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ABSTRACT  

Nano-structured calcium silicate (NCS), a highly porous material synthesized by controlled 

precipitation from geothermal fluids or sodium silicate solution, was developed as filler for use in 

paper manufacture.  NCS has been shown to chemisorb orthophosphate from an aqueous solution 

probably obeying a Freundlich isotherm with high selectivity compared to other common 

environmental anions.  Microanalysis of the products of chemisorption indicated there was 

significant change from the porous and nano-structured morphology of pristine NCS to fibrous and 

crystalline morphologies and non-porous detritus.  X-ray diffraction analysis of the crystalline 

products showed it to be brushite, CaHPO4•2H2O, while the largely x-ray amorphous component 

was a mixture of calcium phosphates.  A two-step mechanism was proposed for the chemisorption of 

phosphate from an aqueous solution by NCS. The first step, which was highly dependent on pH, was 

thought to be desorption of hydroxide ions from the NCS surface.  This was kinetically favoured at 

lower initial pH, where the predominant form of phosphate present was H2PO4
-, and led to decreased 

phosphorus uptake with increasing pH.  The second step was thought to be a continuing 

chemisorption process after stabilization of the pH-value.  The formation of brushite as the primary 

chemisorption product was found to be consistent with the proposed mechanism. 

KEYWORDS: Nano-structured calcium silicate; phosphate sequestration; chemisorption; calcium 

phosphate; hydroxyapatite inhibition 
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GRAPHICAL ABSTRACT 

A porous nano-structured calcium silicate (NCS) was shown on to produce CaHPO4•2H2O on 

exposure to phosphate.  A temperature- and pH-dependent mechanism was proposed for the 

chemisorption of phosphate by NCS. 
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INTRODUCTION  

Phosphorus as phosphate poses a known environmental threat in natural waters, with high nutrient 

concentrations leading to eutrophication of waterways by algal blooms.  The fate of phosphorus in 

the environment is controlled through lack of a gaseous step in its cycle.  Cycling of phosphorus in 

the environment has been accelerated by anthropogenic activities, with pre-human fluxes estimated 

at 2 – 3 x 106 tonnes-P a-1 compared with current river inputs estimated at 4 – 6 x 106 tonnes-P a-1 

due mostly to fertilizer use, deforestation, soil erosion and urban as well as industrial effluent 1, 2.  

There is a need for highly efficient and selective methods for the sequestration of phosphate from 

point sources of wastewater.  Examples of current research on phosphate sorbents studied for 

environmental sequestration include the use of waste materials such as blast furnace slags 3, 4, ash 

from coal combustion 5-8 and paper sludge 9, metal-doped citrus processing waste 10 and red mud 

from bauxite processing 6; synthetic and naturally occurring minerals and materials 11-15 and novel 

ion exchange materials 16-18. 

A nano-structured calcium silicate material containing surface-bound calcium ions was considered 

as a sorbent for phosphate removal from aqueous solutions.   Nano-structured calcium silicate (NCS) 

is a highly porous material produced by controlled precipitation from geothermal fluids or 

commercial silicate solutions (sodium silicate).  Its current application is as filler in newsprint and 

specialty papers as it has very high optical brightness and whiteness and is also beneficial in 

reducing print-through in newsprint 19-22.  The chemical and physical properties of NCS make this a 

candidate for the highly efficient treatment of aqueous waste containing phosphate and other ions 19, 

23.  NCS consists of nanometer-sized platelets arranged in particles between 0.5 and 20 µm in size.  It 

has a high absorption capacity of up to 700 g-oil per 100 g NCS and a high surface area of 350 – 600 

m2 g-1 21.  Two forms of NCS display especially high surface areas and pore volumes, which are 

interesting for sorption experiments: a spacer compound containing silicate (NCS-2EE, 

Ca0.8SiO2.8·2H2O) and a Reinforced silicate (NCS-Rein, CaSi1.75O3.5·3H2O).  The treatments are 

necessary as the silicate structure can collapse due to strong attractive forces between calcium and 

silanol groups located on its surface.  Treatment with a spacer-compound leaves a minimal amount 
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(<3 %w/w) of an organic compound coordinated to the active groups, while during reinforcement 

the surface bound calcium is encapsulated in silicon dioxide. 

