
An Efficient Nonnegative Matrix Factorization Approach
in Flexible Kernel Space ∗

Daoqiang Zhang1 Wanquan Liu2

1Dept. of CSE, Nanjing University of Aeronautics & Astronautics, China
2Dept. of Computing, Curtin University of Technology, Australia

dqzhang@nuaa.edu.cn w.liu@curtin.edu.au

Abstract

In this paper, we propose a general formulation for
kernel nonnegative matrix factorization with flex-
ible kernels. Specifically, we propose the Gaus-
sian nonnegative matrix factorization (GNMF) al-
gorithm by using the Gaussian kernel in the frame-
work. Different from a recently developed polyno-
mial NMF (PNMF), GNMF finds basis vectors in
the kernel-induced feature space and the computa-
tional cost is independent of input dimensions. Fur-
thermore, we prove the convergence and nonnega-
tivity of decomposition of our method. Extensive
experiments compared with PNMF and other NMF
algorithms on several face databases, validate the
effectiveness of the proposed method.

1 Introduction

Nonnegative matrix factorization (NMF) is a recent linear
method for finding low-dimensional representation of non-
negative high-dimensional data such as images and texts. It
imposes the nonnegativity constraints in both its basis vectors
(bases) and coefficients. Due to its part-based representation
property [Lee and Seung, 1999], NMF and its variations have
been applied to a variety of applications, such as image clas-
sification, face expression recognition, face and object recog-
nition, document clustering, etc [Berry et al., 2007].

Over the last decade, many variants on NMF have been
proposed to improve original NMF from different perspec-
tives. To our knowledge, most works focus on one or several
of the following aspects: 1) enhancing the sparseness of rep-
resentation [Li et al., 2001][Hoyer, 2004][Pascual-Montano
et al., 2006]; 2) investigating alternative computational solu-
tions [Berry et al., 2007][Lin, 2007]; 3) introducing discrimi-
native information to improve classification power [Zafeiriou
et al., 2006][Yang et al., 2008]. For example, to enhance
the sparseness, Li et al. [2001] and Hoyer [2004] imposed
different extra constraints. As for alternative computational
solutions, besides the well-known multiplicative update algo-
rithms, Lin [2007] recently proposed the projected gradient
methods for NMF based on bound-constrained optimization.

∗This work is partially supported by NSFC (60875030), Doctoral
Fund of MOE (200802870003) and Australia ARC Linkage grant.

At last, Zafeiriou et al. [2006] and Yang et al. [2008] both
introduced discriminant information into NMF for better clas-
sification power.

On the other hand, NMF and its many variants are linear
models, i.e. data are decomposed as a linear mixture of basis
vectors. Recently, kernel methods [Shawe-Taylor and Cris-
tianini, 2004] have been used in NMF to deal with nonlinear
correlation in data. Buciu et al. [2008] proposed the poly-
nomial nonnegative matrix factorization (PNMF) method,
where the original data as well as the unknown basis vec-
tors are first transformed by a nonlinear polynomial kernel
mapping into a higher feature space and then a nonnega-
tive decomposition is accomplished in the feature space. Al-
though PNMF shows improved classification power over con-
ventional NMF algorithms, there remain several problems un-
resolved yet. Firstly, only the polynomial kernel function can
be used in PNMF to keep the nonnegativity constraint. Other
kernel functions such as the well-known Gaussian kernel may
not be adopted because of the negative solution resulting from
the derivative associated from the Gaussian kernel. Secondly,
although the decomposition is performed in feature space,
PNMF still seeks basis vectors in the original input space and
then transform them into feature space. It remains unknown
how to find basis vectors directly in the feature space. Finally,
at each iteration step of PNMF, the kernel matrices have to be
recomputed, and thus a great deal of computational cost are
required. In our previous work, we ever proposed performing
NMF directly on kernel matrices, but rigorous derivation and
analysis in theory was not given [Zhang et al., 2006].

