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Abstract: In this paper, (weak) vector equilibrium principle with capacity con-

straints is introduced. A necessary condition that a vector minimum cost flow is

a vector equilibrium flow with capacity constraints is obtained. When the number

of paths connecting with each pair of source and sink is less than or equal to 2, a

sufficient condition for a vector minimum cost flow to be a vector equilibrium flow

is also obtained. A generalized (weak) vector equilibrium principle is also intro-

duced. Without any additional assumption, a necessary and sufficient condition for

a (weak) vector minimum cost flow to be a generalized (weak) vector equilibrium

flow is obtained.

Keywords: Traffic network equilibrium model, vector equilibrium principle, vector

minimum cost flow.
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1 Introduction

The minimum cost flow problem on a network has extensively been investigated

(see [1], [2] and [14]). The problem is to determine how some given amount of

flows can be sent from some vertexes (the sources) to other vertexes (the sinks) at

minimum cost, subject to the capacity limits on the arcs of the network. In general,

the cost function of the problem is considered as a scalar one. In many practical

situations, however, the choice of paths based on a single criterion by all retailers

or manufacturers may not be reasonable. Minimum cost paths may be not ones

of the least travel time. Naturally, some retailers or manufacturers may choose a

freeway, of which tolls are collected, instead of the road in order that goods can be

transported to a destination quickly. Of course, retailers or manufacturers do not

choose the path which incurs both higher cost as well as longer delay than some

other path. Therefore, a more realistic model is to take into account a vector cost

function. The problem is called a vector minimum cost flow problem.

In 1993, a special issue for multiple objectives in transportation network design

and routing was published in European Journal of Operations Research. In [5],

Current and Marsh stated that methods for solving a vector minimum cost flow

problem are classified as either being generating techniques or preference base tech-

niques. Generating techniques are those which generate an exact representation

or an approximation of the noninferior solution set. Preference based techniques

educe preferences from the decision makers regarding the relative importance of the

various objectives. These preferences are then incorporated into the mathematical

formulation of the problem. In [9], Friesz et al. employed the ’weighting’ method

together with simulated annealing to generate the Pareto optimal set for continu-

ous multiobjective optimal design of a transportation network. In [17], Tzeng and

Chen obtained some noninferior solutions of traffic-assignment problem with three

objectives by using the ’weighting’ method and the Frank-Wolfe algorithm.

The earliest network equilibrium model was proposed by Wardrop for a trans-

portation network. Since then, many other equilibrium models have also been

proposed in the economics literature (see [7], [8], [10], [15] and [16]). Recently,
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equilibrium models based multicriteria consideration or vector-valued cost functions

have been proposed (see [3], [4], [11]), [12] and [18]). In these papers, the classical

Wardrop’s principles without capacity constraints are generalized into weak vec-

tor equilibrium principle and vector equilibrium principle. Relationships between

vector equilibrium principle and vector variational inequality and between vector

equilibrium principle and a class of vector optimization problems were investigated.

We know that a minimum cost flow is equivalent to a class of equilibrium flows

with capacity constraints under a linear scalar cost function with respect to arc flow

(see Proposition 2.1). However, until now, there is no investigation on the vector

equilibrium principle with upper and lower capacity constraints. There is also no

discussion whether a vector minimum cost flow is a vector equilibrium flow with

capacity constraints. In this paper, we first introduce a weak vector equilibrium

principle and a vector equilibrium principle with capacity constraints, which are

generalizations of the classic Wardrop’s principle. We obtain a necessary condition

for a vector minimum cost flow to be a vector equilibrium flow. When the number

of paths connecting each pair of source and sink is less than or equal to 2, we

obtain also a sufficient condition for a vector minimum cost flow to be a vector

equilibrium flow. A counterexample is given to show that such a sufficient condition

may not hold when there is a pair of source and sink such that the number of

paths connecting them is greater than 2. We introduce new concepts of generalized

weak vector equilibrium principle and generalized vector equilibrium principle. As

such, we obtain a sufficient and necessary condition that a (weak) vector minimum

cost flow is a generalized (weak) vector equilibrium flow without any additional

assumption.

