EXPERIENCESWITH POINT-MASSGRAVITY FIELD MODELLING IN
THE PERTH REGION, WESTERN AUSTRALIA

S. J. Claessens!, W. E. Featherstone?, F. Barthelmes?

1. Department of Physical, Geometrical and Space Geodesy, Faculty of Civil Engineering and Geosciences,
Delft University of Technology, Thijsseweg 11, 2629 JA Delft, The Netherlands, e-mail:
s.j.claessens@student.tudelft.nl, Tel: +31 15 278 4169, Fax: +31 15 278 3711
2. Geodesy Group, Department of Spatial Sciences, Curtin University of Technology, GPO Box U1987, Perth,
WA 6845, Australia, e-mail: W.Featherstone@curtin.edu.au, Tel: +61 8 9266 2218, Fax: +61 8 9266 2703
3. GeoForschungsZentrum, Telegrafenberg, D-14473 Potsdam, Germany, e-mail: bar@gfz-potsdam.de, Tel:
+49 331 288 1143, Fax: +49 331 288 1169

ABSTRACT

Gravimetric geoid modelling in the Perth region of Western Australia has attracted much attention
in recent years because of the numerous restrictions in this area, such as the presence of the Darling
Fault system and variable gravity data coverage and quality. This paper presents the results of ex-
periments to determine the effectiveness of free-positioned point-mass modelling in relation to the
previous attempts based on Stokes’s integral. It is shown that the point-mass modelling technique
does not yield improved fits to 99 local GPS-levelling data with a standard deviation of the fit of
+17.5cm. However, the experiments do show that the technique is a useful tool for conveniently
identifying areas where there are large topographic mass density contrasts and mismatches among
the gravity data used. Therefore, the technique, though apparently not optimal for geoid modelling
in this region at this point in time, may provide a useful indicator of problems that will affect geoid
computations using other techniques.



INTRODUCTION

The Perth region of Western Australia provides a challenging “field laboratory’ for gravimetric geoid
determination and modelling. This is due to its geographical location close to the Australian coast
and the perturbations of the Earth’s gravity field and topography caused by the near-linear Darling
Fault (Figure 1). The geological structure of the Darling Fault is explained in some detail elsewhere
(eg. Dentith et al., 1993, Middleton et al., 1993, Friedlieb et al., 1997; Featherstone, 2000), so will
not be duplicated here. It is interesting to note that, from a Dutch perspective, Vening Meinesz (1948)
was the first to observe the large gravity anomaly over the Darling Fault. Incredibly, from only two
measurements (one at the University of Western Australia and another on the Yilgarn Block), he
deduced a geological model that is very similar to models presented today (eg. Lambeck, 1987;
Dentith et al.,1993).

The relevant characteristics are a (free-air) gravity anomaly of ~100mGal over ~15km (Figure
1), a topographic mass-density change of over 500kgm—2, a variation in topographic elevation from
0m to ~400m on the Australian Height Datum (Figure 1), and a variety of gravity observation types
(land, shipboard, altimeter) with a heterogeneous spatial coverage (Figure 2).
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Fig. 1. Schematic map of the Darling Fault (from Lambeck, 1987) and cross section over the Perth region (from
Friedlieb et al. 1997) showing a Bouguer gravity profile.



The above factors have compounded to make gravimetric geoid modelling based on Stokes’s
integral quite problematic. The AUSGe0id98 gravimetric geoid model of Australia (Johnston and
Featherstone, 1998; Featherstone et al., 2001), while an improvement on AUSGeoid93 (Steed and
Holtznagel, 1994) in this region, is not sufficiently accurate for the routine replacement of spirit lev-
elling by GPS techniques. A pragmatic, interim solution to height transformation in this region was
achieved by combining AUSGeoid98 with GPS-AHD heights using least-squares collocation (Feath-
erstone, 2000). A more recent investigation by Tziavos and Featherstone (2001) uses a simplistic
topographic mass-density model. This improved the results upon the gravimetric AUSGeoid98, but
only after a bias and tilt fit to local GPS-levelling data.

This paper describes the results of several experiments to determine if a point-mass modelling
technique provides a superior alternative to the above techniques based on Stokes’s integral. It was
originally anticipated that this approach could be used to identify systematic errors in the Australian
Height Datum (AHD), but as will be seen, problems with the spatial coverage and quality of the
gravity data in this region prevented this. Instead, it will be shown that the free-positioned point-
mass modelling technique (eg. Barthelmes and Kautzleben, 1983; Barthelmes, 1986; Barthelmes,
1989; Barthelmes and Dietrich, 1991; Barthelmes et al., 1991) is a useful tool for the identification
of large contrasts in topographic mass-density and inconsistencies or errors in the gravity data.

The concept of point-mass modelling for geoid determination is quite straightforward. It relies
on the principle of superposition of a number of either fixed- or free-positioned point masses with
varying magnitude that generate an external gravitational potential and acceleration. This is achieved
simply by the application of Newton’s laws of gravitation, in which the potential (V') is given by

v=ar &

and the gravitational acceleration (g) is given by
9= @
where G is the Newtonian gravitational constant, m is the magnitude of the point mass and [ is
the direct distance between the computation point and the point mass. The magnitude, position and
number of point masses situated inside the Earth are optimised so that their superposition generates
gravity acceleration (equation 2) at the Earth’s surface, which is consistent with gravity observations.
These exact same point masses are then used to generate the gravitational potential (equation 1) and
thence the geoid. As with gravimetric geoid computation based on Stokes’s integral, the resulting
geoid heights can be compared with GPS-levelling data to validate the effectiveness of the technique.
However, this is subject to errors in the GPS and levelling data.

Point-mass modelling has been used in gravity field determination for over 35 years. Barthelmes
(1986) attributes the first study to Weightman (1965). Over the years, two classes of point-mass
modelling have been utilised.



1. Fixed-positioned point-mass modelling, where a regular grid of point masses is used inside the
Earth to generate the external gravity field (eg. Vermeer, 1995). The advantage of this approach
is that it linearises and simplifies the computation because only the magnitudes, and not the
positions, of the point masses have to be determined by inversion. An example of the application
of this technique to geoid modelling is the computation of a German quasigeoid (Ihde et al.,
1998).