In this paper, we propose an alternative way for using ker-
nel method in NMF. A general framework for kernel based
NMF is presented which can efficiently use flexible kernel
functions. Besides, unlike in PNMF where basis vectors
are still found in original input space, our method directly
seeks bases in transformed feature space, which can be fur-
ther changed into a much easier kernel decomposition prob-
lem by using kernel functions. Furthermore, there is no
need to repeatedly compute the kernel matrices in each it-
eration, and the computational cost is low. Algorithmic con-
vergence and nonnegativity property are guaranteed by theo-
retical proof. Specifically, we use the Gaussian kernel in our
framework and present the Gaussian nonnegative matrix fac-
torization (GNMF) algorithm. The effectiveness of the pro-
posed method is validated by extensive experiments on sev-

1345



eral face databases compared with PNMF and conventional
NMF algorithms.

The rest of this paper is organized as follows. Section 2 re-
views the standard NMF algorithm and the recently proposed
PNMF algorithm. Then in Section 3, we present the flexible
kernel based NMF framework and give the proposed GNMF
algorithm in detail. Experimental results on several bench-
mark face databases are reported in Section 4. And finally,
we conclude this paper and indicate some issues for future
research in Section 5.

Notations: Throughout this paper, we use lowercase bold
letters to denote vectors and uppercase bold letters to denote
matrices, if not stated specially. The operator 〈·〉 means the
inner product, and ‖ · ‖ denotes the Frobenius norm. AT

denotes the transpose of a matrix A, A+ indicates the Moore-
Penrose pseudo-inverse of matrix A, and tr(A) means the
trace operator of the corresponding matrix A. The symbol
Ai· denotes the ith row vector of matrix A, and A·i means
the ith column vector of matrix A. X ≥ 0 represents the
matrix is nonnegative.

2 NMF and PNMF

2.1 NMF

The key ingredient of NMF is the non-negativity constraints
imposed on the two matrix factors. Assume that the observed
data of the objects are represented as an n×m matrix X , each
column of which contains n non-negative attribute values in
one of the m objects. In order to represent data or reduce the
dimensionality, NMF finds two non-negative matrix factors
W and H such that X ≈ WH . In general, the standard
NMF problem can be formally expressed as follows [Lee and
Seung, 2001]:

Problem 1 (The NMF problem) Given an n × m nonnega-
tive matrix X and a positive integer r < min{n, m}, find
nonnegative matrices W and H to minimize the following
objective function

J1(W , H) = min
W ,H

1

2
‖X − WH‖2

s.t. W ≥ 0, H ≥ 0. (1)

In order to obtain W and H , a multiplicative update rule
is given in [Lee and Seung, 2001].

2.2 PNMF

The standard NMF is a linear model, and thus it only al-
lows linear correlation. To handle the nonlinear correlation,
the polynomial NMF (PNMF) algorithm was recently pro-
posed. The main idea of PNMF is to first transform data
into higher dimensional feature space by using a polyno-
mial kernel-induced nonlinear mapping and then perform de-
composition in that feature space. Let φ denote the non-
linear mapping corresponding to the polynomial kernel, i.e.

k(x, z) = 〈x, z〉{d} = 〈φ(x), φ(z)〉, then the PNMF prob-
lem can be formally expressed as follows [Buciu et al., 2008]:

Problem 2 (The PNMF problem) Given the nonnegative in-
put data X = [x1, x2, ..., xm] and the corresponding trans-
formed input data in polynomial feature space Φ(X) =

[φ(x1), φ(x2), ..., φ(xm)], and a positive integer r, find non-
negative matrices W = [w1, w2, ..., wr] and H to minimize
the following objective function

J2(W , H) = min
W ,H

1

2
‖Φ(X) − Y H‖2

s.t. W ≥ 0, H ≥ 0, (2)

where Y = [φ(w1), φ(w2), ..., φ(wr)].

It is easy to see that if we expand the objective function in
Eq. 2, the PNMF problem can be solved by invoking only the
kernel function. In order to obtain W and H , a multiplicative
update rule is given as follows [Buciu et al., 2008]:

Haμ = Haμ

(Kwx)aμ

(KwwH)aμ

(3)

Wia = Wia

(XK ′
xw)ia

(WΛK ′
ww)ia

(4)

where (Kwx)aμ = k(wa, xμ), (Kww)ab = k(wa, wb) are
kernel matrices of dimensions r × m and r × r, respec-
tively. (K ′

xw)ia = k′(xi, wa), (K ′
ww)ab = k′(wa, wb)

are kernel matrices of dimensions m × r and r × r respec-
tively, wherek′ is the derivative of the polynomial kernel k,

i.e. k′(x, z) = d〈x, z〉{d−1}. Λ is a diagonal matrix whose
diagonal elements are λaa =

∑m
j=1 Haj .

