
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195661826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

978-1-4244-4547-9/09/$26.00 ©2009 IEEE TENCON 2009

A Novel Approach to Minimizing the Risks of Soft
Errors in Mobile and Ubiquitous Systems

Muhammad Sheikh Sadi, D. G. Myers, Cesar Ortega
Sanchez

Department of Electrical and Computer Engineering
Curtin University of Technology, Australia

Jan Jurjens
Department of Computer Science

TU Dortmund
Dortmund, Germany

Abstract—A novel approach to minimizing the risks of soft errors
at modeling level of mobile and ubiquitous systems is outlined.
From a pure dependability viewpoint, critical components, whose
failure is likely to impact on system functionality, attract more
attention of protection/prevention mechanisms (against soft
errors) than others do. Tolerating soft errors can be much
improved if critical components can be identified at an early
design phase and measures are taken to lower their criticalities at
that stage. This improvement is achieved by presenting a
criticality ranking (among the components) formed by combining
a prediction of soft errors, consequences of them, and a
propagation of failures at system modeling phase; and pointing
out the ways to apply changes in the model to minimize the risks
of degradation of desired functionalities. Case study results are
given to illustrate and validate the approach.

Keywords-Criticality Analysis; Soft Errors; Reliability Risks,
Mobile and Ubiquitous Systems; UML Model; Metrics

I. INTRODUCTION

The demands on embedded mobile and ubiquitous systems are
increasing along with more complex functionalities such as
pervasive computing, mobile computing, and high-speed
wireless networking [1], [2]. Continuous improvement of
wireless networks has created different types of wireless
systems, such as Bluetooth for personal areas, Wireless LANs
(WLANs) for local areas, Universal Mobile
Telecommunications System (UMTS) for wide areas, and
satellite networks for global networking. These systems
require to co-ordinate with each other to provide ubiquitous
high-data-rate services to mobile users [3]. Hence, reliability is
a high requirement in these systems. The reliability of these
systems is affected by both permanent and transient faults.
Permanent faults such as nodes stuck-at-1/0, transistors open,
shorted transistors and so forth, arise during fabrication or
result from aging, and destroy the intended function of the
circuit [4]. Transient faults, in contrast, are not the result of
physical damage to a chip but can be catastrophic for the
desired functionalities of the system [5], [6]. These transient
faults create soft errors when they are executed in the system.
Soft errors are of particular concern as system complexity,
reduction in operational voltages, exponential growth of the
number of transistors per chip, increases in clock frequencies
and device shrinking significantly increase their rate [7], [8].
Prior research to cope with soft errors mostly focuses on post-
design phases such as circuit level solutions, logic level

solutions, spatial redundancy, temporal redundancy, and/or
error correction codes. Early detection and correction of such
problems during the design phase is much more likely to be
successful than detection once the system is operational [9].
Estimating reliability (or at least identifying failure-prone
components) early in the life-cycle of a design is therefore
preferable [10], [11]. Ideally, this should be done at the system
design level so that the designer can create required prevention
or detection mechanisms in the detailed design that follows.
From a pure dependability viewpoint, critical components
attract more attention of protection/prevention mechanisms
than others do since reliability of a system is correlated with
the criticality of the system [12], [13]. Hence, an approach is
needed at the design stage to highlight those components
where transient faults are critical.
This paper examines the use of metrics to identify critical
components of a system model. It also investigates how to
encourage the designer to explore changes that could be made
in the existing model. Case studies illustrate the effectiveness
of this approach in determining components’ criticality
rankings and then lowering their criticalities. The model is
expressed in Unified Modeling Language (UML) since this
allows the modeler to describe different views on a system,
including the physical layer [14], [15]. The paper is organized
as follows. Section 2 describes related work. Section 3
outlines the methodology to measure and reduce component’s
criticality employed in this research. This methodology is
applied to a real-life case study in Section 4. Finally, in
Section 5, conclusions are drawn.