2. Free-positioned point-mass modelling, where both the magnitudes and the positions of the point
masses inside the Earth are determined simultaneously by inversion. This presents a non-linear
problem, which must be solved iteratively and with several constraints. Examples of the applica-
tion of this technique to global geoid modelling are given in Barthelmes and Dietrich (1991) and
Barthelmes et al. (1991), and to regional geoid studies in the Gulf of Bothnia (Lehmann, 1993).

On the basis of the data available for this investigation (described later), there are two different
reasons to use the free-positioned point-mass technique:

1. Free-positioned point-mass techniques adapt the distribution of the point masses to the geological
situation, i.e. more point masses are placed in areas with highly varying mass-densities. The
Darling Fault in the Perth region consists of a large density variation of over 500kgm—2, which
can possibly better be modelled with a free-positioned point-mass model.

2. Free-positioned point-mass techniques do not need to use a regular grid of gravity data, while
grid-based fixed-positioned methods do (Vermeer, 1998). The use of a grid of gravity data was
not desirable in this study, because the gravity data was not homogeneously distributed over the
whole area and because there are some large data gaps (Figure 2). The errors that occur in a
gridding or prediction process are avoided.

THE FREE-POSITIONED POINT-MASSMETHOD OF BARTHELMES

In geodesy, the use of observations related to the gravity field of the Earth to predict unobserved
gravity field quantities is known as the inverse problem (eg. Lehmann, 1993). A narrower definition
is given in Heiskanen and Moritz (1967): the inverse problem is the determination of the mass
distribution inside the Earth from the potential. According to Stokes’s theorem, there are infinitely
many mass distributions which generate a single harmonic function as the potential exterior to the
gravitating masses. This is the well-known problem of non-uniqueness in the inversion of potential
field data. Therefore, additional information is necessary. This can be furnished by density models
of the Earth’s interior that can be obtained by seismic measurements and by making assumptions
about the density structure that minimise numerical effort or simplify the mathematical relationships.

Nevertheless, the problem of non-uniqueness will always remain.



The simplest assumption is that the density distribution of the Earth can be described by a finite
number of point masses that are placed under the Earth’s surface. In practice, these point masses
are actually spherically symmetric mass disturbances that can either be positive or negative with
respect to some arbitrary reference mass. Although this contravenes Newton’s law, the resulting
effect is equivalent to using all positive masses (i.e. the difference between the negative mass and
the reference mass is never negative). The point masses are positioned in such a way that they
generate a gravitational acceleration that fits the gravity anomalies that are computed from gravity
measurements.

From equation (2), one point mass m; at position ¢; in the three-dimensional Euclidian space E*
(¢; € E?) gives the following disturbing potential 7" at point P (P # ¢;):

T(P,m;, q;) = T;(P) = Gm;¢(P, q;) 3)

where ¢;(P) is the base function:

$i(P) = ¢(P,q;) = 17" (P, ;) 4

By superposition of all the disturbing potentials from n point masses, the disturbing potential can be

found by:

T(P)=) Ti(P)=G> mi¢i(P) ()
=1 1=1

From the total disturbing potential in equation (5), the geoid height can be computed via Bruns’s
equation by dividing the disturbing potential by normal gravity (v) at the ellipsoid:

N(P) = (6)

The main difficulty of this technique is to construct the geometry and magnitudes of the point
masses in an optimal way from observed gravity measurements (i.e. the inversion). If the real field
is produced by a finite number of point masses, this problem has a unique solution, contrary to the
problem for continuous mass distributions (Stromeyer and Ballani, 1984). Defining an algorithm
that gives this unique solution is, however, not straightforward and is possibly numerically difficult
to solve (Barthelmes, 1986).

A lot of research on free-positioned point-mass modelling has been published by what is now
called the GFZ (GeoForschungsZentrum) in Potsdam, Germany (eg. Barthelmes and Kautzleben,
1983; Barthelmes, 1986; Barthelmes et al., 1991; Lehmann, 1993; Lehmann, 1994). The method
used in this project was developed by Barthelmes (1986). In his method, the positions of the point
masses can be determined in an optimal agreement with the observed distribution of the gravity
anomalies (Barthelmes and Kautzleben, 1983). However, the fundamental observation equations are



non-linear and need to be solved by iteration with some constraints. An accurate iterative solution is
only possible if the base vectors that are used to represent the potential field of the point masses are
nearly orthogonal. This allows the point masses to be determined sequentially, and in each step of
the iteration, only the point masses in the neighbourhood of a new point need to be optimised.

Formulation of the algorithm for general base vectors in Hilbert space

The gravity field is usually observed at the Earth’s surface and needs to be approximated by point
masses within the Earth. An important feature in finding an algorithm to achieve this is the linear
independence of the base vectors of a finite number of point masses, which is proven for point
masses on a closed surface within the Earth in Kupradze and Aleksidze (1964) and for point masses
with an arbitrary distribution in Stromeyer and Ballani (1984). This means that when the external
gravity field produced by a finite number of point masses is known, the positions of the masses are
uniquely determined. In the approximation of the real gravity field, the positions and magnitudes of
the point masses should minimise the differences between the observed gravity field and the field
that is formed by superposition of the point mass potentials or accelerations, while accounting for
observational and other errors.

As the number of point masses used will be in the order of several hundred, finding the mag-
nitudes and positions of these masses that minimise the differences best is a complicated task. The
global minimum needs to be found, but the correct initial values for the iteration to find that mini-
mum are lacking. Also, because the numerical accuracy of the computation is limited, it is possible
that different point-mass configurations approximate the given field equally well, which makes the
problem even more difficult. As stated, this is because of non-uniqueness in potential field inversion.
From a practical point of view, it is therefore sufficient only to find a local minimum from what-
ever initial values are available; the accuracy of the solution can be increased by adding more point
masses.

A norm can be defined in such a way that the local minimum will be found, which has the smallest
maximum difference between the Earth’s disturbing potential and the disturbing potential generated
by the point masses. Barthelmes (1986) states that the local minimum that is found in this way will
also be the global minimum in many cases, or will at least give a similar difference. The problem of
finding this local minimum will now be formalised mathematically.

