
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, 
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195661826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

978-1-4244-4547-9/09/$26.00 ©2009 IEEE                                                                                TENCON 2009 
 

A Novel Approach to Minimizing the Risks of Soft 
Errors in Mobile and Ubiquitous Systems

Muhammad Sheikh Sadi, D. G. Myers, Cesar Ortega 
Sanchez 

Department of Electrical and Computer Engineering 
Curtin University of Technology, Australia 

Jan Jurjens 
Department of Computer Science 

TU Dortmund 
Dortmund, Germany

 
Abstract—A novel approach to minimizing the risks of soft errors 
at modeling level of mobile and ubiquitous systems is outlined. 
From a pure dependability viewpoint, critical components, whose 
failure is likely to impact on system functionality, attract more 
attention of protection/prevention mechanisms (against soft 
errors) than others do. Tolerating soft errors can be much 
improved if critical components can be identified at an early 
design phase and measures are taken to lower their criticalities at 
that stage. This improvement is achieved by presenting a 
criticality ranking (among the components) formed by combining 
a prediction of soft errors, consequences of them, and a 
propagation of failures at system modeling phase; and pointing 
out the ways to apply changes in the model to minimize the risks 
of degradation of desired functionalities. Case study results are 
given to illustrate and validate the approach. 
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I.  INTRODUCTION 

The demands on embedded mobile and ubiquitous systems are 
increasing along with more complex functionalities such as 
pervasive computing, mobile computing, and high-speed 
wireless networking [1], [2]. Continuous improvement of 
wireless networks has created different types of wireless 
systems, such as Bluetooth for personal areas, Wireless LANs 
(WLANs) for local areas, Universal Mobile 
Telecommunications System (UMTS) for wide areas, and 
satellite networks for global networking. These systems 
require to co-ordinate with each other to provide ubiquitous 
high-data-rate services to mobile users [3]. Hence, reliability is 
a high requirement in these systems. The reliability of these 
systems is affected by both permanent and transient faults. 
Permanent faults such as nodes stuck-at-1/0, transistors open, 
shorted transistors and so forth, arise during fabrication or 
result from aging, and destroy the intended function of the 
circuit [4]. Transient faults, in contrast, are not the result of 
physical damage to a chip but can be catastrophic for the 
desired functionalities of the system [5], [6]. These transient 
faults create soft errors when they are executed in the system. 
Soft errors are of particular concern as system complexity, 
reduction in operational voltages, exponential growth of the 
number of transistors per chip, increases in clock frequencies 
and device shrinking significantly increase their rate [7], [8]. 
Prior research to cope with soft errors mostly focuses on post-
design phases such as circuit level solutions, logic level 

solutions, spatial redundancy, temporal redundancy, and/or 
error correction codes. Early detection and correction of such 
problems during the design phase is much more likely to be 
successful than detection once the system is operational [9]. 
Estimating reliability (or at least identifying failure-prone 
components) early in the life-cycle of a design is therefore 
preferable [10], [11]. Ideally, this should be done at the system 
design level so that the designer can create required prevention 
or detection mechanisms in the detailed design that follows. 
From a pure dependability viewpoint, critical components 
attract more attention of protection/prevention mechanisms 
than others do since reliability of a system is correlated with 
the criticality of the system [12], [13]. Hence, an approach is 
needed at the design stage to highlight those components 
where transient faults are critical. 
This paper examines the use of metrics to identify critical 
components of a system model. It also investigates how to 
encourage the designer to explore changes that could be made 
in the existing model. Case studies illustrate the effectiveness 
of this approach in determining components’ criticality 
rankings and then lowering their criticalities.  The model is 
expressed in Unified Modeling Language (UML) since this 
allows the modeler to describe different views on a system, 
including the physical layer [14], [15]. The paper is organized 
as follows. Section 2 describes related work. Section 3 
outlines the methodology to measure and reduce component’s 
criticality employed in this research. This methodology is 
applied to a real-life case study in Section 4. Finally, in 
Section 5, conclusions are drawn. 