The outline of the paper is as follows. In Section 2, we introduce a vector mini-

mum cost flow problem and a (weak) vector equilibrium principle. Then, we obtain

a necessary condition for a vector minimum cost flow to be a vector equilibrium flow.

We also illustrate that a vector minimum cost flow may not be a vector equilibrium

flow. In Section 3, we introduce a generalized (weak) vector equilibrium principle

and obtain a necessary and sufficient condition for a vector minimum cost flow to

be a generalized vector equilibrium flow.
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2 Vector minimum cost problem and vector equi-

librium principle

In this section, we consider a well-known equilibrium problem with capacity intro-

duced on a transportation network with vector-valued cost functions. Our nota-

tion for the vector traffic network equilibrium follows closely that of Daniele and

Maugeri [8]. Consider a transportation network G = [N ,L, L, U ], where N denotes

the set of nodes in the network, L is the set of directed arcs, L and U are the sets of

lower and upper capacities of directed arcs, respectively. Let a denote an arc of the

network connecting a pair of nodes and p denote a path, assumed to be acyclic, con-

sisting of a sequence of arcs connecting an origin/destination (O/D) pair of nodes.

Let W be a set of O/D pairs and Pw denote the set of available paths joining the

O/D pair w. Let

n = |L|, m = |W |, and P =
⋃

w∈W

Pw.

Let Fp denote the nonnegative flow on path p and F = {Fp, · · · , Fm}T ∈ Rm. The

path flow vector F induces a flow fa on arc a ∈ L given by:

fa =
∑

p∈P

Fpδap, ∀a,

where δap = 1, if arc a belongs to path p, and 0, otherwise. Hence, the load on an

arc is equal to the sum of the flows of the paths that contain that arc. In addition,

let f = {fa, · · · , fn}T be the n-column vector of arc flow. Let ca(fa) : R → Rr be

a linear vector-valued cost function for arc a, Cp(Fp) : R → Rr be a linear vector-

valued cost function for path p and the matrices c(f) = (ca(fa), · · · , cn(fn)) ∈ Rr×n
+

and C(F ) = (Cp(Fp), · · · , Cm(Fm)) ∈ Rr×m
+ . If the path costs are additive, then the

vector-valued cost on the path is equal to the sum of the costs on the arcs composing

it,

Cp(Fp) =
∑

a∈L
δapca(fa).

We shall assume that the demand of traffic flow is fixed for each O/D pair w, i.e.,

∑

p∈Pw

Fp = dw, ∀w,
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where dw ∈ R is a given demand for O/D pair w, that is, the travel demand for an

O/D pair is equal to the sum of the flows on paths that join the O/D pair. For each

path p, let

λp = max{laδap | la ∈ L}, µp = min{uaδap | ua ∈ U},

and lower and upper capacity vectors

λ = (λp, · · · , λm)T and µ = (µp, · · · , µm)T ,

respectively. For the l-dimensional Euclidean space Rl, we denote the orderings

induced by Rl
+ as follows:

x ≤ y iff y − x ∈ Rl
+;

x < y iff y − x ∈ intRl
+,

where intRl
+ is the interior of Rl

+. The orderings ≥ and > are defined similarly.

A flow F ≥ 0 satisfying the demand requirements and capacity constraints is

called a feasible flow, namely,

λ ≤ F ≤ µ,

and for every w ∈ W ,
∑

p∈Pw

Fp = dw.

The set of feasible flow is given by

K = {F | λ ≤ F ≤ µ, and
∑

p∈Pw

Fp = dw, for every w ∈ W},

and it is called the feasible set. K is clearly a closed convex set.