A finite number, n, of orthonormal base vectors h; must be searched for from the set of orthonor-
mal base vectors in a Hilbert space H {h; e H,i = 1,2, ...} that approximate the Earth’s disturbing
potential the best. This can be formulated as:

n n
”T_Z <T7 hi1>hil || = mln{HT_Z <T7 hk1>hkl || | ki € NZ} (7)
=1 =1



where || - || is the norm operator, (-) is the inner product operator, 7" is the vector of the disturbing
potential in the infinite-dimensional Hilbert space and h; is the set of orthonormal base vectors.
Inserting the norm ||U|| = (U, U) %, where U is an arbitrary element, into equation (7) gives

n n

1T =Y AT, hi)hiy | = min{(T.T) =Y (T, hy,)* | ki€ Nz} (®)

=1 =1
The left-hand-side of equation (8) is always positive, and thus the result of the difference in the
right-hand-side must also be positive. Therefore the base vectors h;, can be determined by

n n
> AT b)) = ZThk,‘Z | ki e Nz} )

=1

Equation (9) means that from the set of base vectors, the vector which has the largest inner product
with vector T' should be chosen in every step of an iterative approximation procedure. If (n — 1)
base vectors have already been computed and the new base vector should be in the complete set
{hi,i =1,2,...}, then this new base vector can be computed from

n—1

(T, hi,)* = max{(T =Y (T, hi))hi,, hi,)* | kn € Nz} (10)

=1
Formulation of the algorithm for point mass base vectors

Applying the above concept to the three-dimensional Euclidian space E3, the base vectors in equa-
tion (4) need to be searched for. The positions of the point masses need to be within the Earth, i.e.
g; is within the complete three-dimensional Euclidian space E?® except for the space outside the
Earth 2 (¢; € E3\ £2). The following approximation algorithm can now be formulated for the free-
positioned point masses. In order to achieve this, use is made of normalised base vectors, &;, and
coefficients, u;, which are given by

=% and pi = Gmi|| ] (11)

C el
Because the positions of all the point masses should actually be recomputed in each step of the
iteration (i.e. the position and the base vectors of the i-th point mass needs to be optimised when a
new point mass is added), the position also depends on the number of point masses that are computed
in the previous & steps. The upper index in the following brief notation indicates this:

&} =&(P,q;) and & =&(Pq") (12)

Equations (7) to (10) can be used after a definition of the inner product is implemented. In the
first step, the position and the magnitude of the first mass is based solely on the gravity field, whereas
in the next steps, the influence of the already computed point masses is subtracted from the observed



gravity field to determine the initial values for the position and magnitude of the new point mass
(point b in the n-th step). In all but the first step the positions of the point masses are then optimised
(point c in the n-th step). Equation (16) in point ¢ will have to be solved iteratively. The concept of

the iterative procedure is summarised as follows:

First step

Determination of ¢i (and ¢1) and ! by:

(T,1)* = max{(T,9")* | ¢" ¢ E°\R} and ;= (T, %) (13)

n-th step

a. Determination of the approximate values ¢} (and é?) (i=1,...,n—1)by:

@ =q¢" and I =07 (14)

i
b. Determination of the approximate value ¢;* (and 432) by:

n—1 n—1
(T3 pp = @~ 8?2 = max{(T- 3 pi = 8=, %) | ¢* € BT} (15)
=1

i=1

c. Determination of ¢} (and @}) and p} (¢ = 1, ..., n) by:

n—1 n—1
17— pp @7l = min{||T=)_ i@\l | ¢" € B\ pf e E, (i=1,...,n)} (16)
i=1 i=1

Practical realisation of the algorithm

In order to adopt Barthelmes’s method for point-mass modelling, the main difficulty that remains is
that the base vectors in Hilbert space are not orthogonal (Barthelmes, 1986). This means that in every
iteration, strictly speaking, the (n—1) positions and magnitudes of all point masses from the previous
iterations should be recomputed. However, the influence on these (n — 1) point masses will not be
very large, so the former positions can be used as initial values in the iteration. Another problem is
to find the initial position and magnitude for the new point mass. In the orthogonal case, equation
(10) can be used to find the point mass that has the largest inner product with the disturbing potential
of the gravity field from the measurements. Given the above, if the base vectors were orthogonal,
equation (10) could be used only once and there would be no need to recompute all the positions of

the former point masses.



The linear independence of the base vectors is not dependent on the definition of the inner prod-
uct, so it can be chosen somewhat arbitrarily, as long as the properties of an inner product are ful-
filled.

Barthelmes (1986) has investigated the orthogonality of the base vectors of the point masses
for two inner product definitions. Although complete orthogonality can never be accomplished,
Barthelmes (1986) shows that the inner product

0.05) = 3 [ V6:-Tasdo a7)

leads to base vectors that are “nearly” orthogonal when the point masses are relatively shallow and
not too close together. It will be shown later that the angles between the base vectors of the point
masses in Hilbert space are larger than 89° in more than 80% of the point mass combinations in the
Perth region.

Determination of the initial values for the iteration

It is now possible to insert equation (17) in the algorithm (equations 14 to 16). Point b in the n-th
step (equation 15) gives the initial values for the iterative optimisation in point ¢, which becomes:

[/ VéT,_1-Voido]* = max{[/ VT, 1-V®*do]? | ¢* € E°\2} (18)

where §T,,_, is the difference between the Earth’s observed disturbing potential (7") and the disturb-
ing potential according to the point masses (7'p5,) computed in the earlier (n — 1) steps:

n—1
0Ty 1=T—-Tpm with Tpy = Z ﬂ?ilé?il (19)
i=1

The disturbing potential 67,1 can be either positive or negative with respect to some normal gravity
field, so there are areas where the vectors V4T, point inside the Earth and there are areas where
they point outside the Earth.

The square of the integral on the left-hand-side of equation (18) will become large if the new
point mass is under a position with a large positive or negative value in the vector field V4T),,_1. An
approximate solution for equation (18) is therefore to place the new point mass directly underneath
the position with the largest value of |VJT,,_1|. The initial depth (D) for the new point mass must
still be chosen, but this is not problematic. An initial depth of, for instance, 5km will generally be
a good choice. If the initial depth for the new point mass is too deep, then it may be incorrectly
positioned in an adjecent large positive or negative value in the vector field. Therefore, the search for
the point P,,,,.. with the largest value for |V6T,,_1(P)| is now numerically very easy to solve by:

V8T -1 (Praz)| = max{|VoTn_1(P)| | ie€{l,...m}} (20)
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where m is the number of available surface gravity measurements.

