with variance 

of load resistances under short and open circuits has been provided in [6], the optimal power harvester 

with single mode formulation in [7],  and the optimisation design of different shapes of piezoelectric 

power harvesters in [8]. Recent theoretical and experimental models of the piezoelectric bimorph 

beam with input transverse excitation was also investigated using the frequency response function 

with varying load resistances [9]. 

In this paper, we propose the novel theoretical study of the electromechanical dynamic equation 

of the piezoelectric bimorph beam using the weak form of Hamiltonian’s principle. In this model, the 

multi-mode frequency responses obtained using Laplace transformation were also developed to give 

the electromechanical dynamic relationships between two input base transverse and longitudinal 

excitations with multi output dynamic responses including power harvesting. In this case, we also 

present sample validation results between the theoretical and experimental studies of the frequency 

response analysis due to input base transverse excitation of the bimorph with parallel connections.   

 

2. Mathematical Formulations    

The electromechanical dynamic equations of the piezoelectric bimorph under two input base 

transverse and longitudinal excitations were formulated using the weak form of Hamiltonian’s 

theorem using the strain energy of the central bimorph substructure (brass shim), the electrical 

enthalpy of the upper and lower piezoelectric layers, and the kinetic energy of the bimorph including 

the tip mass [10, 11]. The constitutive equation can be stated after simplifying complex equations as, 
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The superscripts A, C, D, F, G and H indicate properties of mass moment of inertias for first and 

third terms (rotary inertia), stiffness coefficients for longitudinal extension and transverse bending, 

piezoelectric couplings  for longitudinal extension and transverse bending, respectively. Superscript k 

indicates the layers of the bimorph. The coefficients 11C , 31R , 33S , I , tipI , N  and M  indicate the 
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stiffness coefficient, piezoelectric coupling, capacitance of the piezoelectric, mass moment of inertia 

of bimorph, mass moment of inertia of tip mass, internal force and moment of bimorph, respectively. 

Moreover, the variables relu , relw and  tv  indicate the relative longitudinal and transverse 

displacement fields and electric voltage, respectively.  The equation (1) considered the rotary inertias 

of the bimorph and proof mass. In this case, we ignored the rotary inertia of the bimorph 

component  kCI ,  in the forthcoming mathematical derivations.  

The solutions of equation (1) can be further formulated using convergent eigenfunction series 

forms and the solutions must meet continuity and boundary conditions of the piezoelectric bimorph 

beam under longitudinal extension and transverse bending effects in order to give reasonable 

solutions. The normalized Ritz eigenfunction series forms associated with the generalised time 

dependent can be prescribed as, 
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Parameters,  x̂  and  x̂  indicate the normalised mode shapes based on the Ritz eigenfunction 

series which can be formulated as,  
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It should be noted that parameters,  xr  and  xr  are defined as the independent mode shapes 

of relative motions to meet the continuity conditions for the mechanical form or strain field and 

boundary geometry. These mode shapes can be determined using analytical solution forms [11]. 

Corresponding to equation (1), the orthonormality can be proved by using equation (2) in terms of 

equations (3) and (4) and applying the orthogonality property of the mechanical dynamic equations as, 
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where rq is the Kronecker delta, defined as unity for rq   and zero for rq  . It should be noted that 

the Rayleigh’s damping coefficients due to longitudinal extension and transverse bending forms can 

also be included into equation (1). The mechanical damping coefficients can then be reduced into the 

mechanical damping ratios in terms of orthonormality as,
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      Corresponding with equation (2), virtual displacement forms,  tur ,  twr ,  tv  can be set 

separately from equation (1) to obtain three independent dynamic equations. Parameters of virtual 

relative displacements that meet the duBois-Reymond’s lemma are used to ensure that only dynamic 

equations have solutions. At this point, three dynamic equations of the electromechanical piezoelectric 

bimorph beam including the mechanical damping ratios, can be formulated after applying equations 

(5) and (6) and to give, 
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It is noted that because equation (8) has been normalised, the parameters  u
rP ,  w

rP , LR , 

DP , UQ and WQ can be introduced as,
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The parameter 31R̂  and 33Ŝ  can be determined in terms of the following two series and parallel 

connection types of the piezoelectric bimorph as,  

Case I.  Series connection.  