It is noteworthy that although PNMF has used the kernel
method to handle nonlinear correlations, it is restricted with
the polynomialhkn kernel functions. That is because the iter-
ation updating rule (Eq. 4) needs to compute the derivative
of a kernel, while most kernel functions such as the Gaussian
kernel may have negative derivatives and thus cannot remain
the nonnegativity property in the decomposition. This moti-
vates us to find alternative ways to allow more flexible kernel
functions in NMF.

3 The Proposed Method

To overcome the limitations of PNMF, in this section, we pro-
pose an alternative kernel NMF framework with flexible ker-
nels. In the following, we first give the new problem formu-
lation, and then derive the iterative update rules and prove the
convergence. Specifically, we use the Gaussian kernel in the
framework and give the Gaussian NMF (GNMF) algorithm
in detail at the end of this section.

3.1 Problem Formulation

Assume that the observed data of the objects are represented
as an n × m matrix X = [x1, x2, ..., xm]. Let φ be an im-
plicit nonlinear mapping from the original input space to a
high-dimensional feature space, where the inner product is
defined as a kernel k(x, y) = 〈φ(x), φ(y)〉 in the original in-
put space. Denote Φ(X) = [φ(x1), φ(x2), ..., φ(xm)]. Like
in NMF, we want to find two non-negative matrix factors W
and H such that Φ(X) ≈ WH . However, because the ex-
plicit form of φ is unknown and φ(xi) may lie in very high
or even infinite dimensional space, it is unpractical to directly
decompose Φ(X) in the feature space.

Fortunately, we can solve that problem by representing
the basis vectors wi with linear combinations of transformed

1346



data φ(x1), φ(x2), ..., φ(xm), i.e. wi =
∑m

j=1 Ajiφ(xj) =

Φ(X)A·i, i = 1, ..., r. Denote W = Φ(X)A, we have

1

2
‖Φ(X) − WH‖2 =

1

2
‖Φ(X) − Φ(X)AH‖2

=
1

2
tr(K − 2KAH + HT AT KAH) (5)

where K = ΦT (X)Φ(X) is the kernel matrix. Note that
each column vector of W lies in the kernel-induced feature
space, and thus we cannot constrain it explicitly. Instead,
we approximately constrain AT KA ≥ 0 due to W T W =
AT ΦT (X)Φ(X)A = AT KA ≥ 0. From Eq. 5, the
flexible-kernel NMF problem can be expressed as follows:

Problem 3 (The Flexible-Kernel NMF problem) Given the
nonnegative input data X = [x1, x2, ..., xm] and the cor-
responding kernel matrix K = ΦT (X)Φ(X), and a positive
integer r, find A and nonnegative matrix H to minimize the
following objective function

J3(A, H) = min
A,H

1

2
tr(K − 2KAH + HT AT KAH)

s.t. AT KA ≥ 0, H ≥ 0. (6)

It is easy to see that in the flexible-kernel NMF problem,
basis vectors are sought in the transformed feature space,
which is apparently different from the PNMF problem. On
the other hand, the objective function in Eq. 6 is biquadratic,
and generally there is no closed-form solution for it. In the
next subsection, we will present an alternately iterative pro-
cedure for computing the nonnegative solution.

3.2 Iterative Update Procedure

Before formally describing the derivations of the iterative up-
date rule, we first introduce some preliminary concepts and
lemmas which will be used later.

Definition 1 (Auxiliary function) Function G(A, A′) is an
auxiliary function for function F (A) if the conditions

G(A, A′) ≥ F (A), G(A, A) = F (A) (7)

are satisfied.

Lemma 1 [Lee and Seung, 2001] If G is an auxiliary func-
tion, then F is nonincreasing under the update

At+1 = argmin
A

G(A, At), (8)

where t denotes the t-th iteration.