Previous research 24 has shown that nano-structured calcium silicate effectively and efficiently 

chemisorbs orthophosphate in all forms from aqueous solution, showing probable conformity to a 

Freundlich isotherm.  Phosphate was found to chemisorb at several orders of magnitude above other 

common environmental anions, such as nitrate and chloride.  The monobasic form of phosphate 

(H2PO4
-) was chemisorbed with higher loadings of up to 1.9 mmol-P per g-NCS, and hence greater 

efficiencies showing significant improvements on other sorbent-based methods for phosphorus 

removal.  Comparison of the reaction between the three forms of phosphate and NCS showed that 

H2PO4
- was favoured, with an activation energy of 39.37 kJ mol-1 compared to 56.71 and 61.69 kJ 

mol-1 for HPO4
2- and PO4

3- respectively.  This was found to contradict the initial assumptions that 

PO4
3- would be preferentially sorbed leading to formation of either hydroxyapatite (HAP, 

Ca10(PO4)6(OH)2) or tricalcium phosphate (TCP, Ca3(PO4)2) due to their lower solubilities, and hence 

higher thermodynamic stability of the products 25. 

Frossard et al 25 studied the precipitation of calcium phosphates on pure calcite surfaces to 

determine the crystallisation patterns during phosphorus uptake on calcareous soils.  It was found 

that monocalcium phosphate (MCP, Ca(H2PO4)2) is initially formed followed rapidly by dicalcium 

phosphate dihydrate (DCPD, Ca(HPO4)·2H2O) or brushite.  On pure calcite surfaces this progresses 

to octacalcium phosphate (OCP, Ca8H2(PO4)6·5H2O) and finally to HAP.  However, when 

precipitation occurs on calcite in soils this process ceases at brushite and does not produce either 

OCP or HAP 25.   

The termination at brushite is due to the presence of surface-bound fulvic, humic and tannic acids 

26 or magnesium ions 27 inhibiting the crystallisation of OCP.  Organic acids are known to both 

inhibit production of HAP and promote crystallisation of brushite 28.  This, in part, explains why 

there is a greater amount of bioavailable phosphorus in soils treated with manure or animal waste; 

natural organic matter prevents precipitation of insoluble apatite 25, 26, 29, 30. 

Detailed chemical and morphological studies on the reaction between the surface-bound calcium 
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ions and phosphate in solution and the products of such a reaction were undertaken to assist in the 

development of a mechanism for chemisorption.   
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MATERIALS AND METHODS  

Nanostructured calcium silicate (NCS), as proprietary to Victoria University of Wellington, New 

Zealand, is synthesized by acidifying a slurry of 34.6 g (0.468 mol) calcium hydroxide in 460 mL of 

water to a pH of 11.5 and reacting it with 87.8 g (0.420 mol) sodium silicate (Orica) in 450 mL 

water 19.  Geothermal silicate sources can be employed as well as long as the pH and calcium to 

silicate ratio are maintained.  The NCS was filtered and extensively washed with water (NCS-w).  

Three forms of calcium silicate were prepared: an untreated calcium silicate (NCS-w), a spacer 

compound containing silicate (NCS-2EE) and a Reinforced calcium silicate (NCS-Rein).  To 

incorporate a spacer compound into NCS the filter cake was washed extensively with 2-

ethoxyethanol (NCS-2EE).  For the Reinforcement: the filter cake is re-slurried in 1L of water (if 

only part of the filter cake is re-slurried, the amount of water needs to be adjusted).  For every 50 mL 

of resulting slurry 2.8 g of additional sodium silicate solution are added under stirring followed by 

washing with a small amount of dilute acid, filtration and extensive washing with water (NCS-Rein).  