II. RELATED WORK 

Researchers have evolved several measures to prevent soft 
errors. Much less attention has been dedicated, until now, to 
the integration of design processes with reliability verification 
techniques. Rather, a “fix-it-later” approach is still dominant 
[16]. At a system level, duplicating hardware [17], [18] and 
then comparing the results, and/or executing several copies of 
software by using the same hardware [19] to detect soft errors 
are the most common approaches. Then, different recovery 
approaches are employed to recover from the soft errors. At 
the circuit level, the solution is mainly to increase the critical 
charge of a circuit node [20]. Logic level solutions [5] mainly 
propose detection and recovery in combinational circuits by 
using redundant or self-checking circuits. Gold et al. [21] 
proposed distributed shared memory multi-processor features 
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that incorporate computation and memory storage redundancy 
to detect and recover from a single point of transient or 
permanent failure. Mohamed et al. [22] shows chip level 
redundant threading with recovery, where the basic idea is to 
run each program twice, as two identical threads, on a 
simultaneous multithreaded processor. These post-functional 
design phase approaches are costly as well as complex to 
implement. Moreover, they can increase time delays and 
power overhead without offering any performance gain. 
Timing and synchronizing issues are also matters of great 
concern in these approaches.  
Few approaches [23], [24] dealt with the static complexities of 
the system as a risk assessment methodology to minimize the 
risks of faults. However, these static approaches do not deal 
with the matter of how a module functions in its executing 
environment. A fault may not manifest itself into a failure if 
never executed. Cortellessa et al. [9] and Yacoub et al. [13] 
defined dynamic metrics that include dynamic complexity and 
dynamic coupling metrics to measure the quality of software 
architecture. To assess the severity of the components they 
have defined only three levels of system failure. However, in 
real life scenarios, only three severity levels are not sufficient 
to represent several possible failure modes. 

III.  A METHODOLOGY TO MEASURE AND REDUCE 

COMPONENT’S CRITICALITY 

Complexity is taken as a measure of the likelihood of a 
component to be affected by soft errors. Severity of failure of 
components is taken as a measure of the impact of a system’s 
functionality being affected by a component suffering a soft 
error. The methodology presented here is to measure the 
complexity and severity of each component, plus the 
propagation of failure from that component, and then take the 
product as a measure of criticality. The model is examined by 
refactoring to lower component criticality by maintaining 
constraints. The details of these steps are outlined as follows. 

A. Measuring the Complexities of the Components 

There is a correlation between the likelihood of soft errors 
proneness and the complexity of a system [12], [25]. 
Complexity analysis does not measure the impact of 
components in system functionality, but it shows the rank of 
likelihood of soft error proneness among the components. 
Complexity is measured, in this paper, by an assessment of 
execution time (ET) during simulation and Message-In-and-
Out frequency (MIO). 

1) Execution Time during Simulation 
The Failure-In-Time (FIT) of a system due to soft error is 

proportional to the fraction of time in which the system is 
susceptible to soft errors if the circuit type, transistor sizes, 
node capacitances, temperature etc. are kept at constant [26]. 
The longer duration to perform the selected operation implies 
that the component is being used more frequently and/or it is 
experiencing many state changes. A soft error occurs at any 
access point and/or in any behavioral change of these 
components can spread towards all communicating 
components through the large number of behavioral linkages 
until the soft error affected component is in execution. The 

method of measuring ET during simulation (to perform an 
operation by a component) can be shown as follows. 
Component state S is a function of time: S (t) where t denotes 
time. An external function F () is required to be executed to 
perform the operation F (S (ti)) → S (tj)): where S (ti) is the 
state of a component at ti and S (tj) is the state of that 
component at tj. Hence, ET, to execute the function F () that 
changes the state of the pth component from S (ti) to S (tj), can 
be shown as (1). 
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Where n is the total number of state changes in the pth 
component’s behaviour execution and dpj is the duration in the 
jth slot of changing states of pth component. Since UML does 
not specify how to simulate the architecture models, Telelogic 
Rhapsody [27] is used to gain execution data via simulation. 
The model is executed in tracing mode. Several tracing 
commands are used to execute the model. The state transition 
times for the components are saved to a log file. At the end of 
the simulation, that log file is analyzed to calculate the total ET 
of the components to perform a selected operation. 

2) Message-In-and-Out Frequency 
In a model-based system, components are often 

interdependent. They communicate with each other by message 
passing among them. Number of messages from and to a 
component shows the measure of dependence with other 
components. Components with more dependence could easily 
manifest themselves into a failure of the system because 
services of these components are frequently accessed by other 
components [14]. To figure out this fault proneness, a 
component’s MIO, which is the ratio of number of messages 
from and to a component in a scenario and total number of 
messages in that scenario is calculated. Define 

ki
MIO as the 

MIO for ith component in kth scenario. M (i,j) is the message 
between component i and component j (where j=1,….,m , 

ji ≠ , and m is the number of messages from ith component to 

other components) in kth scenario, and kn  is the total number 
of messages, communicating among all the components, in that 
scenario. Then, iMIO  can be derived as shown in (2). 
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For each component, Total MIO (TMIO) in all possible 
different scenarios can be calculated using (3). TMIO for ith 
component is: 
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wheren ′ is the total number of scenarios in the system, 
)( kScP is the probability of kth Scenario in that system, and 

kiMIO is the MIO for ith component in kth scenario. 
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3) Overall Complexity 
The Overall Complexity of the ith Component (OCCi) is 

the summation of different complexity factors for that 
component. The equation to derive OCCi is shown in (4). 