In general, the gravity measurements will have been used to compute gravity anomalies (Ag)
or, less frequently, gravity disturbances (dg) instead of disturbing potentials. In the case of gravity
anomalies, P, ., can be found by:

10Agn—1(Praz)| = max{|Agn 1 (Pi)| | ie{l,...,m}} (21)

where d Ag,, 1 is the difference between the observed (and computed) gravity anomalies and the
gravity anomalies generated by the point masses (Agpas):

0Agn—1 = Ag—Agpm (22)

In equation (22), Agpas can be computed with the use of a slightly modified version of the funda-
mental equation of physical geodesy (Barthelmes, 1989):

8TPM 1 8’)/ - Y 1 8’7
EYei + ,yaHTPM ~ <||’Y|| , VIpa) + Tpum (23)

v OH

Agpym = —
where H;’—” gives the direction of the normal gravity unit vector with:

Y= W )T (24)

and where the derivatives with respect to the orthometric height (H) can be evaluated at the geoid.
The initial position for the new point-mass position is now given by:

@n =dn(R=Rp,,,—Do, A= Ap,.. , ¢ = ¢P,..) (25)

Optimising the magnitudes of the point masses for fixed positions

After the computation of the initial position of each new point mass, the magnitude should be op-
timised next. Inserting the definition of the inner product (equation 17) into point c of the iterative
algorithm (equation 16) gives:

[VT(P) - ZujW)(P, q;)1do(P)

Jj=1

= min{ [ [VT(P) =Y p;V$(P,q;)]’do(P) | pj€eE, (j=1,..,n)} (26)

4 j=1

The gravity field that needs to be approximated is only given by discrete measurements. Therefore,
the integral in equation (26) can be replaced by the summation:

m

> (ai=> pifu) =min{d (ai—=Y p@ifiy)’ | gjeB, (G=1,..n)} (27)
j=1 i=1

i=1 j=1
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where the following abbreviations are used:

a; = (am' Qi a;i)T = VT(PZ) s (’L = 1, ,m) (28)
and

and where in geocentric Cartesian coordinates {x, y, z}
— T _ T
P = (Pyi Py Pu) and  q; =(qzj ayj 9=5) (30)

In general, the gradient of the disturbing potential (VT) that is needed in equation (28) will,
however, not be known. Most of the time, only gravity anomalies will be available. In this case, a;

will become a scalar:

It can now be seen that the fundamental equation of geodesy (equation 23) for a point mass becomes:

Agpy =Y (Tdesz(PiaQj)+7y,ujéy(Pi:Qj)+7ﬂj¢z(Pi:Qj)+; 8_Hﬂj45(Pz’:Qj)) (32)

j=1
with
09
OP,; ’
where s can either be z, y or z. The vector f;; will now also become a scalar. From equation (32),

P5(P;,qj) = se{x,y,z} (33)

and inserting equation (4) the scalar f;; can be computed in geocentric Cartesian coordinates {x, ,
z} by:

Yz QIj_Pm’ Yy Qyj_Pyi V= QZj_Pzi 1 Oy 1
fj=2 +5 + = L (34)
Ty B(Phgy) v B(Phg) v B(Phg) v OH I(Pi,g;)
Equation (27) can now be solved using a least-squares adjustment, if the number of point masses

n is smaller than the number of measurements m. In this case, the system that needs to be solved
has the formy = Ax:

a fir fi2 -+ fin M1
N R s “
Am fm1 fm2 T fmn UN

The well-known (unweighted) least-squares solution for the system in equation (35) is now easy to
compute by:

&= (ATA) ATy (36)

which gives estimates for the masses in fixed positions.
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Optimising the positions of the point masses

The fixed-positioned solution, derived in the previous section, can now be extended to the free-
positioned case. If not only the magnitudes, but also the positions of the point masses need to be
optimised, the problem becomes non-linear. In the method of Barthelmes (1986), the linearisation
method of Newton-Kantorovych is used (Bronstein and Semendyayev, 1983). In this method, use
is made of a linearised Taylor expansion. When using gravity anomalies for point mass modelling,
equation (32) must be linearised, which leads to:

a; = a; + Z (gz’jANj + 92ij Aaj + 9yij Agqyi; + gziquuj) (37)
j=1
with
g5 = L&,(P, ) + L0, (P ) + L0.(Poiy) + = 2L &(P, ;) (38)
Y v Y v OH
and

= Y, 0%y(Piq)
tij ,y/"’] 7 1% .

J
1=q; v Iqt 9=4;
Z ~ 8¢Z Paq 190 ~ ~
4 225,02 P00) Y hB(Pady) s telmy,2) (39)

i, ~
v A g, 7 OH

The system that needs to be solved becomes:

Aaq hii his -+ hiy T
Aas hyi hay --- hay, T2
. = . . . . (40)
Aam homi B2 -+ b Tn
where:

Aa;i=a;—a; , hij=(9ij Geij Gyij 9-ij) and x; = (Ap; Agw; Agy; Agsy)' (41)

Equation (40) can only be solved if the number of measurements is larger than or equal to four times
the number of point masses (m > 4n). This means that in regions with few gravity measurements,
it is not possible to reliably compute a large number of point masses. Clearly, the free-positioned
point-mass technique is less robust than the fixed-positioned point-mass technique, and as such, is
sensitive to the gravity data used.

The elements of the design matrix can be computed in geocentric Cartesian coordinates {x, y, z}
by inserting the base vectors from equation (4):

~ q.s" - Psi
st(Pz’,(]j) = W 3 se{x,y,z} (42)
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and

8¢s (Pu q)
q

Ost Gt — P .
= — _3 = S‘—Psi 5 S,tﬁ T,Y,z 43
=3 l3(Pi,qj) ls(Pi,qj) (QJ ) { y } (43)

where é; is the well-known Kronecker-delta:

1 for s=t
6st = (44)
0 for s#t

The (unweighted) least-squares estimates of the vectors x; in equation (41) can now be com-
puted with equation (36). This will give corrections to the approximate values for the magnitudes
and positions of the point masses. This leads to new approximations which then can be used again
as input and new corrections can be calculated. This process can be repeated iteratively until the
corrections are smaller than some predetermined value or until a predetermined number of iterations
is reached. The latter method was used in this study.