The vector minimum cost flow problem with lower and upper capacity constrains

and vector-valued cost functions is as follows:

(MCF) min
∑

p∈P

Cp(Fp)

s.t. λ ≤ F ≤ µ,
∑

p∈Pw

Fp = dw, ∀w ∈ W.
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Definition 2.1 (i) A flow H ∈ K of the problem (MCF ) is said to be a vector

minimum cost flow if there does not exist any F ∈ K satisfying

∑

p∈P

Cp(Hp)−
∑

p∈P

Cp(Fp) ∈ Rl
+\{0}.

(ii) A flow H ∈ K of the problem (MCF ) is said to be a weak vector minimum cost

flow if there does not exist any F ∈ K satisfying

∑

p∈P

Cp(Hp)−
∑

p∈P

Cp(Fp) ∈ intRl
+.

The well-known (scalar) Wardrop’s user principle is a behavioral principle which

asserts that when the traffic flow is in equilibrium, user only chooses minimum cost

path to travel on. Chen and Yen [3] and Yang and Goh [18] generalized Wardrop’s

user principle and proposed vector equilibrium principle and weak vector equilib-

rium principle for vector equilibrium problem without lower and upper capacity

constraints. Herein, we also propose two vector equilibrium principles for the vector

traffic network equilibrium model with lower and upper capacity constraints.

Definition 2.2 (Vector equilibrium principle) A flow H ∈ K is said to be in vector

equilibrium if for all O/D pairs w and for any path p, p′ ∈ Pw, we have

Cp′ − Cp ∈ Rl
+\{0} =⇒ Hp = µp or Hp′ = λp′ . (1)

Definition 2.3 (Weak vector equilibrium principle) A flow F ∈ K is said to be in

weak vector equilibrium if for all O/D pairs w and for any path p, p′ ∈ Pw, we have

Cp′ − Cp ∈ intRl
+ =⇒ Hp = µp or Hp′ = λp′ . (2)

Theorem 2.1 If a flow H ∈ K is a vector minimum cost flow of the problem

(MCF ), then the flow H is a vector equilibrium flow.

Proof. Suppose that H is not a vector equilibrium flow. Then, there exist w ∈ W

and q, s ∈ Pw such that

Cs − Cq ∈ Rl
+\{0} =⇒ Hq < µq and Hs > λs. (3)
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Construct a flow F as follows:

Fr =





Hr, r 6= q, s,

Hq + ε, r = q,

Hs − ε, r = s,

where

0 < ε ≤ min{µq −Hq, Hs − λs}.

Then, we have

λ ≤ F ≤ µ,

and
∑

p∈Pw

Fp = dw, ∀w ∈ W,

i.e.,

F ∈ K.

It follows readily that

∑

p∈P

Cp(Fp)−
∑

p∈P

Cp(Hp) = Cq(Hq + ε)− Cq(Hq) + Cs(Hs − ε)− Cs(Hs)

= Cq(ε)− Cs(ε)

= (Cq − Cs)(ε) ∈ −Rl
+\{0},

which contradicts to the assumption condition that the flow H is a vector minimum

cost flow of the problem (MCF ). 2

Theorem 2.2 If a flow H ∈ K is a vector equilibrium flow and |Pw| ≤ 2,∀w ∈ W ,

then the flow H is a vector minimum cost flow of (MCF ).

Proof. Take any w ∈ W . We shall prove that the flow H̃w = {Hp | p ∈ Pw} is a

vector minimum cost flow of the following problem:

(MCFw) min
∑

p∈Pw

Cp(Fp)

s.t. λp ≤ Fp ≤ µp, for p ∈ Pw

∑

p∈Pw

Fp = dw.

8



In fact, if |Pw| = 1, the flow H̃w is a vector minimum cost flow of the problem

(MCFw) naturally.