All silicates were dried at 80 °C under vacuum for 1 hour (Thermoline VORD vacuum oven 

connected to a Javac 8524PVH-11 vacuum pump) and stored in a desiccator over silica gel until use.  

Type I water (DirectQ-5, Milli-Q, Millipore, France) was used for all solutions and dilutions.  

Analytical grade reagents or better were used in all cases unless otherwise stated. 

KINETIC STUDIES Isothermal studies of the sorption of the three common forms of phosphate 

(H2PO4
-, HPO4

2- and PO4
3-) by NCS-2EE at 2.8, 13.3, 25.3, 36.8 and 46.4 °C (± 0.1 °C) were 

undertaken in a purpose-built 1 L jacketed stainless steel reaction vessel.  The temperature was 

controlled via a ducted water bath (Julabo F 26) and measured in the reaction vessel via a digital 

thermocouple (K-type, Digitron T206TC).  The solution was mixed with a variable speed overhead 

stirrer (IKA Eurostar Digital at ca 400 min-1) fitted with a purpose-built glass stirring-rod.   

A solution of 1.00 mmol-P L-1 orthophosphate, as either potassium dihydrogen orthophosphate 

(AnalaR, BDH), potassium monohydrogen orthophosphate (AnalaR, BDH) or sodium tribasic 

phosphate (GPR, BDH) in Type I water, was placed in the reaction vessel and allowed to come to 

temperature.  A known mass of NCS (ca 0.5 g) was introduced to the vessel and allowed to mix.  
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Aliquots of ca 10 mL were taken at regular intervals between 0 and 24 hours, filtered and analysed 

colourimetrically by the vanadomolybdate method as described by Greenberg et al 31.  The pH was 

monitored simultaneously via a pH electrode in the reaction vessel (Orion pH triode coupled to a 

720A meter and calibrated at pH 7.00 and 10.00 with pre-prepared (commercially available) buffer 

solutions). 

SCANNING ELECTRON MICROSCOPY Scanning electron microscopy (SEM) was used to 

determine changes to the surface of NCS after reaction with orthophosphate.  Energy dispersive 

spectroscopy (EDS) was also used for qualitative analysis of the surface changes to the NCS after 

exposure to orthophosphate 32. 

The reaction between NCS (NCS-2EE or NCS-Rein, ca 0.5 g) and a solution of potassium 

dihydrogen orthophosphate (AnalaR, BDH, 0.100 mol L-1) was undertaken as above.  The NCS was 

filtered from the mother liquor, a portion was rinsed in water and another in 2-ethoxyethanol and the 

samples dried in an oven at 110 °C for 24 hours.   

The four samples and a sample of pristine NCS were mounted using double-sided adhesive tape on 

aluminium SEM stubs and sputter-coated with gold (Bal-tec SCD-050) for the samples used for 

imaging, or evaporative coated with carbon (Ladd Research Industries) for EDS analysis to prevent 

the overlap between the gold and phosphorus K peaks.   

SEM was undertaken with an Electroscan Environmental Scanning Electron Microscope (ESEM) 

2020 in scanning mode at 15 kV under high vacuum.  Energy Dispersive Spectroscopy (EDS) was 

undertaken using an Oxford LinkPentafet EDS attached to the above ESEM instrument.  For all 

SEM studies the full width of the scale bar on the micrograph represents the width stated. 