where iET and iTMIO are Execution Time, and Message-

In-and-Out frequency for the ith component. Since, iET and 

iTMIO are independent on each other, OCCi is calculated using 
the summation of these two factors. For simplicity, the weights 
of ET and TMIO in measuring total value of complexities are 
assumed as equal. 

B. Measuring the Severity of the Failure of the 
Components 

A single soft error in a particular component could have a 
greater effect than multiple soft errors in another or a set of 
components. For this reason, the effects of soft errors in the 
whole system need to be analyzed by injecting transient faults 
(which will create soft errors if activated) into each component. 
These results are merged with the component’s complexities to 
obtain a better measure of their impact on system if they are 
affected by soft errors. The severity of failures of components 
is determined by the Failure Mode and Effects Analysis 
(FMEA) method [28]. FMEA is a procedure for the analysis of 
potential failure modes within a system by classifying severity 
or determination of the failure’s effect upon the system. 
Hosseini et al. [28] suggested evaluation criteria and a ranking 
system for the severity of effects for a design FMEA as shown 
in TABLE I. Transient faults are injected at each component, 
into one bit at a time. The reason is that transient faults change 
the value of one bit at a time and the probability of changing 
two bits and/or two transient faults are almost zero. 

TABLE I.  EVALUATION CRITERIA AND RANKING SYSTEM OF FMEA 
 

 
 
 
 
 
 
 
 
 
 

C. Measuring Propagation of Failure from the 
Components 

Before measuring the component’s propagation of failure, 
its complexity and severity are multiplied together to measure 
there combined impact (if there is any soft error) on the whole 
system. Measuring the propagation of failure refines this 
impact to obtain a clearer picture of the impact or criticality of 
each component. The method of measuring the propagation of 

failure is shown in Fig. 1, which is a scenario of a system 
model showing three components: C1, C2, and C3. 

 
Fig. 1. An Example Scenario of a System Model to Measure the 

Propagation of failure  

ENV denotes the environment communicating with the 
system. The product of complexity and severity of these three 
components are s1, s2, and s3 respectively. In Fig. 1, x1,….,x10 
indicate the severity in corresponding messages where indexing 
is made according to their time of occurrences in the whole 
scenario. Failures due to soft errors may be propagated via 
message communication. The propagation of failure from or in 
the environment is not considered. To measure propagation of 
failure through message passing involves finding the increase 
in the level of consequences of each message. A soft error in C1 
(before it passes a second message) sees an increase in level of 
consequences in C2 to s1x2, since soft errors may propagate 
from C1 to C2 through the passed message. 

After passing the 2nd message, there is an increase in level 
of consequences in C2: s1x2 and after passing the 3rd message, 
there is an increase in level of consequences in C3: s1x2s2x3. 

Similarly, after passing the 9th message, there is an increase 
in the level of consequences in C1: 
s1x2s2x3s3x4s2x5s2(x6+x7)s1x8s1x9 

The total consequences in the system can be defined as 

11CONC  (= s1x2s2x3s3x4s2x5s2(x6+x7)s1x8s1x9) 

If the soft error occurs in C1 within the 2nd and 8th 
messages then the consequences (

21CONC  = s1x8s1x9) can be 

propagated in the system after passing the 8th message. 

If the soft error occurs in C1 after passing the 8th message 
then the consequences (

31CONC  = s1x9) can be propagated in 

the system with the 9th message. In the same way, if soft errors 
occur in C2, and/or in C3 then the increase in level of 
consequences can be checked at different stages of message 
passing. The consequences in the system can be measured as 
follows. 