If |Pw| = 2 and the flow H̃w is not a vector minimum cost flow of the problem

(MCFw), there exists a feasible flow F̃w of the problem (MCFw) such that

∑

p∈Pw

Cp(F̃p)−
∑

p∈Pw

Cp(Hp) ∈ −Rl
+\{0},

i.e.,
∑

p∈Pw

Cp(F̃p −Hp) ∈ −Rl
+\{0}. (4)

Let Pw = {p1, p2}. Since F̃w and H̃w are feasible flows of (MCFw),

Fp1 + Fp2 = Hp1 + Hp2 = dw. (5)

Then, by (4) and (5) we have

(Cp1 − Cp2)(Fp1 −Hp1) ∈ −Rl
+\{0}. (6)

It follows from (6) and H 6= F that one of the following two cases happens:

1. If Fp1 −Hp1 > 0, Cp1 − Cp2 ∈ −Rl
+\{0};

2. If Fp1 −Hp1 < 0, Cp1 − Cp2 ∈ Rl
+\{0}.

We can see that any one of the two cases contradicts to the definition of vector

equilibrium flow (1). Thus, the flow H̃w is a vector minimum cost flow of the

problem (MCFw). Naturally, the flow H is a vector minimum cost flow of the

problem (MCF ). The proof of the result is complete. 2

Following the proofs of Theorems 2.1 and 2.2, we can establish two similar results

between weak vector minimum cost flow and weak vector equilibrium flow.

Theorem 2.3 If a flow H ∈ K is a weak vector minimum cost flow of the problem

(MCF ), then the flow H is a weak vector equilibrium flow.

Theorem 2.4 If a flow H ∈ K is a weak vector equilibrium flow and |Pw| ≤ 2,∀w ∈
W , then the flow H is a weak vector minimum cost flow of (MCF ).
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Remark 2.1 If there is a w ∈ W such that |Pw| > 2, Theorem 2.2 may not hold.

The following example is given to explain the situation.

Example 2.1 Given a transportation network depicted in Figure 1, which consists

of two nodes x and y, three arcs a, b and d and a single O/D pair w = (x, y).

• •>d

a

b
>

>
x y

Figure 1. Network topology for an example with |Pw| > 2.

Assume that upper capacities of the three arcs a, b and d are 4, 3 and 3, re-

spectively, and their lower capacities are all zero. A conventional traffic-assignment

problem in Figure 1 is to simulate or predict the trip-flow pattern between the origin

x and the destination y under the conditions that satisfy upper and lower constraints.

Suppose that the basic model consists of two objective, which are travel cost and

travel time. Like [17], the model can be expressed as follows.

min(g1, g2)

subject to

λ ≤ F ≤ µ,
∑

p∈Pw

Fp = dw,

g1 = fa · da + fb · db + fd · dd,

g2 = fa · ta + fb · tb + fd · td,

where

g1 – total travel cost,

g2 – total travel time,

dα – travel cost of arc α,

tα – travel time of arc α,
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dw – travel demand for w,

fα – flow of arc α,

Fp – flow of the path p from origin x to destination y,

λ =




0

0

0




, µ =




4

3

3




, F =




Fa

Fb

Fd




, W = {w = (x, y)}, and Pw = P = {a, b, d}.

Furthermore, suppose that dw = 4,

ca =


 da

ta


 =


 6

3


 , cb =


 da

ta


 =


 5

4


 and cd =


 da

ta


 =


 7

1


 .

Then, we have

Ca = ca, Cb = ca, Cd = cd,

Fa = fa, Fb = fb, and Fd = fd.

Thus, we can transform the traffic-assignment problem into the following vector

minimum cost flow problem (MCF):

min
∑

p∈P

Cp(Fp)

s.t. λ ≤ F ≤ µ,
∑

p∈Pw

Fp = dw, ∀w ∈ W.

It follows readily that any feasible flow is a vector equilibrium flow. Take Ha =

4, Hb = 0 and Hd = 0. It is a feasible flow. Thus, H is a vector equilibrium flow.

However, take Fa = 0, Fb = 2 and Fd = 2. We have that F is a feasible flow and

∑

p∈P

Cp(Fp)−
∑

p∈P

Cp(Hp) = ca(Fa −Ha) + cb(Fb −Hb) + cd(Fd −Hd)

= −ca(Ha) + cb(Fb) + cd(Fd)

=


 0

−2


 ∈ −Rl

+\{0}.