POWDER X-RAY DIFFRACTION Powder x-ray diffraction (XRD) patterns were collected for 

phase analysis of the residues analysed by SEM above.  Random powder samples were prepared by 

hand grinding in a mortar and pestle and the diffraction patterns were acquired between 5 and 65 ° 

2θ on a Siemens D500 Bragg-Brentano Diffractometer operated at 40 kV and 40 mA using Cu-Kα 

radiation.  The step size was 0.02 ° 2θ with a scan rate of 0.4 ° 2θ per minute.  MDI–Jade (version 6) 

automated phase identification software was used to analyse the diffraction patterns. 
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X-RAY CRYSTALLOGRAPHY Single crystal x-ray crystallography was used to capture the 

diffraction pattern of a crystal and return dimensions of its unit cell.  Each crystalline species has a 

unique unit cell dimension, which gives each a “fingerprint” for confirmation of identity. 

NCS was pressed in a pelletiser (Specac 15.010) at 10T pressure.  A section of the subsequent disc 

was placed in a scintillation vial containing 0.1 mol P L-1 as H2PO4
- and crystals allowed to grow.  

The crystals were left for a 6-month period to obtain suitably sized samples for x-ray 

crystallographic analysis. 

Single crystal x-ray crystallography was undertaken on a sample mounted under argon in a glass 

capillary with epoxy resin (Araldite, Selleys Australia). Cell determinations and data acquisitions 

were carried out using an Enraf-Nonius turbo CAD4 diffractometer with a graphite single crystal 

monochromated molybdenum radiation source, assumed to be 0.71073 Å (Kα) at 298 K.  The unit 

cell calibration was performed using 25 reflections well separated in reciprocal space. 
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RESULTS AND DISCUSSION 

KINETICS Isothermal studies were used to extend the loading studies previously described 24 and 

to provide information about the mechanism of sorption.  As two chemical quantities were 

monitored during the reaction two sets of kinetics are presented: firstly with respect to the loss of 

phosphate from the solution and secondly with respect to hydrogen ion concentration as determined 

from pH.  Typical plots of phosphate loading and pH versus time are given in Figure 1. 

The kinetics of the chemisorption of the various forms of orthophosphate by NCS was determined 

for first order [1] and second order [2], where x = 0, 1, 2; t = time of sampling and k = rate constant.  

The reaction between NCS and three forms of orthophosphate (H2PO4
-, HPO4

2- and PO4
3-) at an 

initial concentration of 1.00 mmol-P L-1 was undertaken at five temperatures between 2.8 °C and 

46.4 °C.  NCS showed a general trend for all forms of orthophosphate, with increased uptake of 

phosphate at decreased initial pH.  The kinetics using the same rate equations with respect to 

hydrogen ion concentration is presented and discussed later. 
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At higher temperatures the reaction between orthophosphate and NCS was found to be entirely 

second order.  For example in Figure 2(a) the reaction between monohydrogen orthophosphate and 

NCS at 36.8 and 46.4 °C exhibited consistent linearity for the second order plot.  A comparison of 

the first and second order plots for the reaction for the same reaction conditions as in Figure 2(a) but 

at 2.8 °C is given in Figure 2(b).  At both lower temperatures and higher initial pH there were two 

distinct linear regions, which indicated a two-step process was occurring.  It was found that both 

steps were affected by initial pH and temperature.  This clearly shows a dependence on the 

temperature for the appearance of a discernable first step, which was totally lacking at the higher 

temperatures in Figure 2(a).  At lower initial pHs, and hence a predominantly different form of 

phosphate, the first step was also apparent.  To differentiate between the two steps each first and 
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second order plot was split into two regions.  The first step was found to occur in the majority of 

experiments in the first thirty minutes, with the second step occurring in the remaining time period. 

The occurrence of this first step made the resolution of the order of both steps difficult.  However, 

with the confirmation of a second order process at higher temperatures, it was likely that the second 

step at lower temperatures was also second order as it occurred over an increasing portion of the 

time range at higher temperature.  Comparison of linearity of the first and second order linear plots 

for both steps was undertaken to confirm the order of each step.  The difference between the second 

and first order squared-residual values from ordinary least squares regression strongly indicated that 

the second step was second order with respect to phosphate.  