II. RELATED WORK

Researchers have evolved several measures to prevent soft
errors. Much less attention has been dedicated, until now, to
the integration of design processes with reliability verification
techniques. Rather, a “fix-it-later” approach is still dominant
[16]. At a system level, duplicating hardware [17], [18] and
then comparing the results, and/or executing several copies of
software by using the same hardware [19] to detect soft errors
are the most common approaches. Then, different recovery
approaches are employed to recover from the soft errors. At
the circuit level, the solution is mainly to increase the critical
charge of a circuit node [20]. Logic level solutions [5] mainly
propose detection and recovery in combinational circuits by
using redundant or self-checking circuits. Gold et al. [21]
proposed distributed shared memory multi-processor features

 TENCON 2009

that incorporate computation and memory storage redundancy
to detect and recover from a single point of transient or
permanent failure. Mohamed et al. [22] shows chip level
redundant threading with recovery, where the basic idea is to
run each program twice, as two identical threads, on a
simultaneous multithreaded processor. These post-functional
design phase approaches are costly as well as complex to
implement. Moreover, they can increase time delays and
power overhead without offering any performance gain.
Timing and synchronizing issues are also matters of great
concern in these approaches.
Few approaches [23], [24] dealt with the static complexities of
the system as a risk assessment methodology to minimize the
risks of faults. However, these static approaches do not deal
with the matter of how a module functions in its executing
environment. A fault may not manifest itself into a failure if
never executed. Cortellessa et al. [9] and Yacoub et al. [13]
defined dynamic metrics that include dynamic complexity and
dynamic coupling metrics to measure the quality of software
architecture. To assess the severity of the components they
have defined only three levels of system failure. However, in
real life scenarios, only three severity levels are not sufficient
to represent several possible failure modes.

III. A METHODOLOGY TO MEASURE AND REDUCE

COMPONENT’S CRITICALITY

Complexity is taken as a measure of the likelihood of a
component to be affected by soft errors. Severity of failure of
components is taken as a measure of the impact of a system’s
functionality being affected by a component suffering a soft
error. The methodology presented here is to measure the
complexity and severity of each component, plus the
propagation of failure from that component, and then take the
product as a measure of criticality. The model is examined by
refactoring to lower component criticality by maintaining
constraints. The details of these steps are outlined as follows.

A. Measuring the Complexities of the Components

There is a correlation between the likelihood of soft errors
proneness and the complexity of a system [12], [25].
Complexity analysis does not measure the impact of
components in system functionality, but it shows the rank of
likelihood of soft error proneness among the components.
Complexity is measured, in this paper, by an assessment of
execution time (ET) during simulation and Message-In-and-
Out frequency (MIO).

1) Execution Time during Simulation
The Failure-In-Time (FIT) of a system due to soft error is

proportional to the fraction of time in which the system is
susceptible to soft errors if the circuit type, transistor sizes,
node capacitances, temperature etc. are kept at constant [26].
The longer duration to perform the selected operation implies
that the component is being used more frequently and/or it is
experiencing many state changes. A soft error occurs at any
access point and/or in any behavioral change of these
components can spread towards all communicating
components through the large number of behavioral linkages
until the soft error affected component is in execution. The

method of measuring ET during simulation (to perform an
operation by a component) can be shown as follows.
Component state S is a function of time: S (t) where t denotes
time. An external function F () is required to be executed to
perform the operation F (S (ti)) → S (tj)): where S (ti) is the
state of a component at ti and S (tj) is the state of that
component at tj. Hence, ET, to execute the function F () that
changes the state of the pth component from S (ti) to S (tj), can
be shown as (1).

∑
=

=→
n

j
p j

d
1

jip))(t S))(t (S (F ET (1)

Where n is the total number of state changes in the pth
component’s behaviour execution and dpj is the duration in the
jth slot of changing states of pth component. Since UML does
not specify how to simulate the architecture models, Telelogic
Rhapsody [27] is used to gain execution data via simulation.
The model is executed in tracing mode. Several tracing
commands are used to execute the model. The state transition
times for the components are saved to a log file. At the end of
the simulation, that log file is analyzed to calculate the total ET
of the components to perform a selected operation.