Thus, the vector equilibrium flow H is not a vector minimum cost flow.
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Remark 2.2 It follows from Theorems 2.1 and 2.2 and Example 2.1 that a vector

minimum cost flow of the problem (MCF ) is a vector equilibrium flow and a vector

equilibrium flow is, in general, not a vector minimum cost flow of the problem

(MCF ) when there exists a w ∈ W such that |Pw| > 2. However, if cost functions

of a traffic network problem are scalar ones, then a minimum cost flow is equivalent

to an equilibrium flow. The following proposition states the result:

Proposition 2.1 If for each p ∈ P , Cp is a single-valued function from R to R,

then a flow H ∈ K is a minimum cost flow of the problem (MCF ) if and only if the

flow H ∈ K is an equilibrium flow.

Proof. It follows from Theorem 2.1 that we only need to prove the sufficient

property. We shall use the method of contradiction to prove it. Suppose that there

is a flow F ∈ K such that

∑

p∈P

Cp(Fp) <
∑

p∈P

Cp(Hp),

i.e.,
∑

p∈P

Cp(Fp −Hp) < 0. (7)

Since F,H ∈ K and F 6= H, there exist two index sets I1 and I2 of paths, where

|I1|+ |I2| ≤ |P |, such that

Fp −Hp > 0,∀p ∈ I1, (8)

Fq −Hq < 0,∀q ∈ I2 (9)

Fs −Hs = 0,∀s ∈ P\(I1

⋃
I2),

and
∑

p∈I1

(Fp −Hp) =
∑

q∈I2

(Hq − Fq).

If for any p ∈ I1 and q ∈ I2,

Cp ≥ Cq,

then we have
∑

p∈P

Cp(Hp) ≤
∑

p∈P

Cp(Fp),
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which contradicts to (7). Therefore, there exist a p ∈ I1 and a q ∈ I2 such that

Cp < Cq.

Since H is an equilibrium flow,

Cp < Cq =⇒ Hp = µp or Hq = λq,

which contradicts to (8) or (9). 2

Remark 2.3 In Lemma 2.1 of [6], Daniele et al also introduced a statement to

be the same as Definition 2.3 in the scalar case and investigated an equivalent

relationship between the statement and a class of variational inequality problems.

The solution for the class of variational inequality problems, in fact, is equivalent

to the minimum cost flow of the problem (MCF ) in scalar case. Thus, Proposition

2.1 can be considered as a corollary of Lemma 2.1 in [6]. Here, we only gave an

alternative method to prove it.

3 Generalized vector equilibrium principle

It follows from Theorems 2.1 and 2.2 and Example 2.1 that the vector equilibrium

principle introduced similar to the well-known (scalar) Wardrop’s user principle does

not have all the properties of a vector minimum cost flow. We need to introduce new

concepts on generalized vector equilibrium flows. On this thesis, we will establish

the equivalence relationship between vector minimum cost flows and generalized

vector equilibrium flows. These new concepts are given in the following definitions.

Definition 3.1 (Generalized vector equilibrium principle) A flow F ∈ K is said

to be in generalized vector equilibrium if for all O/D pairs w and for any integer

numbers l1, l2 > 0 and l1 + l2 ≤ |Pw|, we have

l2∑

j=1

θjCp′j −
l1∑

i=1

ηiCpi
∈ Rl

+\{0} =⇒ ∃ i0(0 < i0 ≤ l1) s.t. Hpi0
= µpi0

or

∃ j0(0 < j0 ≤ l2) s.t. Hp′j0
= λp′j0

,
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where pi, p
′
j ∈ Pw, ηi, θj > 0, i = 1, · · · , l1, j = 1, · · · , l2,

l1∑

i=1

ηi = 1 and
l2∑

j=1

θj = 1.