a)  Piezoelectric coupling for X-poling due to transverse bending form can be formulated as, 
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b) Piezoelectric coupling for Y-poling due to longitudinal extension can also be stated as, 
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The capacitance of the piezoelectric element was considered as,  
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It should be note that the upper and lower layers of the piezoelectric bimorph will have the same 

material and geometrical structure where parameters b, hs and hp indicate width, substructure thickness 

and piezoelectric thickness of bimorph, respectively. Moreover, the piezoelectric constant d31 can be 

modified into the piezoelectric constant relating charge density Esde 113131  and the permittivity of 

the piezoelectric element will be     SSS
33

3
33

1
33  . It should be noted that S

33 is the permittivity at 

constant strain that can be formulated as 31313333 edTS   or ETS cd 11

2

313333   where ,
EE sc 1111 1 T

33 is the 

permittivity at constant stress and Es11  is the elastic compliance at constant electric field. 

 

 

 

 

 
 

 

 

 

 

 

Case II.  Parallel connection 

a)  Piezoelectric coupling for X-poling due to longitudinal extension can be formulated as, 
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b) Piezoelectric coupling for Y-poling due to transverse bending form can be formulated as, 

 

Figure 1. Cantilevered piezoelectric bimorph beam with two input base longitudinal and transverse  

 excitations under parallel connections 
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The capacitance of the piezoelectric element for parallel connection was given by, 
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It should be noted that the equation (8) also can be used for modelling the piezoelectric bimorph 

using either series connection or parallel connection.  The connections just depend on the chosen 

piezoelectric couplings and also the chosen internal capacitance as given from equations (9) to (14). 

The sample parallel connection was shown in figure 1. Equation (8) can be solved using Laplace 

transformation. In this case, the multi-mode electromechanical dynamic equations of the piezoelectric 

bimorph with two input base motions can be formulated in terms of the frequency response functions 

(FRFs) of longitudinal and transverse forms and power harvesting. The first multi-mode FRF is 

relative longitudinal displacement with respect to input base longitudinal acceleration, which can be 

formulated as,
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The multi-mode FRF of relative transverse displacement with respect to input base transverse 

acceleration can be obtained as,  
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The multi-mode FRF of the relative longitudinal and transverse displacements related to the base input 

transverse and longitudinal accelerations can also be obtained respectively as, 
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The multi-mode FRF of power harvesting relating the longitudinal acceleration can be calculated as,
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The multi-mode FRF of power harvesting relating the transverse acceleration can be calculated as,    
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The multi-mode FRF of relative longitudinal displacement can be formulated in terms of any position 

along the piezoelectric bimorph as, 

       tj
b

2
12

tj
b

2
11rel eWωjωx,HeUωjωx,Htx,u   .           (21) 

Corresponding to equation (21), the multi-mode absolute longitudinal displacement can be formulated 

as, 
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 .                (22)

  

 

The relative transverse displacement can be reformulated in terms of any position at the piezoelectric 

beam as, 
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The absolute transverse displacement can be reduced as,  
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The generalised electrical potential can be formulated as, 
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It should be noted that Ub and Wb represent the input base longitudinal and transverse 

displacement excitations on the bimorph. Corresponding with equations (22) and (24), the equations 

(15)  and (16) can be modified in terms of the multi-mode FRF of the absolute displacements and 

velocities relating the input longitudinal and transverse displacement at any position along the 

bimorph respectively as, 

It should be noted that equations (22), (24) and (26) are applicable for analysing the absolute 

dynamic responses when comparing the results using the Laser Doppler Vibrometer (LDV) because 

the signal processing of the Vibrometer can be transferred into a digital signal through the FFT 

Analyzer to display the time-dependent absolute displacement, velocity, acceleration and frequency 

response function located at any position along the piezoelectric bimorph.  
 

3. Theoretical and Experimental Results 

The previous section discussed the multi-mode electromechanical piezoelectric bimorph beam under 

two input base longitudinal and transverse excitations.  In this section, we discuss the validations 

between theoretical and experimental results based on the chosen properties of the piezoelectric 

bimorph with centre brass shim.  The material properties for the piezoelectric bimorph beam were 

based on the PZT PSI-5A4E from Piezo Systems, INC. including brass material as shown in table 1.  