2) Message-In-and-Out Frequency
In a model-based system, components are often

interdependent. They communicate with each other by message
passing among them. Number of messages from and to a
component shows the measure of dependence with other
components. Components with more dependence could easily
manifest themselves into a failure of the system because
services of these components are frequently accessed by other
components [14]. To figure out this fault proneness, a
component’s MIO, which is the ratio of number of messages
from and to a component in a scenario and total number of
messages in that scenario is calculated. Define

ki
MIO as the

MIO for ith component in kth scenario. M (i,j) is the message
between component i and component j (where j=1,….,m ,

ji ≠ , and m is the number of messages from ith component to

other components) in kth scenario, and kn is the total number
of messages, communicating among all the components, in that
scenario. Then, iMIO can be derived as shown in (2).

||M|

MIO 1
j)(i,

i k
k

m

j

n

ji∑
=

≠

= .
(2)

For each component, Total MIO (TMIO) in all possible
different scenarios can be calculated using (3). TMIO for ith
component is:

)(
1
∑

′

=

=
n

k
iki

k
MIOScPTMIO . (3)

wheren ′ is the total number of scenarios in the system,
)(kScP is the probability of kth Scenario in that system, and

kiMIO is the MIO for ith component in kth scenario.

 TENCON 2009

3) Overall Complexity
The Overall Complexity of the ith Component (OCCi) is

the summation of different complexity factors for that
component. The equation to derive OCCi is shown in (4).

where iET and iTMIO are Execution Time, and Message-

In-and-Out frequency for the ith component. Since, iET and

iTMIO are independent on each other, OCCi is calculated using
the summation of these two factors. For simplicity, the weights
of ET and TMIO in measuring total value of complexities are
assumed as equal.

B. Measuring the Severity of the Failure of the
Components

A single soft error in a particular component could have a
greater effect than multiple soft errors in another or a set of
components. For this reason, the effects of soft errors in the
whole system need to be analyzed by injecting transient faults
(which will create soft errors if activated) into each component.
These results are merged with the component’s complexities to
obtain a better measure of their impact on system if they are
affected by soft errors. The severity of failures of components
is determined by the Failure Mode and Effects Analysis
(FMEA) method [28]. FMEA is a procedure for the analysis of
potential failure modes within a system by classifying severity
or determination of the failure’s effect upon the system.
Hosseini et al. [28] suggested evaluation criteria and a ranking
system for the severity of effects for a design FMEA as shown
in TABLE I. Transient faults are injected at each component,
into one bit at a time. The reason is that transient faults change
the value of one bit at a time and the probability of changing
two bits and/or two transient faults are almost zero.

TABLE I. EVALUATION CRITERIA AND RANKING SYSTEM OF FMEA

C. Measuring Propagation of Failure from the
Components

Before measuring the component’s propagation of failure,
its complexity and severity are multiplied together to measure
there combined impact (if there is any soft error) on the whole
system. Measuring the propagation of failure refines this
impact to obtain a clearer picture of the impact or criticality of
each component. The method of measuring the propagation of

failure is shown in Fig. 1, which is a scenario of a system
model showing three components: C1, C2, and C3.

Fig. 1. An Example Scenario of a System Model to Measure the

Propagation of failure

ENV denotes the environment communicating with the
system. The product of complexity and severity of these three
components are s1, s2, and s3 respectively. In Fig. 1, x1,….,x10
indicate the severity in corresponding messages where indexing
is made according to their time of occurrences in the whole
scenario. Failures due to soft errors may be propagated via
message communication. The propagation of failure from or in
the environment is not considered. To measure propagation of
failure through message passing involves finding the increase
in the level of consequences of each message. A soft error in C1
(before it passes a second message) sees an increase in level of
consequences in C2 to s1x2, since soft errors may propagate
from C1 to C2 through the passed message.

After passing the 2nd message, there is an increase in level
of consequences in C2: s1x2 and after passing the 3rd message,
there is an increase in level of consequences in C3: s1x2s2x3.

Similarly, after passing the 9th message, there is an increase
in the level of consequences in C1:
s1x2s2x3s3x4s2x5s2(x6+x7)s1x8s1x9

The total consequences in the system can be defined as

11CONC (= s1x2s2x3s3x4s2x5s2(x6+x7)s1x8s1x9)

If the soft error occurs in C1 within the 2nd and 8th
messages then the consequences (

21CONC = s1x8s1x9) can be

propagated in the system after passing the 8th message.