Solution of H for given A
When A is fixed, the objective function in Eq. 6 with respect
to the coefficient matrix H = [H·1, H·2, ..., H·m] can be
rewritten as

F (H) =
1

2
tr(K − 2KAH + HT AT KAH)

=
1

2
tr(K) −

m∑

i=1

Ki·AH·i +
1

2

m∑

i=1

HT
·i A

T KAH·i (9)

From Eq. 9, it is easy to notice that different column vec-
tors of H are independent to each other for optimization,
and thus the objective function can be further simplified into
column-wise form as

F (H·i) =
1

2
tr(K) − Ki·AH·i +

1

2
HT
·i A

T KAH·i (10)

Following [Lee and Seung, 2001], we can construct an aux-
iliary function of F (H·i) in Eq. 10 as below.

Lemma 2 If L(Ht
·i) is the diagonal matrix

Lab(H
t
·i) = δab(A

T KAHt
·i)a/Ht

ai, (11)

where δab is the indicator function, then

G(H·i, Ht
·i) = F (Ht

·i) + ∇F (Ht
·i)(H·i − Ht

·i)

+
1

2
(H·i − Ht

·i)
T L(Ht

·i)(H·i − Ht
·i) (12)

is an auxiliary function of F (H·i) in Eq. 10.

The proof for Lemma 2 is similar as that in [Lee and Se-
ung, 2001] and we omit it due to space limit. Then, ac-
cording to Lemma 1, Ht+1

·i can be computed by minimizing
G(H·i, Ht

·i).

By setting
∂G(H

·i,H
t
·i)

∂H
·i

= 0, we have

Ht+1
·i = Ht

·i − [L(Ht
·i)]
−1∇F (Ht

·i) (13)

From Eqs. 10 and 11, and after some algebra operations,
we obtain the update rule for Hai as

Ht+1
ai =

Ht
ai(A

T K)ai

(AT KAHt)ai

(14)

Solution of A for given H

When H is fixed, we want to optimize A according to the
objective function in Eq. 6. For that purpose, we introduce

an auxiliary matrix B = K
1
2 A, where K is the kernel ma-

trix. However, there may be a few negative components in

matrix K
1
2 . To keep the nonnegativity property, in this paper

we project those negative values to the nearest nonnegative
value, i.e. 0, and obtain both symmetric and nonnegative ma-

trix K
1
2 . In our experiments, we found that only very few

components of K
1
2 are of negative values and the projection

method works very well in practice.

From B = K
1
2 A, we have A = (K

1
2 )−1B, then the

objective function in Eq. 6 with with respect to the matrix
B = [BT

1·, B
T
2·, ..., B

T
m·]

T can be rewritten as

F (B) =
1

2
tr(K − 2K

1
2 BH + HT BT BH)

=
1

2
tr(K) −

m∑

i=1

Bi·HK
1
2

·i +
1

2

m∑

i=1

Bi·HHT BT
i· (15)

From Eq. 15, it is obvious that different row vectors of
B are independent to each other for optimization, and thus

1347



the objective function can be further simplified into row-wise
form as

F (Bi·) =
1

2
tr(K) − Bi·HK

1
2

·i +
1

2
Bi·HHT BT

i· (16)

Similarly, we can construct an auxiliary function of F (Bi·)
in Eq. 16 as below.

Lemma 3 If L(Bt
i·) is the diagonal matrix

Lab(B
t
i·) = δab(B

T
i·HHT )a/Bt

ia, (17)

where δab is the indicator function, then

G(Bi·, Bt
i·) = F (Bt

i·) + ∇F (Bt
i·)(Bi· − Bt

i·)

+
1

2
(Bi· − Bt

i·)
T L(Bt

i·)(Bi· − Bt
i·) (18)

is an auxiliary function of F (Bi·) in Eq. 16.

Also, it is easy to prove Lemma 3 following [Lee and Se-
ung, 2001]. Similarly, according to Lemma 1, Bt+1

i· can be
computed by minimizing G(Bi·, Bt

i·).
By setting

∂G(Bi·,B
t
i·)

∂Bi·
= 0, we have

Bt+1
i· = Bt

i· − [L(Bt
i·)]
−1∇F (Bt

i·) (19)

From Eq. 16 and Eq. 17, and after some algebra opera-
tions, we obtain the update rule for Bia as

Bt+1
ia =

Bt
ia(K

1
2 HT )ia

(BT HHT )ia

(20)

It is obvious that Bt+1 is nonnegative if the matrices H
and Bt are nonnegative. After B is obtained, we update the
matrix A as

A = (K
1
2 )−1B (21)

Equations 20, 21 and 14 constitute the iterative update pro-
cedure, which optimizes the matrices H and A alternatively.
In the next subsection, we will prove the iterative update pro-
cedure can converge to a local optimum.