The resolution of the order of the first step was more difficult, as there was evidence for both first 

and second order processes with respect to phosphate.  While the overall fit to a second order 

process was moderately apparent, indisputable evidence was not provided by this data.  This was 

likely due to the sparsity or uncertainty of data in this region.  As such it is concluded the initial step 

is also second order with respect to phosphate. 

The reaction between NCS and all forms of phosphate has been shown to cause a change in pH, 

see Figure 1, which mirrors the change in phosphate concentration.  The pH in most cases was found 

to tend to a common value, regardless of the initial pH, of between 9 and 11.  For the kinetics 

experiments the pH was measured in situ and the results for the same experiments under the same 

conditions and at approximate times as for the phosphate data.  The same trends between forms of 

phosphate and pH change seen in the loading studies were exhibited at all temperatures in the 

kinetics studies. 

The same two-step process as with respect to phosphate was clearly evident with respect to 

hydrogen ions.  In the reaction between NCS and H2PO4
- or HPO4

2- the reaction was found to be 

highly dependent on temperature, with the initial step, which was clearly second order, seen at all 

temperatures. 

For example in Figure 3 for the reaction between NCS and H2PO4
- at 2.8, 25.0 and 46.4 °C the rate 

of the first step was found to decrease and its duration to increase with decreasing temperature.  The 
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presence of a second order first step, with respect to hydrogen ion concentration, supported the 

hypothesis above where the first step was found to be a second order process with respect to 

phosphate.  The likely mechanism for the first step for both H2PO4
- and HPO4

2- was an acid/base 

reaction. 

The second step in the reaction between H2PO4
- or HPO4

2- and NCS was found to be independent 

of hydrogen ion concentration.  For both the first and second order plots of these reactions at all 

temperatures the slope of the graph was found to be consistently around zero.  This indicated a zero 

order process for the second step with respect to hydrogen ion concentration. 

In the case of the reaction between PO4
3- and NCS there was no consistent, discernable division of 

the reaction into two steps.   No conclusions about the order of the reaction between PO4
3- and NCS 

with respect to hydrogen could be made.  To place the results for PO4
3- in context, direct comparison 

to the results for reaction with H2PO4
- were made.  In all cases the slope was found to be 

approximately 0, and was not even of the same magnitude as the first and second order plots for 

H2PO4
- as the initial form of phosphate present under the same conditions. 

From this the reaction between PO4
3- and NCS was determined to be zero order with respect to 

hydrogen ion concentration.  This was in good agreement with the assumption that at lower initial 

pH an initial, pH dependent, acid/base reaction occurred in the first step.  At higher initial pH the 

lack of available hydrogen ions from the phosphate saw a decrease in the prevalence of this step, and 

dependence on hydrogen ion concentration.  This subsequently led to slower, kinetically unfavoured 

reactions with increasing initial pH, inhibited by the absence of hydrogen ions. 

MICROSTRUCTURE Nanostructured calcium silicate has been shown by Johnston et al 19, 21, 22 to 

be a material of high porosity, with nanometre-sized pores in an open framework arrangement, and 

exhibiting a “desert rose” type surface morphology.  Three forms of NCS from the same batch, but 

with differing post-treatments, were analysed.  They all exhibited similar physical properties, with 

very bright, white colour, low density and no apparent crystallinity.  As can be seen in Figure 4 the 

described desert rose microstructure and high porosity were clearly visible.  Microstructural analysis 

by SEM of the pore size in Figure 4 indicated that the pores averaged between 100 and 500 nm in 
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diameter around a larger open framework of ca. 1 µm in diameter.  The average of several energy 

dispersive spectroscopy (EDS) spot analyses of the unreacted NCS was taken, showing the presence 

of silicon, calcium and oxygen in the specimens with a small sodium K line also observed, 

indicating incomplete washing of the product after precipitation. 