If the soft error occurs in C1 after passing the 8th message
then the consequences (

31CONC = s1x9) can be propagated in

the system with the 9th message. In the same way, if soft errors
occur in C2, and/or in C3 then the increase in level of
consequences can be checked at different stages of message
passing. The consequences in the system can be measured as
follows.

12CONC = s2x3s3x4s2x5s2(x6+x7)s1x8s1x9

22CONC = s2x5s2(x6+x7)s1x8s1x9

iii TMIOETOCC += (4)

Linguistic terms for severity of a failure mode Rank

Hazardous 10

Serious 9

Extreme 8

Major 7

Significant 6

Moderate 5
Low 4

Minor 3
Very minor 2
No effect 1

 TENCON 2009

32CONC = s2(x6+x7)s1x8s1x9

42CONC = s2x7s1x8s1x9

13CONC = s3x4s2x5s2(x6+x7)s1x8s1x9

The total propagation of failure from each component (due
to a soft error in that component) can be derived as follows.

∑
=

=
3

1
11

i
iCONCCONC

T

∑
=

=
4

1
22

i
iCONCCONC

T

133 CONCCONC
T

=

If the values of s1, s2, and s3; and x1,…, x10 are known then
the above propagations can be derived. The total propagation of
failure in the whole system (due to a soft error in any
component) can be shown as follows:

where n is the total number of scenarios in the system,
)(kScP is the probability of the kth scenario, and

ki
CONC is

the propagation of failure from the ith component in the kth
scenario.

D. Measuring Criticalities of the Components

For each component, criticality is the product of complexity,
severity, and the propagation of failure. The combined impact
of complexity and severity is used to calculate the propagation
of failure. Criticality is calculated by taking the product of
complexity, severity, and the propagation of failure. If the
criticality of the ith component is Cri then the equation to
derive it can be shown as:

 where, iOCC is the overall complexity of the component,

)(iCCON is the propagation of failure from the component,

and)(iCSe is the severity of the component.

)(),(, iii CSeCCONOCC are dependent on each other; i.e. for

any increase in complexity there is a high probability that the
severity will increase, and if the product of complexity and
severity increases then the probability of propagation of failure
will increase too. Hence, criticality is taken as the product of
overall complexity, severity, and propagation of failure.

E. Lowering the Criticalities of Components

Component criticality suggests to the designers where in
the system design changes are necessary or helpful to minimize
soft errors risk. These changes can be done by applying a
suitable approach where he/she may change the architecture or
behavioral model of the component to lower its complexity,
and/or severity, and/or propagation of failure. Refactoring is a

good candidate for this type of approach. UML model
refactoring re-structures the model, at the conceptual level, to
improve quality factors such as maintainability, efficiency and
fault tolerance without introducing any new behaviour [29].
Once the criticality ranking is returned, a model can be
refactored with the goal of reducing the criticalities of the
components. Lowering the criticalities can be achieved by
reducing any of the multiplying factors: complexity, severity or
propagation of failure. Fig. 2 details the methodology of
lowering component criticality by refactoring.

Fig. 2. Methodology to lower the criticalities of the Components by

Refactoring

IV. CASE STUDIES

Real-life case study: A wireless telephony Handset System
illustrates the application of the metrics. It is chosen, as it is
illustrative of a broad class of systems that must have high
reliability. Handset System has three sub-systems (for this
example, sub-systems represent components): (i) a Connection
Management (CM) system to handle the reception, setup, and
transmission of incoming and outgoing call requests, (ii) a Data
Link (DL) system to handle the registration and location of
users, and (iii) a Mobility Management (MM) system to
monitor registration.

A. ET Analysis of the Handset System

The ‘Call Control’ Statechart diagram of CM in the
Handset system is used for ET analysis and is shown in Fig. 3.
If it receives a confirmation, the call connects, and remains
connected until it receives a message to disconnect. When
operation succeeds, the time of executing the ‘Place Call’ event
at ‘Idle’ state, and the time when the system reached at
‘Connected’ state of ‘Call Control’ statechart were recorded to
calculate the ET of these sub-systems. The second column of
TABLE II shows the normalized values of ET of the sub-
systems.