Any numerical stability problems in computing the corrections cannot be excluded, especially
when the point masses are close together, which decreases the orthogonality of the base vectors
(Barthelmes, 1986). The least-squares solution can be modified in order to account for these stability
problems using a regularisation method. With the regularisation method of Tikhonov (eg. Kuhnert,
1976) the solution of equation (36) becomes:

&= (ATA+al) tATy (45)

where « is the vector containing real-numbered regularisation parameters and I is the identity ma-

trix.

Summary of the algorithm

The n-th step of the algorithm by Barthelmes (1986) can now be formulated verbally as follows
(Barthelmes & Dietrich, 1991):

1. Subtraction of the gravity anomalies produced by the (n—1) point masses from the measurements
to give residuals (equation 23).
2. Selection of the position P,,,, of the maximum absolute value of the residuals (equation 21).
3. a) Determination of the approximate value for the n-th point mass position by placing it directly
below the point P,,,, at a starting depth D, (equation 25).
b) Determination of the magnitude of the new point mass (equation 35).
c) lterative improvement of the magnitude and position of the new point mass by non-linear
optimisation (equation 40).
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4. Selection of those point masses among the n — 1 previous masses up to a fixed number N, which
have the smallest distance up to the n-th point mass.

5. Iterative improvement of magnitudes and positions of the n-th point mass together with the
selected neighbouring masses by non-linear optimisation (equation 40).

THE DATA USED FOR THE EXPERIMENTSIN WESTERN AUSTRALIA

Part of the 1992 data release of the Australian Geological Survey Organisation’s (AGSO) national
gravity database was used for the point-mass modelling experiments in the Perth region. The more
recent data releases were not used because, firstly, the 1992 data release has been subjected to a num-
ber of data cleaning processes and gravity anomalies recomputed using stricter geodetic approaches
(eg. Featherstone et al., 1997), and secondly, no new data have been added to the AGSO database
in this region during subsequent updates. The datum for the AGSO gravity measurements is 1so-
Gal84 (Wellman et al. 1985). The subset used contains a total of 6,284 land and shipboard gravity
observations over the region bound by —33.50° < ¢ < —30.75° and 115° < \ < 117° (Figure 2).

Figure 2 shows a generally denser spatial coverage of AGSQ’s gravity observations on land to
the west of the Darling Fault (situated approximately along the 116° meridian). The coverage in this
area has been improved for geophysical studies of the geological structure of the Perth Basin (eg.
Dentith et al., 1993). The observations generally follow roads and tracks along which spirit-levelled
AHD benchmarks exist, whereas the relatively sparse observations to the east of the Darling Fault
have had their heights determined using barometric methods (eg. Fraser et al., 1976). The AHD
benchmark heights are considerably more accurate, say ~5cm, than the barometric heights, say ~4-
6m. This reduces the error in the gravity anomalies computed on land to the west of the Darling Fault.
Accordingly, there is a disparity in the spatial coverage and accuracy of the land gravity anomalies
on either side of the Darling Fault.

There is another disparity in the gravity data coverage and quality in the study area. A combi-
nation of limited marine vessel accessibility and instability due to wave-action currently make it
impossible to collect sufficiently accurate marine gravity observations very close to the coast. The
close proximity of the study area to the Indian Ocean dictates that marine gravity observations cannot
be made to satisfy the requirement of homogeneous gravity data coverage. It can be seen in Figure 2
that the AGSO shipboard gravity observations are very sparse and most ship-track measurements are
to the west of Rottnest Island (115.5°, —32°). This is where airborne gravimetry can make a major
contribution to gravity field determination and modelling, though no such data are yet available in
this region.

In this and previous studies (eg. Johnston and Featherstone, 1998), an attempt was made to sup-
plement the AGSO shipboard gravity observations by satellite altimeter-derived gravity anomalies
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Fig. 2. Spatial distribution of the AGSO land and shipboard gravity data (white circles), the satellite altimeter

data (black dots) and GPS-levelling data (black stars)
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(Figure 2). The 1369 gravity anomalies (assumed to be free-air) used in this study have been com-
puted on a 2’ by 2’ grid from a combination of Geosat, TOPEX/Poseidon and ERS-1 satellite al-
timeter missions by Sandwell and Smith (1997). However, satellite altimeter data are known to be
erroneous close to the coast (demonstrated later). This is because they are affected by loss of sig-
nal lock through back scattering from the land (eg. to the north-east of Rottnest Island in Figure
2), un-modelled near-shore sea-surface topography (eg. due to the outflow of fresh water from the
Swan River) and poorly modelled shallow-sea tides. In AUSGeoid98 (eg. Johnston and Featherstone,
1998; Featherstone et al., 2001), the AGSO and satellite-altimeter gravity data were combined using
least-squares collocation (Kirby and Forsberg, 1998). However, only the discrete gravity measure-
ments will be used in this study, which avoids the errors introduced by the gridding processes, but
does not allow for such merging of the AGSO and satellite altimeter data.

Due to the quality, mixed measurement types and spatial coverage of the gravity data in the study
area (Figure 2), it does not present an ideal “field laboratory’, though it does provide a challenging
one. Moreover, the gravity data coverage and accuracy are not the only reasons for the relatively
poor performance of previous attempts at gravimetric geoid modelling in the Perth region. The large
topographic mass-density contrast across the Darling Fault, which reaches over 500kgm—2 in some
places, causes a large perturbation of the Earth’s gravity field. For example, there is a horizontal
gradient of the free-air gravity anomaly of ~100mGal over ~15km (Figure 5).

Geodetic GPS networks that are co-located with orthometric heights provide discrete, geomet-
rical control on gravimetric geoid modelling on land. Strictly speaking, however, this yields the
separation between the local vertical datum and the reference ellipsoid and is therefore subject to
several errors (eg. Featherstone 1998). The 99 GPS data used for this study (Figure 2) come from
a geodetic network observed by the Western Australian Department of Land Administration for the
study by Featherstone (2000). This GPS network is tied to the ITRF92 (epoch 94.0) reference frame
as part of the implementation of the Geocentric Datum of Australia. The error estimate of these
GPS-derived ellipsoidal heights is ~ +12mm (Featherstone, 2000), but this is in relation to the
STATEFIX network (Stewart et al., 1997) and a larger uncertainty, say ~10cm, exists in relation to
the ITRF92 (epoch 94.0).