12CONC  = s2x3s3x4s2x5s2(x6+x7)s1x8s1x9 

22CONC = s2x5s2(x6+x7)s1x8s1x9 

iii TMIOETOCC +=  (4) 

Linguistic terms for severity of a failure mode Rank 

Hazardous 10 

Serious 9 

Extreme 8 

Major 7 

Significant 6 

Moderate 5 
Low 4 

Minor 3 
Very minor 2 
No effect 1 
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32CONC = s2(x6+x7)s1x8s1x9 

42CONC  = s2x7s1x8s1x9 

13CONC = s3x4s2x5s2(x6+x7)s1x8s1x9 

The total propagation of failure from each component (due 
to a soft error in that component) can be derived as follows. 
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If the values of s1, s2, and s3; and x1,…, x10 are known then 
the above propagations can be derived. The total propagation of 
failure in the whole system (due to a soft error in any 
component) can be shown as follows: 

where n is the total number of scenarios in the system, 
)( kScP is the probability of the kth scenario, and 

ki
CONC is 

the propagation of failure from the ith component in the kth 
scenario. 

D. Measuring Criticalities of the Components 

For each component, criticality is the product of complexity, 
severity, and the propagation of failure. The combined impact 
of complexity and severity is used to calculate the propagation 
of failure. Criticality is calculated by taking the product of 
complexity, severity, and the propagation of failure. If the 
criticality of the ith component is Cri then the equation to 
derive it can be shown as: 

 where, iOCC is the overall complexity of the component, 

)( iCCON  is the propagation of failure from the component, 

and )( iCSe is the severity of the component. 

)(),(, iii CSeCCONOCC are dependent on each other; i.e. for 

any increase in complexity there is a high probability that the 
severity will increase, and if the product of complexity and 
severity increases then the probability of propagation of failure 
will increase too. Hence, criticality is taken as the product of 
overall complexity, severity, and propagation of failure. 

E. Lowering the Criticalities of Components 

Component criticality suggests to the designers where in 
the system design changes are necessary or helpful to minimize 
soft errors risk. These changes can be done by applying a 
suitable approach where he/she may change the architecture or 
behavioral model of the component to lower its complexity, 
and/or severity, and/or propagation of failure. Refactoring is a 

good candidate for this type of approach. UML model 
refactoring re-structures the model, at the conceptual level, to 
improve quality factors such as maintainability, efficiency and 
fault tolerance without introducing any new behaviour [29].  
Once the criticality ranking is returned, a model can be 
refactored with the goal of reducing the criticalities of the 
components. Lowering the criticalities can be achieved by 
reducing any of the multiplying factors: complexity, severity or 
propagation of failure. Fig. 2 details the methodology of 
lowering component criticality by refactoring. 

 
Fig. 2. Methodology to lower the criticalities of the Components by 

Refactoring 

IV.  CASE STUDIES 

Real-life case study: A wireless telephony Handset System 
illustrates the application of the metrics. It is chosen, as it is 
illustrative of a broad class of systems that must have high 
reliability. Handset System has three sub-systems (for this 
example, sub-systems represent components): (i) a Connection 
Management (CM) system to handle the reception, setup, and 
transmission of incoming and outgoing call requests, (ii) a Data 
Link (DL) system to handle the registration and location of 
users, and (iii) a Mobility Management (MM) system to 
monitor registration. 

A. ET Analysis of the Handset System 

The ‘Call Control’ Statechart diagram of CM in the 
Handset system is used for ET analysis and is shown in Fig. 3. 
If it receives a confirmation, the call connects, and remains 
connected until it receives a message to disconnect. When 
operation succeeds, the time of executing the ‘Place Call’ event 
at ‘Idle’ state, and the time when the system reached at 
‘Connected’ state of ‘Call Control’ statechart were recorded to 
calculate the ET of these sub-systems. The second column of 
TABLE II shows the normalized values of ET of the sub-
systems. 
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Fig. 3. Call Control statechart diagram at the beginning of execution 

B. MIO and TMIO of the Sub-systems in the Handset 
System 

There are three scenarios in the Handset system: i) Place 
Call Request Successful, ii) Network Connect, and iii) 
Connection Management Place Call Request Success.  The 
probabilities of the occurrences of three scenarios are assumed 
as 0.45, 0.30, and 0.25 respectively. The assumptions are made 
with respect to their usage in real life scenarios. MIO and 
TMIO for three different sub-systems are calculated for three 
different sequence diagrams using (2) and (3).  All values of 
TMIO for the three sub-systems are shown in the third column 
of TABLE II. 

C. Overall Complexities of the Sub-systems in the 
Handset System 

Overall complexities of three sub-systems are calculated 
using (4), and the last column in TABLE II shows their overall 
complexities. Overall complexity is the summation of ET 
during simulation, and Message-in-and-out-frequencies of the 
sub-systems. Though MM has the highest value of ET, and DL 
has the same for TMIO, considering both of the complexities 
CM is the most complex sub-system in Handset system. 
Overall complexities of DL and MM are almost equal. 