)()()(
1

kik

n

k
i CCONScPCCON ×=∑

′

=

 (5)

))(),(,(iiii CSeCCONOCCCr ∏=
(6)

 TENCON 2009

Fig. 3. Call Control statechart diagram at the beginning of execution

B. MIO and TMIO of the Sub-systems in the Handset
System

There are three scenarios in the Handset system: i) Place
Call Request Successful, ii) Network Connect, and iii)
Connection Management Place Call Request Success. The
probabilities of the occurrences of three scenarios are assumed
as 0.45, 0.30, and 0.25 respectively. The assumptions are made
with respect to their usage in real life scenarios. MIO and
TMIO for three different sub-systems are calculated for three
different sequence diagrams using (2) and (3). All values of
TMIO for the three sub-systems are shown in the third column
of TABLE II.

C. Overall Complexities of the Sub-systems in the
Handset System

Overall complexities of three sub-systems are calculated
using (4), and the last column in TABLE II shows their overall
complexities. Overall complexity is the summation of ET
during simulation, and Message-in-and-out-frequencies of the
sub-systems. Though MM has the highest value of ET, and DL
has the same for TMIO, considering both of the complexities
CM is the most complex sub-system in Handset system.
Overall complexities of DL and MM are almost equal.

TABLE II. THE COMPLEXITY OF THE SUB-SYSTEMS IN HANDSET SYSTEM
Sub-Systems

Normalized
values of ET

TMIO Overall
Complexities

CM 0.29 0.62 0.91
DL 0.05 0.74 0.79
MM 0.67 0.13 0.80

D. Measurement of the Severity of the Failure Sub-
systems in the Handset System

The severity of sub-systems are determined by the FMEA
where the effects of soft errors in each sub-system are analyzed
by injecting transient faults, and checking their effects. TABLE
III shows the results. To simplify the column name in the
TABLE III, Severity of Failure, and Severity Rank are
abbreviated as SOF, and SR respectively.

TABLE III. THE SEVERITY OF THE SUB-SYSTEMS IN HANDSET SYSTEM
Sub-

Systems
Failure Mode Effect of Failure SOF SR

CM Failed to trigger
the Connection

Call event

Could not complete the
connection and

Connection went back to
idle stage

Serious 9

DL Failed to
respond to

Registration
request

Could not initiate the
registration and

Connection went back to
idle stage

Extreme 8

MM Failed to update
Location

Connection was held in
Location Update state and

could not confirm the
connection

Major 7

E. Measuring Propagation of Failures from the Sub-
systems in Handset System

At first, the failure propagation is calculated for each sub-
system and for the three different scenarios. Then the total
failure propagation for each sub-system is calculated using
equation (5). The second column in TABLE IV shows the
calculated failure propagation (normalized) due to soft errors in
these three scenarios. Fault propagations are calculated using
only participating components.

TABLE IV. THE PROPAGATION OF FAILURE AND CRITICALITIES OF THE

SUB-SYSTEMS IN THE HANDSET SYSTEM
Sub-Systems Propagation of

failure
Criticality of the

Components

CM 10 81.9
DL 0.00027 0.0017064
MM 0.123 0.6888

F. Measuring Criticalities of the Sub-systems in
Handset System

The criticalities of the sub-systems are shown in the last
column of TABLE IV. The results show that CM is the most
critical sub-system in the Handset system and is followed by
MM, and DL.

G. Lowering the Criticalities of the Sub-Systems of
Handset System

As shown in TABLE IV, CM has large criticality
differences with the other sub-systems. This paper then targets
to reduce the criticality of the sub-systems according to their
criticality order. The behaviour models of all three sub-systems
are carefully examined to be refactored. The functionality is
being affected for any change made in the behavioural
diagrams of CM, and DL sub-systems. The MMCallControl
activity diagram of MM sub-system is able to bring under
refactoring by maintaining the constraints. The calculated
normalized ET of the sub-systems of refactored model and
existing model (to establish a handset connection) is shown in
TABLE V.