The piezoelectric bimorph was a cantilevered model (fixed-free model) with the generated input 

motion from a B & K exciter type 4809 which was connected to the B & K impedance head type 8001 

for measuring the acceleration. Moreover, the output dynamic responses were measured by using a 

laser digital vibrometer Polytec PDV 100. In this case, all measurements including the electric voltage 

from piezoelectric component were connected to the B & K FFT Analyzer 3560B and the results 

obtained can be displayed through computer screen. The complete experiment setup can be shown in 

(26) 
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Figure 2. Furthermore, the validation results shown here were based on the suggested formulations and 

experimental studies to show the transverse dynamic displacement and power harvesting around the 

fundamental frequency or first mode with varying resistances of the parallel connections of the 

piezoelectric bimorph beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Characteristic properties of the piezoelectric bimorph system. 

Material  properties Piezoelectric    Brass   Geometry properties  Piezoelectric  Brass 

Young’s modulus , 11Q   (GPa) 66 105 Length , L (mm) 30.1   30.1 

Density,  ρ   (kg/m
3
) 7800 9000 Thickness, h (mm) 0.19 (each) 0.13 

Piezoelectric constant, d31 (pm/V) -190 - Width, b (mm) 6.4 6.4 

Permittivity, T

33  (F/m) 1800 o  - First coefficient 
 A
tipI (kg)

†
        0.0022 

permittivity of free space, o (pF/m) 8.854 - Third coefficient
 C
tipI (kg m

2
)

†
        7.3743

910  

† Calculated according to the geometry and material properties of tip mass and the rotary inertia at centre of gravity of tip mass  

    coincided with the end of  bimorph length as shown in figures 1 and 2b   

 
Figure 3. The first three modes of FRF power harvesting with varying load resistances  

 

Figure 2.  (a) Experimental Setup  and (b) Piezoelectric bimorph beam with tip mass  

                   under parallel connection  

(a) 
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7.  Piezoelectric Bimorph with    
 base structure connected to B & K 

 impedance head Type 8001 

8.  Laser Vibrometer Polytec PDV 100  

(a) 
(b) 

WCCM/APCOM 2010 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 10 (2010) 012169 doi:10.1088/1757-899X/10/1/012169

7



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 

 

Figure 4. Comparison between theoretical and experimental results; (a) FRF tip transverse displacement and  

(b) FRF power harvesting for 20 kΩ,  (c) FRF tip transverse displacement and  (d) FRF power harvesting for 60 

kΩ, (e) FRF tip transverse displacement and  (f) FRF power harvesting for 79 kΩ. 
 

( a ) 
( b ) 

( c ) 
( d ) 

( e ) ( f ) 
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As can be seen from figure 3, the power harvesting FRF was modelled according to the first three 

modes due to input transverse acceleration of the bimorph base. The slight changes of power 

amplitudes around the first resonance mode are due to the chosen varying load resistances as shown in 

the enlarged viewed in figure 3. Each resonance as shown in figure 3 seems to shift frequency from 

76.08 Hz to 79.26 Hz as the load resistance changes. This indicates that the load resistances can affect 

the power harvesting amplitude and the frequency behaviour. It is noted that when the load resistance 

approach zero 0loadR , the parallel connections of the bimorph tends to be a short circuit. In fact, the 

short circuit in the experimental study is only applicable to set the lowest value of resistance as 

possible to obtain the power harvesting magnitude in the first resonance of the frequency domain. 

Meanwhile, when the load resistance is approaching infinity loadR  or the highest value, the 

connections of the bimorph tends to be open circuit. As far as we observed in this case, the parallel 

connections of the piezoelectric bimorph can be set to short circuit with the chosen load resistance 

around 5.6 kΩ and the power harvesting magnitude reached 0.0305 mW/(306 mg)
2
 whereas the open 

circuit of the piezoelectric bimorph  was achieved by setting the load resistance around 602 kΩ and the 

resulting power harvesting obtained was around 0.0364 mW/(306 mg)
2
. In this case, the power 

harvesting results from the short to open circuits indicated the lowest values compared with other 

chosen resistances around the frequency domain. Similar trends were also reported in [12] using the 

design fabrication model of the aluminum nitride (AlN) based piezoelectric material and in [13] using 

the standard synchronized switch harvesting on inductor DC (SSHI-DC) for energy harvesting 

circuits. It should be noted that power harvesting results reported here represent Watts per unit square 

input base transverse acceleration. The input base transverse acceleration on the bimorph was 3 m/s
2
 

which is equivalent to 306 mg (1 g = gravitational acceleration 9.81 m/s
2
).  Furthermore, the first three 

highest power harvesting results around the first resonance with load resistances of 51 kΩ, 60 kΩ and 

79 kΩ were 0.38 mW/(306 mg)
2
 at 77.35 Hz, 0.40 mW/(306 mg)

2
 at 77.67 Hz and 0.375 mW/(306 

mg)
2
  at 78.3  Hz, respectively. As can be seen, the frequencies around the first resonance tend to shift 

slightly with the change of the load resistances.    