Definition 3.2 (Generalized weak vector equilibrium principle) A flow F ∈ K is

said to be in generalized weak vector equilibrium if for all O/D pairs w and for any

l1, l2 > 0 and l1 + l2 ≤ |Pw|, we have

l1∑

i=1

ηiCpi
<

l2∑

j=1

θjCp′j =⇒ ∃ i0(0 < i0 ≤ l1) s.t. Hpi0
= µpi0

or

∃ j0(0 < j0 ≤ l2) s.t. Hp′j0
= λp′j0

,

where pi, p
′
j ∈ Pw, ηi, θj > 0, i = 1, · · · , l1, j = 1, · · · , l2,

l1∑

i=1

ηi = 1 and
l2∑

j=1

θj = 1.

Definition 3.2 means that if there is a set of paths such that the nonzero convex

combination of vector cost functions on the paths in this set is less than the nonzero

convex combination of vector cost functions on another set of paths, then either

there exists a path pi0 in the former set such that the flow on the path pi0 is equal

to the upper capacity of the path pi0 or there exists a path p′j0 in the latter set

such that the flow on the path p′j0 is equal to the lower capacity of the path p′j0 .

Naturally, we may also use same way to understand the meaning of Definition 3.1.

Remark 3.1 When l1 = 1 and l2 = 1, the cases described in Definitions 3.1 and

3.2 are, in fact, the vector equilibrium principle and the weak vector equilibrium

principle, respectively. Thus, the generalized vector equilibrium flow in Definition

3.1 and the generalized weak vector equilibrium flow in Definition 3.2 are stronger

than the vector equilibrium flow in Definition 2.2 and the weak vector equilibrium

flow in Definition 2.3, respectively.

Remark 3.2 When for each p ∈ P , Cp is a single-valued function from R to R,

a flow satisfies the generalized vector equilibrium principle if and only if it satisfies

the vector equilibrium principle.
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Theorem 3.1 A flow H ∈ K is a vector minimum cost flow of the problem (MCF )

if and only if the flow H ∈ K is a generalized vector equilibrium flow.

Proof. Suppose that the flow H ∈ K is a vector minimum cost flow and is not

a generalized vector equilibrium flow. Then there exist a O/D pair w, l1, l2, ηi >

0,
l1∑

i=1

ηi = 1, i = 1, · · · , l1 and θj > 0,
l2∑

j=1

θj = 1, j = 1, · · · , l2 such that

l1∑

i=1

ηiCpi
−

l2∑
θjCp′j ∈ −Rl

+\{0}

and

Hpi
< µpi

, i = 1, · · · , l1 and Hpj
> λpj

, j = 1, · · · , l2.

Construct a flow as follows:

Fr =





Hr, r 6= pi, p
′
j, i = 1, · · · , l1, j = 1, · · · , l2,

Hpi
+ ηiε, r = pi, i = 1, · · · , l1,

Hp′j − θjε, r = p′j, j = 1, · · · , l2,

where

0 < ε ≤ min
i=1,···,l1,j=1,···,l2

{µpi
−Hpi

, Hp′j − λp′j}.

Then, we have

λ ≤ F ≤ µ,

and
∑

p∈Pw

Fp = dw, ∀w ∈ W,

i.e.,

F ∈ K.

It follows readily that

∑

p∈P

Cp(Fp)−
∑

p∈P

Cp(Hp) =
l1∑

i=1

(Cpi
(Hpi

+ ηiε)− Cpi
(Hpi

)) +

l2∑

j=1

(Cp′j(Hp′j − θjε)− Cp′j(Hp′j))
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=
l1∑

i=1

Cpi
(ηiε)−

l2∑

j=1

Cp′j(θjε)

= (
l1∑

i=1

ηiCpi
−

l2∑

j=1

θjCp′j)(ε) ∈ −Rl
+\{0},

which contradicts to the assumption condition that the flow H is a vector minimum

cost flow of the problem (MCF ).

Conversely, suppose that the flow H ∈ K is a vector equilibrium flow. We shall

prove that for any w ∈ W , the flow H̃w = {Hp | p ∈ Pw} is a vector minimum cost

flow of the following problem:

(MCFw) min
∑

p∈Pw

Cp(Fp)

s.t. λp ≤ Fp ≤ µp, for p ∈ Pw

∑

p∈Pw

Fp = dw.