TABLE II.  THE COMPLEXITY OF THE SUB-SYSTEMS IN HANDSET SYSTEM 
Sub-Systems  

 
Normalized 
values of ET 

TMIO Overall 
Complexities 

CM 0.29 0.62 0.91 
DL 0.05 0.74 0.79 
MM 0.67 0.13 0.80 

D. Measurement of the Severity of the Failure Sub-
systems in the Handset System 

The severity of sub-systems are determined by the FMEA 
where the effects of soft errors in each sub-system are analyzed 
by injecting transient faults, and checking their effects. TABLE 
III shows the results. To simplify the column name in the 
TABLE III, Severity of Failure, and Severity Rank are 
abbreviated as SOF, and SR respectively. 

TABLE III.  THE SEVERITY OF THE SUB-SYSTEMS IN HANDSET SYSTEM 
Sub-

Systems 
Failure Mode Effect of Failure SOF SR 

CM Failed to trigger 
the Connection 

Call event 

Could not complete the 
connection and 

Connection went back to 
idle stage 

Serious 9 

DL Failed to 
respond to 

Registration 
request 

Could not initiate the 
registration and 

Connection went back to 
idle stage 

Extreme 8 

MM Failed to update 
Location 

Connection was held in 
Location Update state and 

could not confirm the 
connection 

Major 7 

E. Measuring Propagation of Failures from the Sub-
systems in Handset System 

At first, the failure propagation is calculated for each sub-
system and for the three different scenarios. Then the total 
failure propagation for each sub-system is calculated using 
equation (5). The second column in TABLE IV shows the 
calculated failure propagation (normalized) due to soft errors in 
these three scenarios. Fault propagations are calculated using 
only participating components. 

TABLE IV.  THE PROPAGATION OF FAILURE AND CRITICALITIES OF THE 

SUB-SYSTEMS IN THE HANDSET SYSTEM 
Sub-Systems Propagation of 

failure 
Criticality of the 

Components 

CM 10 81.9 
DL 0.00027 0.0017064 
MM 0.123 0.6888 

F. Measuring Criticalities of the Sub-systems in 
Handset System 

The criticalities of the sub-systems are shown in the last 
column of TABLE IV. The results show that CM is the most 
critical sub-system in the Handset system and is followed by 
MM, and DL. 

G. Lowering the Criticalities of the Sub-Systems of 
Handset System 

As shown in TABLE IV, CM has large criticality 
differences with the other sub-systems. This paper then targets 
to reduce the criticality of the sub-systems according to their 
criticality order. The behaviour models of all three sub-systems 
are carefully examined to be refactored. The functionality is 
being affected for any change made in the behavioural 
diagrams of CM, and DL sub-systems. The MMCallControl 
activity diagram of MM sub-system is able to bring under 
refactoring by maintaining the constraints. The calculated 
normalized ET of the sub-systems of refactored model and 
existing model (to establish a handset connection) is shown in 
TABLE V.   

TABLE V.  COMPARISON OF ET OF THE COMPONENTS BETWEEN 

REFACTORED MODEL AND EXISTING HANDSET MODEL 
Sub-systems Normalized ET of 

Refactored Model 
Normalized ET 

of Existing 
Model 

CM 0.29 0.228 
MM 0.05 0.0393 
DL 0.67 0.67 

Idle

Active

ConnectionConfirm

Connected

tm(3000)

PlaceCallReq/
OUT_Port(cc_mm)->GEN(Disconnect)

ConnectConfirm

Disconnect/
OUT_Port(cc_mm)->GEN(Disconnect)
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Lower ET will result to lower complexity as well as lower 
criticality of the sub-systems. TABLE V shows that refactoring 
the model is able to lower the ET of the CM, and MM sub-
systems to a mentionable extent. The ET for DL is constant. 
DL is the least critical sub-system in the Handset system and its 
criticality is so low that it does not create any matter of 
concern. 

V. CONCLUSIONS 

This paper develops metrics for complexity analysis that 
could be analyzed in the early system design phase based on 
UML artifacts, develops a severity assessment methodology by 
analyzing UML model simulation results, and develops the 
methodology of measuring the propagation of failures from the 
components. This paper then integrates the three different 
methods to rank the component’s criticality that highlight the 
variations of the impact of soft errors among the components. It 
then shows how possible changes can be made in the existing 
design to lower the criticalities of the components to minimize 
the risks of soft errors. In summary, the approach presented in 
this paper is effective in measuring the soft errors risks of the 
components in a system and in lowering the criticalities of 
components to minimize the risks of functional degradation.  
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