After reaction between NCS and 0.1 mol P L-1 as H2PO4
- at 25 °C for twenty-four hours there was 

a profound change in the morphology of the NCS.  As seen in Figure 4, there was little apparent 

crystallinity and definite porosity in the pristine NCS.  There were three distinct morphologies 

identified from microstructural analysis by SEM: Firstly, detritus with little consistent morphology 

was present in all specimens.  It appeared to retain some of the gross morphology of the pristine 

NCS but, from SEM analysis, no apparent porosity making it related to a collapsed form of water 

washed silicate (NCS-w).  Secondly, fine fibres were present in all except the completely crystalline 

specimen and these ranged from a minor to major component of the mix.  Finally, most specimens 

exhibited some crystallites, with some specimens were almost entirely crystalline. 

The detritus exhibited a strong phosphorus line when compared with the pristine starting material, 

indicating that the detritus was a product of the reaction between NCS and phosphate, and not 

simply a collapse of the pore structure.  This morphology is probably derived from the pristine NCS.  

The porosity seen in the pristine NCS was totally lost as can be seen in Figure 5.  This loss of 

porosity may be due to a number of factors such as crystalline products forming in the NCS pores 

and collapse of the structure during treatment as described in the literature 19, 23.  The detritus material 

was potentially a precursor to other crystalline forms of the product, such as the fibrous morphology, 

formed by its dissolution and crystallization.  It was not found in specimens in the absence of one or 

both of the other product morphologies. 

Fibres (see Figure 6) were found in most specimens and were usually associated with detritus, 

shown as nodules on the fibres themselves (Figure 6(b)).  This indicates that the fibrous crystal 

growth occurred from the pores of the NCS.  The fibres were of considerable length in comparison 

to diameter (length ≈ 10 and 100 µm, diameter ≈ 250 nm and 2 µm).  

The energy dispersive spectrum for the fibres showed significant silicon and oxygen lines with 
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reduced calcium and phosphorus lines when compared to the detritus.  Comparison of the line 

heights of silicon and calcium for the pristine NCS (Si/Ca = 2.1), detritus (Si/Ca = 1.8) and fibres 

(Si/Ca = 5) illustrates the enrichment in silicon through loss of calcium in the fibres.  This loss of 

calcium is most probably attributable to the formation of other calcium phosphate products.  The 

crystallites were found to be almost entirely calcium, phosphorus and oxygen, with a small amount 

of silicon likely due to the surrounding detritus. 

All specimens prepared for microstructural analysis exhibited crystallinity with clearly identifiable 

crystallites of between 50 to 500 µm surrounded by detritus (eg Figure 7).  It is assumed that the 

reaction with phosphate destroyed the NCS and that calcium phosphates were the likely predominant 

product.  Compared to the fibres the detritus did not appear to be part of these crystals.  In Figure 7 

the detritus was found to be sitting on, rather than included in, the crystal.  This further indicated that 

NCS was destroyed in this process leading to formation of large crystals. 

X-RAY ANALYSIS X-ray diffraction was undertaken on random bulk powder samples of pristine 

NCS and NCS after reaction with phosphate that was found from electron microscopy to contain 

predominantly a mixture of detritus and fibrous products or a mixture of detritus and crystalline 

products.  Single crystal analysis was also undertaken to confirm the identity of the final crystalline 

product. 

The powder diffraction (see Figure 8(a)) showed that the pristine NCS diffracted poorly and 

showed some broad crystalline calcium silicate peaks (6 = Ca2SiO4/ Ca1.5SiO3.5·H2O, 7 = 

Ca1.5SiO3.5·H2O, 8 = Na2Ca3Si2O8 indicating impurities or micro-crystallinity) on an amorphous halo 

between 15 and 40 ° 2-theta.  By comparison the products after reaction varied considerably in their 

phase composition.   