The accuracy of the 99 co-located third-order spirit-levelled heights and definition and realisation
of the AHD are more problematic. For instance, the AHD uses a normal orthometric height system.
Helmert orthometric corrections based on observed gravity data reach ~-4.8mm over ~14km across
part of the Darling Fault, whereas the normal orthometric corrections are ~0.1mm over the same
east-west traverse (Allister and Featherstone, this issue). The Perth region also presents an exception
from the AHD (strictly speaking, a separate vertical datum) because the heights based on the Fre-
mantle tide gauge were retained in preference to the adjustment of the AHD. Instead, a buffer zone
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was introduced between the Fremantle-based heights and the adjusted AHD heights (Roelse et al.
1971).

METHODSAND RESULTS

In order to apply the free-positioned point-mass modelling technique to a local area, it is first im-
portant to note that local gravity data alone can never properly determine the low frequencies of the
Earth’s gravity field spectrum. Therefore, in this investigation, use is made of the so-called remove-
compute-restore technique (eg. Vermeer, 1998; Ihde et al., 1998; Denker et al., 1999). This means
that the gravity anomalies according to spherical harmonic degrees 2 to 360 of the EGM96 global
geopotential model (Lemoine et al., 1998) were first subtracted from the gravity anomalies com-
puted from the measurements. After the point mass computations, the geoidal influence of these low
frequencies was restored.

The residual geoid heights generated by the point masses (IVpas) were computed using Bruns’s
equation (6), where the disturbing potential was computed with equation (5). This gives

mg

a &
Npu(P) = — Z (46)
v i=1

where all terms have been defined earlier. The geoid heights were computed at the positions of
the 99 GPS-levelling points (Figure 2), so that a direct comparison with the GPS-levelling heights
was possible. Importantly, the positions and magnitudes of the point masses were computed from
observed gravity data taken from a large area around the GPS-levelling points (—33.50° < ¢ <
—30.75° and 115° < X < 117°). This was found necessary to avoid inconsistencies at the edges
(i.e. edge effects of limited data coverage).

Parameters to be optimised

Barthelmes’s free-positioned point-mass software was used for the computation of magnitudes and
positions of the point masses (Barthelmes, 1986). In this software, a number of parameters need to
be defined prior to the computation. The main parameters that were varied during the investigation
to get the best fit to the GPS-levelling data are:

1. Total number of point masses: The addition of each new point mass decreases the root mean
square of the differences between the observed and computed gravity anomalies, but also de-
creases the redundancy.

2. Depth limits of the point masses: The point masses need not be too deep, because the low fre-
quencies are already given by the EGM96 global geopotential model. More importantly, the
deeper the point masses are, the less orthogonal the base vectors become (described earlier). The
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point masses should not be too shallow because the gravity data distribution is limited (Figure
2).

3. Direction of optimisation: The position of each new point mass can be optimised in all direc-
tions (tangential and radial) or in radial direction only. When the point masses are allowed to be
optimised in all directions, they tend to be positioned in gaps in the coverage of the gravity data.
This effect was avoided using radial optimisation only.

4. Number of iterations for each new point mass: The magnitude and position of each new point
mass needs to be optimised by iteration. The number of iterations in the radial and tangential
directions can be different. After the optimisation of the new point mass alone, the new point
mass and its neighbouring point masses are then optimised together. The number of iterations in
this optimisation can also be given separately for the radial and tangential directions. This gives
a total of four iteration parameters that can be varied.

5. Number of neighbouring point masses: Ideally, for each new point mass the position and the
magnitude of this and all other point masses need to be recomputed. However, this is a very
time consuming process. Barthelmes (1986) has shown that it is sufficient to optimise only a
certain number of neighbouring point masses when the base vectors of the point masses are
nearly orthogonal. The number of recomputed neighbouring point masses was increased when
the base vectors were not sufficiently orthogonal.

6. Regularisation parameters: The regularisation parameter « in equation (45) can be specified
separately for the radial and tangential optimisations. To control the regularisation, the parameter
« is multiplied by a certain parameter (increase factor) when the root mean square of the fit to
the gravity anomalies is increasing, or divided by another parameter (decrease divisor) when the
root mean square is decreasing. This gives a total of four regularisation variables.

It is very difficult to simultaneously determine the optimal values for all the above parameters that
lead to a point-mass geoid model which fits the GPS-levelling data the best. Instead, a few combina-
tions of these parameters were investigated based on earlier experiences of the third author in other
test areas.

Number of point masses

The left-hand-side of Figure 3 shows a contour map of the geoid heights derived from EGM96
and 500 free-positioned point masses, based on land, shipboard and altimeter data. Table 1 shows
the parameters that were used to obtain this result. The black filled circles in Figure 3 show the
positions of positive mass disturbances and the unfilled circles show the positions of negative mass
disturbances. The right-hand-side of Figure 3 shows a map of the differences between the point-mass
geoid heights and the GPS-levelling heights.
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1 | total number of point masses 500
2 | depth limits (upper and lower)[meters] 1000 80000
3 | direction of optimisation all
4 | number of iterations for each new point mass
(radial, tangential, radial+neighbours, tangential+neighbours) 7 7 20 10
5 | number of neighbouring point masses 10
regularisation parameters
(radial, tangential, increase factor, decrease divisor) 1072 107'?2 200 50