In this section, the comparison results between the theoretical and experimental studies are 

shown. The FRF transverse dynamic displacement and power harvesting according to the chosen load 

resistances are shown in figure 4.  It can be seen from figure 4a that the transverse dynamic 

displacement gave very close values between the theoretical and experimental results. The 

comparisons obtained in this case were based on the tip absolute dynamic displacements per unit input 

base transverse acceleration because in the experimental results, the signal captured from the Laser 

Vibrometer and Analyzer indicates the time-dependent absolute dynamic displacement.  Moreover, the 

mechanical damping ratios can be determined mathematically, but the chosen mechanical damping 

ratios from experiment are preferable to give the accurate results. As we observed that the mechanical 

damping ratios at first resonance 1r due to longitudinal extension form  u
1 and transverse bending 

form  w
1  were found to be 0.03 and 0.06, respectively.  In this point, the mechanical damping ratio 

due to transverse bending form gave strong effect to the lower resonance whereas the mechanical 

damping ratio due to longitudinal extension form only affected to the higher resonances. It should be 

noted that the previous formulations were derived according to the coupled dynamic responses of the 

electromechanical dynamics equations. In such situation, the equation (26c) was used to compare the 

results obtained with respect to the experimental study. In a similar way, figure 4c and 4e show that 

the tip absolute displacement from experiments gave very good agreement with the theoretical results. 

Other chosen resistances as shown in figure 3 also showed very close comparison between the 

theoretical and experimental studies. Furthermore, the enlarged view from figure 3 showing the 

change in response with load resistance is again illustrated in figure 4 using three different load 

resistances 20kΩ, 60kΩ and 79 kΩ. The power harvesting magnitudes with respect to frequency also 

indicate very close comparison between the theoretical and experimental results. As can be seen very 

clearly from figure 4b, the FRF power harvesting per unit square input base transverse acceleration 
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gave very similar trends of both the theoretical and experimental results with power around 0.143 

mW/(306 mg)
2
 with load resistance of 20 kΩ. Once again the results of power and resonance shift as 

the load resistance changes. This confirms that the load resistance affect the power harvesting domain 

and frequency response functions.  
 

4. Conclusion  

This paper has presented the multi-mode electromechanical dynamic equations of a cantilevered 

piezoelectric bimorph beam with two input base accelerations according to the weak form of the 

Hamiltonian’s principle. The equations derived can be used to model both series and parallel 

connections of the piezoelectric bimorph. In this case, we only considered the input transverse base 

acceleration of the bimorph with parallel connections as presented in this paper. The trend of FRF 

power harvesting and tip absolute dynamic displacement under varying load resistances showed very 

good agreement between theoretical and experimental results as investigated around the first mode. 

The resonances of power harvesting and absolute tip transverse displacement for the first mode shifted 

as the load resistance changed. As a result, the response magnitudes also changed where the input base 

transverse acceleration onto bimorph was kept a constant value of 3 m/s
2
.  The chosen mechanical 

damping ratios were found to be important when comparing between the theoretical and experimental 

study for predicting power harvesting magnitude and dynamic displacement.  In was noted that the 

previous formulations were derived under the mechanical longitudinal and transverse forms. 

Therefore, the mechanical damping ratios at first resonance 1r due to longitudinal extension form 

 u
1 and transverse bending form  w

1  can be preferable to be determined according to the 

experimental results which were found to be 0.03 and 0.06, respectively. It was observed that the 

mechanical damping ratio due to transverse bending gave strong influence to the lower resonances for 

predicting the FRF magnitudes as similar to previous results whereas the mechanical damping ratio 

due to longitudinal extension form was found to only affect the higher resonances as discussed in 

detail by [11] using the same dimension structure but different geometry of tip mass and connection 

type with this paper.  Finally, the FRF of the electromechanical piezoelectric bimorph system shows 

the benefit for simulation of the conversion of ambient vibration response into electrical power for the 

use of wireless sensor node for condition machine monitoring.  
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