TABLE V. COMPARISON OF ET OF THE COMPONENTS BETWEEN

REFACTORED MODEL AND EXISTING HANDSET MODEL
Sub-systems Normalized ET of

Refactored Model
Normalized ET

of Existing
Model

CM 0.29 0.228
MM 0.05 0.0393
DL 0.67 0.67

Idle

Active

ConnectionConfirm

Connected

tm(3000)

PlaceCallReq/
OUT_Port(cc_mm)->GEN(Disconnect)

ConnectConfirm

Disconnect/
OUT_Port(cc_mm)->GEN(Disconnect)

 TENCON 2009

Lower ET will result to lower complexity as well as lower
criticality of the sub-systems. TABLE V shows that refactoring
the model is able to lower the ET of the CM, and MM sub-
systems to a mentionable extent. The ET for DL is constant.
DL is the least critical sub-system in the Handset system and its
criticality is so low that it does not create any matter of
concern.

V. CONCLUSIONS

This paper develops metrics for complexity analysis that
could be analyzed in the early system design phase based on
UML artifacts, develops a severity assessment methodology by
analyzing UML model simulation results, and develops the
methodology of measuring the propagation of failures from the
components. This paper then integrates the three different
methods to rank the component’s criticality that highlight the
variations of the impact of soft errors among the components. It
then shows how possible changes can be made in the existing
design to lower the criticalities of the components to minimize
the risks of soft errors. In summary, the approach presented in
this paper is effective in measuring the soft errors risks of the
components in a system and in lowering the criticalities of
components to minimize the risks of functional degradation.

REFERENCES
[1] H. Pao-Ann, L. Shang-Wei, H. Chin-Chieh, F. Jih-Ming, L. Chao-

Sheng, C. Cheng-Chi, C. Kuo-Cheng, L. Chun-Hsien, and L. Pin-Hsien,
"Real-time embedded software design for mobile and ubiquitous
systems," in International Conference on Embedded and Ubiquitous
Computing, EUC 2007, (Lecture Notes in Computer Science vol. 4808),
pp. 718-729.

[2] S. Manzoni, F. Nunnari, and G. Vizzari, "Towards a model for
ubiquitous and mobile computing," in Thirteenth IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Los Alamitos, CA, USA, 2004, pp. 423-428.

[3] I. F. Akyildiz, S. Mohanty, and J. Xie, "A ubiquitous mobile
communication architecture for next-generation heterogeneous wireless
systems," IEEE Communications Magazine, vol. 43, pp. 29-36, 2005.

[4] A. Timor, A. Mendelson, Y. Birk, and Suri, N, "Using Under Utilized
CPU Resources to Enhance Its Reliability," Dependable and Secure
Computing, IEEE Transactions on, vol. 5, no. 4, 2008.

[5] Zhang, M., Mitra, S., Mak, T.M., Seifert, N., Wang, N.J., Shi, Q., Kim,
K.S., Shanbhag, N.R., Patel, S.J., “Sequential Element Design With
Built-In Soft Error Resilience,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 14, pp. 1368-1378 , 2006.

[6] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, "Robust system
design with built-in soft-error resilience," Computer, vol. 38, pp. 43-52,
2005.

[7] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K. Iyer,
"An experimental study of soft errors in microprocessors," Micro, IEEE,
vol. 25, pp. 30-39, 2005.

[8] Y. Crouzet, J. Collet, and J. Arlat, "Mitigating soft errors to prevent a
hard threat to dependable computing," presented at 11th IEEE
International On-Line Testing Symposium, IOLTS, pp. 295-298, 2005.

[9] Cortellessa, V., Goseva-Popstojanova, K., Appukkutty, K., Guedem,
A.R., Hassan, A., Elnaggar, R., Abdelmoez, W., Ammar, H.H., “Model-
based performance risk analysis,” IEEE Transactions on Software
Engineering, Vol. 31, pp. 3-20, 2005.

[10] Jurjens, J., Wagner, S., “Component-based development of dependable
systems with UML,” Lecture Notes in Computer Science, vol. 3778, pp.
320-344, 2005.