Table 1. The parameters used to generate the point-mass geoid model in Figure 3
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Fig. 3. left: the point-mass geoid model computed from the parameters specified in Table 1; right: the differences
between the point-mass geoid and the 99 GPS-levelling data (cf. Figure 2) (black circles: positive point masses;

clear circles: negative point masses; contours in meters at an interval of 0.5m (left) and 0.2m (right)).
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Using 500 point masses, the redundancy is still high for the complete study area. For every free-
positioned point-mass, four unknowns need to be computed (three for the position and one for the
magnitude). This means that a total number of 2,000 unknowns were computed from 7,653 gravity
data, which gives a high redundancy of 5,653. By definition, the root mean square of the differences
between the observed gravity anomalies and the gravity anomalies generated by the point masses
decreases as each new point mass is added. It was, however, found that the differences between
the point-mass generated geoid heights and the GPS-levelling heights did not decrease in the Perth
area after increasing the number of point masses beyond 500 (Table 2). Therefore, the solution with
500 point masses is the best of the solutions tested, but this statement is subject to the errors in the
GPS-levelling data (described earlier).

number of  root mean square of the fit to the  standard deviation of the fit to the

point masses gravity anomalies (mGal) geoid to GPS-levelling (cm)
EGM96 only - 26.5
10 20.85 353

50 8.98 233

200 3.37 18.2

500 1.84 175

1000 1.37 19.0

Table 2. The fit of gravity anomalies and geoid heights for different numbers of point masses (the other
parameters and data used to create these figures will be discussed later).

The best fit to the GPS-levelling data is found with the use of 500 point masses. The standard
deviation of 17.5cm is slightly larger then the fits of other geoid models (Table 3). It is important to
note that the error budget of the GPS-data is ~12mm and, say, ~50mm for the AHD. Therefore, the
differences in Tables 2 and 3 are not significant when errors in the GPS-levelling data are considered.

geoid model standard deviation (cm)
best point-mass model 17.5
AUSGe0id93 (Steed and Holtznagel, 1994) 13.6
EGMO96 only (Lemoine et al., 1998) 26.5
AUSGe0id98 (Featherstone et al., 2001) 13.0
Combined AUSGeo0id98 (Featherstone, 2000) 1.0"

Table 3. Standard deviation of the fit of several geoid models to 99 GPS-levelling data in the Perth region.
* This small value results from a least-squares collocation fit
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Using point masses to identify density contrasts

In Figure 3, a large number of point masses are situated along the Darling Fault (approx. 116°E), as
could have been expected. The Darling Fault produces a large horizontal gradient in the gravity data
(Figure 5), which can only be modelled with high frequency information. The closely spaced point
masses provide this high frequency data. There is a clear trend in the differences between the geoid
and GPS-levelling (Figure 3 right) from small differences near the coastline to higher differences
in the hills. There is also a clear depression in the differences at (—31.9°, 116.2°) with three large,
shallow, positive point masses.

These point masses are “lifting up” the geoid (and therefore “pulling down” the differences).
This feature can also be seen in the curvature of the contour lines near these point masses in the
left map of Figure 3. These point masses have been positioned in areas where there is no gravity
data coverage (Figure 3), because radial and tangential optimisation was chosen for this particular
point-mass modelling (Table 1). Since these point masses must generate gravity consistent with the
observations surrounding the data gaps, the magnitudes of the point masses become large,and their
depths shallow. Therefore, when these same masses are used to compute the geoid (equation 46),
very large geoid values occur directly above the masses. Therefore, as with all geoid modelling
techniques, the complete coverage of the gravity data is a critical issue.

An obvious solution for preventing the point masses from being positioned in the gravity data
data gaps is to optimise their positions in a radial direction only. This used 10 iterations for the new
point mass only and 20 iterations with its neighbours. However, without the tangential optimisation,
the numerical instabilities in the matrix inversion became larger. Therefore, the radial regularisation
parameter was chosen as o = 1072 instead of & = 10~'2 and the increase factor was also raised
from 200 to 400 (cf. Table 1). Furthermore, the number of neighbouring point masses that were
computed was raised from 10 to 20. This computation, and computations with several other choices
for the parameters, showed that the numerical instabilities when using gravity data in this study area
were too large for the regularisation to be effective.

Using point masses to identify shipboard gravity data errors

The reason for these instabilities can be seen in Figure 4, which shows the positions of 200 point
masses computed with the aforementioned parameters. These point masses are clustering along the
ship tracks, especially along one ship track north-west of Rottnest Island. The reason for this is that
the altimeter data and the AGSO shipboard gravity data are not consistent. Therefore, a lot of point
masses are needed to compensate for the jump in gravity anomaly values. The inconsistency between
the two data sets can best be seen from a profile of the gravity data between the latitudes 31.85° and
31.95° (Figure 5). This is the shaded band in Figure 4.
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Fig. 4. The positions of 500 point masses (black positive; clear negative) in relation to land, shipboard and
altimeter gravity data (white circles). The distinction among the different gravity data is made in Figure 2. The
shaded band shows the area that was used to generate the profile in Figure 5.
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Fig. 5. Free-air gravity anomaly profile of land, altimeter and shipboard data over latitudes between 31.85° and
31.95° (see shaded band in Figure 4). The vertical lines show the positions of the point masses (see circles in
Figure 3.

In Figure 5, the shipboard data are very scattered with differences up to ~150mGal over distances
less than 10km. These differences are very unlikely to be caused by geological features; the quality
of the shipboard data is obviously very bad. The AGSO shipboard data have not been cross-over
adjusted, which is clear from the bias in the track shown in Figures 4 and 5. As the shipboard data
are not stored in a format that can be cross-over adjusted, they were simply removed (429 points).
Another point-mass geoid model was then computed using the parameters in Table 4. Here, the upper
depth limit was increased (cf. Tables 1 and 4) to try to prevent the masses from being positioned in the
gravity data gaps, while also overcoming the numerical stability problems described earlier. These
choices of parameters resulted in the geoid computation with the least numerical instabilities of all
(described next).
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1 | number of point masses 500
2 | depth limits (upper and lower limit) 3000 50000
3 | direction of optimisation all
4 | number of iterations
(radial, tangential, radial+neighbours, tangential+neighbours) 7 7 20 10
5 | number of neighbouring point masses 20
regularisation parameters
(radial, tangential, increase factor, decrease divisor) 107% 107'2 200 50

Table 4. The parameters used to generate the point-mass geoid model in Figure 6
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Fig. 6. left: the geoid computed from 500 point masses; right: the differences between the geoid and the GPS-
levelling data (black circles: positive point masses; clear circles: negative point masses; contours in meters at
an interval of 0.5m (left) and 0.2m (right)).