Where detritus and fibrous morphologies existed the diffraction pattern (see Figure 8(b)) exhibited 

a mixture of residual calcium silicate peaks (6) and product calcium phosphate peaks.  The 

confirmation of phase identities in the product peaks is difficult, as many calcium phosphates 

diffract similarly and a convoluted pattern is evident.  Brushite or CaHPO4·2H2O (1) and 

Ca9HPO4(PO4)5OH (4) are clearly discernable.  Other potential products for the peaks identified are 
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Ca5(PO4)3OH and/or Ca3(PO4)2·2H2O (2) and Ca9HPO4(PO4)5OH and/or Ca5(PO4)3OH (3).   

The predominantly crystalline product (see Figure 8(c)) was found to diffract well and provide a 

strong brushite or CaHPO4·2H2O pattern (1).  Examination of the crystalline material under an 

optical microscope identified two main morphological types; longer rods and flatter and wider 

plates.  Each of these crystals was mounted as described and an initial single-crystal diffraction 

attempted.  It was found that the rod crystals gave a better diffraction, and were used for the unit cell 

determination. 

The x-ray crystallography undertaken on the sample indicated two possibilities for the unit cell 

with the choice of unit cell was ambiguous on initial analysis.  Further analysis confirmed that the 

cell was monoclinic, the stoichiometry of metal centre to ligand was 1:1 and the unit cell dimensions 

closely matched that of brushite, CaHPO4·2H2O.  The comparison of the unit cell dimensions (see 

Table 1) for the references available against the experimental results show the unit cell dimension 

obtained matches that of brushite within experimental error. 

Curry and Jones 33 obtained the unit cell from neutron activation analysis and assigned brushite to 

a non-uniform space group, Ia.  Sainz-Díaz et al 34 transformed it to the standard space group Cc, 

and the unit cell dimensions given here represent this transformation. Sainz-Díaz et al obtained the 

unit cell dimensions from first principle calculations at 300 and 380 eV.   

MECHANISM  A mechanism for the reaction between NCS and phosphate is proposed from the 

kinetics data with respect to phosphate and hydrogen, the resolution of product morphologies from 

SEM and the identity of crystalline products from x-ray diffraction.  Two mechanisms are proposed: 

one at an initial pH in the reaction liquor of between 4 and 9 where the form of phosphate present is 

predominantly in the H2PO4
- and HPO4

2- forms, and a second mechanism is proposed for an initial 

pH greater than 9 where the form of phosphate is mostly PO4
3-. 

Where the form of phosphate is predominantly H2PO4
- or HPO4

2- the added protonation available 

from the phosphate led to the kinetically favoured mechanism [3].  It is proposed from the hydrogen 

and phosphate kinetic data that the lower initial pH caused a rapid increase of solution pH by 

desorption of hydroxide ions from the NCS surface.  This saw subsequent alteration of the form of 
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phosphate present to predominantly HPO4
2- and PO4

3-. 

 3 

The second step in the mechanism saw chemisorption of the phosphate by NCS, most likely as 

HPO4
2- or PO4

3- from the pH of the reaction liquor after 20 hours of between 9 and 10.  The 

chemisorption process was also thought to have occurred during the first step, as the majority of 

phosphate loss was seen in this region.   There was still significant phosphate loss after the 

equilibration of pH, and as such chemisorption was thought to occur across the full time range. 

When the initial pH was high, and hence the predominant form of phosphate was PO4
3-, a different 

mechanism occurred [4].  The lack of protonation saw a different first step, not kinetically favoured.   

 4 

The ligand exchange of hydroxide for phosphate was inhibited by the already high pH.  The initial 

lowering of the pH-value seen in loading studies for the reaction between PO4
3- and NCS, for 

example Figure 1, was thought to be attributable to phosphate chemisorption in the second step.  The 

chemisorption could occur on the NCS surface (detritus) or between the calcium ions released by the 

silicate into solution and the phosphate (fibres and crystallites). 