[11] A. Bondavalli, M.D.C., D. Latella, I. Majzik, A. Pataricza, and G.
Savoia: Dependability Analysis in the Early Phases of UML Based
System Design. Journal of Computer Systems Science and Engineering
16 (2001) 265—275

[12] Khoshgoftaar, J.M.a.T., “Software Metrics for Reliability Assessment,”
Handbook of Software Reliability Eng., M. Lyu ed., Chapter 12, pp.
493-529, 1996.

[13] Yacoub, S.M., Ammar, H.H., “A methodology for architecture-level
reliability risk analysis,” IEEE Transactions on Software Engineering,
Vol. 28, pp. 529-547, 2002.

[14] S. K. Wood, D. H. Akehurst, O. Uzenkov, W. G. J. Howells, and K. D.
McDonald-Maier, "A model-driven development approach to mapping
UML state diagrams to synthesizable VHDL," IEEE Transactions on
Computers, vol. 57, pp. 1357-1371, 2008.

[15] Linzhang, W., Wong, E., Dianxiang, X.: A threat model driven approach
for security testing. IEEE, Minneapolis, MN, USA (2007) 64-70

[16] Hiller, M., Jhumka, A., Suri, N., “EPIC: profiling the propagation and
effect of data errors in software,” IEEE Transactions on Computers, Vol.
53, 2004.

[17] Meaney, P.J., Swaney, S.B., Sanda, P.N., Spainhower, L., “IBM z990
soft error detection and recovery.,” IEEE Transactions on Device and
Materials Reliability, Vol. 5, 2005.

[18] Austin, T.M., “DIVA: a reliable substrate for deep submicron
microarchitecture design,” 32nd Annual International Symposium on
Microarchitecture, pp. 196 – 207, 1999.

[19] Xinping, Z., Wei, Q., “Prototyping a fault-tolerant multiprocessor SoC
with run-time fault recovery,” 43rd ACM/IEEE Design Automation
Conference, pp. 53 – 56, 2006.

[20] Cazeaux, J.M., Rossi, D., Omana, M., Metra, C., Chatterjee, A., “On
transistor level gate sizing for increased robustness to transient faults,”
11th IEEE International On-Line Testing Symposium, pp. 23 – 28,
2005.

[21] B. T. Gold, J. Kim, J. C. Smolens, E. S. Chung, V. Liaskovitis, E.
Nurvitadhi, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk, "TRUSS: a
reliable, scalable server architecture," Micro, IEEE, vol. 25, pp. 51-59,
2005.

[22] A. G. Mohamed, S. Chad, T. N. Vijaykumar, and P. Irith, "Transient-
fault recovery for chip multiprocessors," IEEE Micro, vol. 23, pp. 76,
2003.

[23] T. J. McCabe, "A Complexity Measure," Software Engineering, IEEE
Transactions on, vol. SE-2, pp. 308-320, 1976.

[24] Chidamber, S.R., Kemerer, C.F., “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, Vol. 20, pp. 476-
493, 1994.

[25] Harrison, R., Counsell, S., Nithi, R., “Coupling metrics for object-
oriented design,” IEEE Comput. Soc, Bethesda, MD, USA, pp. 150-157,
1998.

[26] H. T. Nguyen, Y. Yagil, N. Seifert, and M. Reitsma, "Chip-level soft
error estimation method," Device and Materials Reliability, IEEE
Transactions on, vol. 5, pp. 365-381, 2005.

[27] http://www.telelogic.com/Products/rhapsody/index.cfm

[28] S. M. Seyed-Hosseini, N. Safaei, and M. J. Asgharpour,
"Reprioritization of failures in a system failure mode and effects analysis
by decision making trial and evaluation laboratory technique,"
Reliability Engineering & System Safety, vol. 91, pp. 872-81, 2006.

[29] S. Gerson, P. Damien, T. Yves Le, J. Jean-Marc, z, and quel, "Refactoring UML
Models," in Proceedings of the 4th International Conference on The Unified
Modeling Language, Modeling Languages, Concepts, and Tools: Springer-Verlag,
2001.