25

Orthogonality testing

The results in Figure 6 show that many more point masses are situated on the land areas. This time,
however, there are a lot of point masses near Rottnest Island, but the masses along the ship tracks
have disappeared (cf. Figure 3), as was to be expected. A problem is that a lot of point masses
very close to each other cause numerical instabilities in the point mass computation. When the point
masses are too close together, the orthogonality of the base vectors in equation (4) decreases. It is
very important that these base vectors are nearly orthogonal, otherwise the iterative nature of the
method, where only a number of point masses are recomputed in each step, becomes invalid. The
orthogonality of the base vectors of the point masses, i.e. the angles a;;in Hilbert space between the

base vectors of the point masses, can be computed by (Barthelmes, 1986):
@j = arccos <(1—R?)(1—R§)(1—Rz’Rj cos Wi;) (1+(R; R;)* ~2R; R cos %‘)g) (47)

where ¥;; is the spherical distance between the two point-mass positions and R; and R; are the
quotients of the distance between the point mass and the geocentre and the Earth’s radius. In the
cases of 500 and 1000 point masses, more than 80% of all the possible combinations of computed
point masses have an angle in the Hilbert space that is greater than 89°, which shows that most of
the base vectors are nearly orthogonal. Figure 7 shows that the percentage of angles below 50° is
approximately equal for 200 and 500 point masses, but gets higher in the case of 1000 point masses.
This might be an explanation for the worse fit to the GPS-levelling data in the case of 1000 point

masses (Table 2).
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Fig. 7. Percentage of angles in the Hilbert space between base vectors for 200, 500 and 1000 point masses
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The trend in the differences between the point-mass derived geoid and the GPS-levelling data
(Figure 6 right) is however still the same: small differences near the coastline and large differences
in the east. Several tests with other regularisation parameters and other numbers of point masses did
not yield any better results. Although the shipboard data was removed, the instabilities still became
too large when the point masses were only optimised in the radial direction, even when the number
of iterations for the new point mass with its neighbours was increased to 30 and the increase factor
in the regularisation was raised to 600. This radial-optimisation-only-mode has, however, proven to
be very useful in tests by the third author in areas with a less problematic data set.

The point-mass derived geoid could be improved significantly by applying a bias and tilt or
using least-squares collocation to model the residuals (Featherstone, 2000). However, this obscures
the problems central to point-mass modelling and our original aim of determining errors in the
Australian Height Datum.

Using point masses to identify land gravity data errors

After the removal of the shipboard gravity data, several clusters of point masses appear in Figure
8. These are grouped along the Darling Fault, on Rottnest Island and at —33.4°, 116.25°. In order
to determine the cause of these clusters, four profiles are plotted for various latitudes in Figure 9.
All the profiles have a width of 0.1° and are situated respectively around 30.80°, 32.00°, 32.35° and
33.35° (Figures 8 and 9).

From Figure 9 it can be clearly seen that all the point masses are positioned in places where there
is a discontinuity in the gravity anomalies. The point masses provide the high-frequency information
that is needed to model these discontinuities, which can either indicate a geological feature or an
error in the gravity data. Although the Perth region contains a large mass-density difference over the
Darling Fault, most point masses appear to cluster in areas with errors in the gravity data.

The sensitivity of point-mass modelling to inconsistencies in the gravity data causes the method
not to perform well in areas with poor gravity data quality or poor spatial data coverage. However,
this makes the point-mass method an excellent way to find inconsistencies or errors in the data. For
instance, the large number of point masses under Rottnest Island can easily be understood by looking
at Figure 9b. The AGSO land gravity data on the island (at 115.5°E) differ from the altimeter data
around the island up to about 40mGal over a very small distance.

It is a well-known fact that the quality of altimeter data gets poor near the coastline (described
earlier). There is a large difference between the altimeter data and the land data in the profiles in
Figure 9 (except for Figure 9a). To achieve a geoid computation in the Perth region with centimeter
accuracy will only be possible if either shipboard, altimeter or airborne gravity data with better
quality becomes available in the coastal areas. Alternatively, techniques to improve satellite altimeter
data in the coast must be developed.
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Fig. 8. The positions of 500 point masses (black positive; clear negative) determined from AGSO land data and

satellite altimeter data only (white circles). The distinction among the different gravity data is made in Figure

2. The shaded bands show the areas that were used to generate the profiles in Figure 9.
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Fig. 9. Free-air gravity anomaly profile over latitudes between: (a) 30.85° and 30.95°; (b) 31.95° and 32.05°.
The vertical lines show the positions of the point masses (see circles in Figure 8)
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CONCLUSIONS

Any inconsistencies in the Australian Height Datum in the Perth region could not be detected with
the use of a free-positioned point-mass gravity field modelling technique. The main difficulty is that
this point-mass algorithm is very sensitive to the inconsistent gravity data types and coverage in the
area. This causes the point masses to cluster in the neighbourhood of this inconsistent data, and when
these point masses are close together, numerical stability problems occur. Applying different weights
to the different data qualities in the least-squares inversion might deliver some improvements, but
this was not tested in this study. However, the profiles of the data clearly show that there are system-
atic differences between the data, which would have to be modelled irrespective of a least-squares
weighting strategy.

The data gaps in the study area also adversely influenced the results. Many point masses tended
to position in the gravity data gaps. The apparent solution to prevent the point masses from moving
tangentially (by optimising them in a radial direction only), did not improve the results to any great
extent. Moreover, the numerical instabilities became larger, causing errors in the inversion of the
matrix in the least-squares optimisation. Although the free-positioned point-mass method does not
make a significant improvement in the fit to GPS-levelling data over methods based on Stokes’s
integral, it has a complementary application as follows.

The sensitivity of the free-positioned point-mass method to inconsistencies in the data makes
this very useful for detecting these inconsistencies. A cluster of point masses can point out a striking
geological feature (eg. the Darling Fault), but appears in many other cases to be caused by data
inconsistencies. The poor quality of the various gravity data types in the Perth region has been
shown, especially over the ocean. Therefore, data of a better quality is needed to compute a geoid
that is sufficiently precise to give information on the quality of the Australian Height Datum.

Finally, despite the poor performance of the point-mass technique in the challenging Perth region,
it should not be discounted from use in future Australian geoid modelling.
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