The second chemisorption step was thought to be common to both mechanisms.  This indicated 

that both mechanisms were likely to have occurred with reactions commencing at lower initial pH, 

hence leading to the kinetically favoured uptake of H2PO4
- and HPO4

2- over PO4
3-.  
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SUMMARY  

It was found that the chemisorption process between NCS and phosphate was a two-step 

mechanism.  Both steps were found to be second order with respect to phosphate.  The first step was 

a desorption process, most likely of surface bound hydroxide ions, during the first 30 minutes and 

was highly dependent on temperature and the initial pH of the reaction liquor.  The second step was 

the true chemisorption process driven by ligand exchange, most probably by hydroxide, and hence 

the initial pH of the phosphate solution played a large part. 

Analysis of the pristine NCS confirmed the reported microstructure and porosity of the NCS.  

Clearly identifiable pores of between 100 and 500 nm and an open framework pore structure were 

found with an apparent “desert rose” microstructure observed.  EDS confirmed that the major 

elements present in the pristine NCS were silicon, calcium and oxygen. 

Microstructural analysis of the NCS after exposure to phosphate illustrated three unique 

morphologies in the products, detritus, fibres and crystallites, in varying quantities between different 

treatments and different forms of NCS.  Detritus morphology was found to exist in all specimens 

analysed after treatment.  It was found to be a combination of residual NCS with calcium phosphate 

products of varying and complex structures and with little or no porosity.   The fibres were found to 

be approximately 10 to 100 µm in length and 250 nm to 2 µm in diameter.  There were also residual 

nodules of detritus material occurring with the fibres, which strongly indicated their occurrence was 

associated.  Elemental confirmed the presence of silicon, calcium, oxygen and phosphorus.  

Crystallites were found after most sample treatments of varying size between 50 and 500 µm with 

residual detritus surrounding the crystals.  X-ray powder diffraction identified the crystalline product 

as brushite, CaHPO4·2H2O.  The crystals grown from NCS exposed to a phosphate solution 

exhibited two types, needle or rod-like and plate-like crystals.  X-ray crystallography of the crystals 

returned a monoclinic unit cell of a = 6.366, b = 15.181, c = 5.808 Å and β = 118.4 °, which is 

within experimental error of the unit cell for brushite. 

It was found that the formation of less soluble and more thermodynamically stable calcium 
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phosphates, such as OCP and HAP, were inhibited by the presence of silicon in the NCS.  The main 

mechanistic impetus for the kinetically favoured chemisorption of phosphate by NCS where the 

initial pH was lower was two-fold: through hydroxide desorption from the surface of the NCS 

causing a rapid kinetically favoured increase in pH and through crystallisation of brushite and 

subsequent inhibition of HAP formation seeing greater stability of the product at lower initial pH.  
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 FIGURES 

 

Figure 1 Comparison of loading and pH versus time for three different forms of phosphate at 46.4 °C 
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Figure 2 First and Second Order Plots with respect to phosphate for the reaction between NCS and 

HPO4
2- at (a) 36.8 and 46.4 °C and (b) 2.8 °C 
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Figure 3 First and second order plots with respect to hydrogen ion concentration for the reaction 

between NCS and H2PO4
-  
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Figure 4 Scanning electron micrograph of pristine NCS (NCS-2EE) 
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Figure 5 Scanning electron micrograph of NCS (NCS-Rein) after reaction with 0.1 M H2PO4
- for 24 

hours at 25 °C 



 

29 

 

Figure 6 Scanning electron micrographs of NCS (NCS-2EE) after reaction with 0.1 M H2PO4
- for 24 

hours at 25 °C at increasing magnification 
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Figure 7 Scanning electron micrograph of NCS (NCS-2EE) after reaction with 0.1 M H2PO4
- 

showing well formed crystals 
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Figure 8 X-ray diffraction pattern of (a) pristine NCS and NCS after reaction with 0.1 M H2PO4
- for 

24 hours of predominantly (b) detritus and (c) crystalline material 

 

 