In fact, if the flow H̃w is not a vector minimum cost flow of the problem (MCFw),

there exists a feasible flow F̃w = {Fp | p ∈ Pw} of the problem (MCFw) such that

∑

p∈Pw

Cp(Fp)−
∑

p∈Pw

Cp(Hp) ∈ −Rl
+\{0},

i.e.,
∑

p∈Pw

Cp(Fp −Hp) ∈ −Rl
+\{0}. (10)

Since the flows F̃w and H̃w are two feasible flows of the problem (MCFw) and F̃w 6=
H̃w, there exist l1, l2 > 0, l1 + l2 ≤ |Pw| and pi, p

′
j ∈ Pw, i = 1, · · · , l1, j = 1, · · · , l2

such that

Fpi
−Hpi

> 0, i = 1, · · · , l1, (11)

Fp′j −Hp′j < 0, j = 1, · · · , l2, (12)

and

Fp −Hp = 0, p ∈ Pw\({pi | i = 1, · · · , l1}
⋃{p′j | j = 1, · · · , l2}).

By the feasibility of F̃w and H̃w, we have

l1∑

i=1

(Fpi
−Hpi

) =
l2∑

j=1

(Hp′j − Fp′j).
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Set

ηi =
Fpi

−Hpi∑l1
i=1(Fpi

−Hpi
)

and θj =
Hp′j − Fp′j∑l2

j=1(Hp′j − Fp′j)
.

Then, 0 < ηi, θj, i = 1, · · · , l1, j = 1, · · · , l2 and

l1∑

i=1

ηi = 1 and
l2∑

j=1

θj = 1.

It follows from (10) that

l1∑

i=1

ηiCpi
−

l2∑

j=1

θjCp′j ∈ −Rl
+\{0}.

By Definition 3.1, there exists 0 < i0 ≤ l1 such that

Hpi0
= µpi0

or there exists 0 < j0 ≤ l2 such that

Hpj0
= λpj0

,

which contradicts to (11) or (12). Thus, the flow H̃w is a vector minimum cost flow

of the problem (MCFw). Naturally, the flow H is a vector minimum cost flow of

the problem (MCF ). 2

Example 3.1 In this example, we shall continue to consider Example 2.1. We shall

use Theorem 3.1 to explain that the feasible flow H in Example 2.1 is not a vector

minimum cost flow. Take l1 = 2, η1 = η2 = 1
2

and l2 = 1, θ1 = 1. We have

θ1Ca − (η1Cb + η2Cd) =


 6

3


−


1

2


 5

4


 +

1

2


 7

1







=


 0

0.5


 ∈ R2

+\{0}.

It follows from Example 2.1 that

Ha = 4, Hb = 0 and Hd = 0.

Obviously, the flow of H on the path a is not equal to the lower capacity of the

path and there is not a path in paths b and d such that the flow of H on the
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path is equal to its upper capacity. Thus, the feasible flow H does not satisfy the

generalized vector equilibrium principle. From Theorem 3.1, the flow H is not a

vector minimum cost flow.

Following the proof of Theorem 3.1, we can obtain a similar result between weak

minimum cost flow and weak vector equilibrium flow.

Theorem 3.2 A flow H ∈ K is a weak vector minimum cost flow of the problem

(MCF ) if and only if the flow H ∈ K is a generalized weak vector equilibrium flow.

4 Conclusions

In this paper, we first introduced the (weak) vector equilibrium principle with capac-

ity constraints and obtained a necessary condition for a vector minimum cost flow to

be a vector equilibrium flow. We also introduced generalized (weak) vector equilib-

rium principle. By using this concept, we proved a sufficient and necessary condition

that a (weak) vector minimum cost flow is a generalized (weak) vector equilibrium

flow in a transportation network with upper and lower capacity constraints.
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