3.3 Convergence Proof

In this section, we prove the convergence of the iterative up-
date procedure proposed in last subsection.

The iterative update procedure between H and A can be
further transformed the iterative update between H and B.
Substituting Eq. 21 into Eq. 14, we have

Ht+1
ai =

Ht
ai(B

T K
1
2 )ai

(BT BH t)ai

(22)

Now the iterative update procedure consist of Eqs. 22 and
20. From Eq. 22, the updated matrix Ht+1 is still nonnega-
tive if the matrices B and Ht are nonnegative.

Theorem 1 The alternative iterative update procedure

Ht+1
ai =

Ht
ai(B

T K
1
2 )ai

(BT BH t)ai

, Bt+1
ia =

Bt
ia(K

1
2 HT )ia

(BT HHT )ia

converges to a local optimum.

Proof. Following [Lee and Seung, 2001] and [Yang et al.,
2008], we define

F (B, H) =
1

2
tr(K − 2K

1
2 BH + HT BT BH)

From the update rule for B, we have

F (Bt+1, Ht) ≤ G(Bt+1, Bt) ≤ F (Bt, Ht)

Similarly, from the update rule for H , we have

F (Bt+1, Ht+1) ≤ G(Ht+1, Ht) ≤ F (Bt+1, Ht)

So F (Bt+1, Ht+1) ≤ F (Bt, Ht).
On the other hand, from Eq. 5, it is easy to notice that

F (Bt, Ht) ≥ 0. Then, F (Bt, Ht) decreases monotonically
and has lower bound, and hence F (Bt, Ht) will converge to
a local optimum. �

3.4 The GNMF Algorithm

In this section, we summarize the above analysis by present-
ing a specific Gaussian NMF (GNMF) algorithm by using
the Gaussian kernel in the flexible-kernel NMF framework.
However, it is noteworthy that our method is not confined to
the Gaussian kernel, and any kind of kernels can be used. Al-
gorithm 1 lists the GNMF algorithm in detail.

Algorithm 1: The GNMF algorithm

Input:

Kernel matrix {Kij = exp(−
‖xi−xj‖2

2σ2 )}m
i,j=1

A positive integer r < m
A small threshold ε > 0.

Initialize:

Perform SVD decomposition K = USUT

Compute K
1
2 = max(US

1
2 UT , 0)

Generate initial nonnegative matrices B0 and H0

with dimensions m × r and r × m respectively.
For t = 1, ..., tmax

1. For given H = Ht, update the matrix B as

Bt+1
ia = Bt

ia
(K

1
2 H

T )ia

(BT HHT )ia

2. For given B = Bt, update the matrix H as

Ht+1
ai = Ht

ai
(BT

K
1
2 )ai

(BT BHt)ai

3. If
‖Bt+1−B

t‖√
mr

< ε and
‖Ht+1−H

t‖√
mr

< ε,

then break.
Output:

A = (K
1
2 )−1Bt and H = Ht.

4 Experiments

In this section, we test the performance of the proposed
flexible-kernel NMF method. We first compare the GNMF
algorithm with standard NMF, Localized NMF (LNMF) and
PNMF. Also, we replace the Gaussian kernel in our GNMF
with polynomial kernel (pKNMF) and compare its perfor-
mance. All the NMF algorithms use the same stopping con-
dition (see Step 3 in Algorithm 1) and ε is set to 10−4, and
the maximum iteration steps tmax is set to 500 in all exper-
iments. For completeness, we also report results of kernel
principal component analysis with both the Gaussian kernel
(gKPCA) and polynomial kernel (pKPCA).

1348



0 20 40 60 80 100 120 140 160 180
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Dimension

A
cc

u
ra

cy

AR

NMF

LNMF

PNMF

GNMF

0 20 40 60 80 100 120 140 160 180

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Dimension

A
cc

u
ra

cy

FERET

NMF

LNMF

PNMF

GNMF

0 20 40 60 80 100 120 140 160 180
0.7

0.75

0.8

0.85

0.9

0.95

Dimension

A
cc

u
ra

cy

ORL

NMF

LNMF

PNMF

GNMF

0 20 40 60 80 100 120 140 160 180

0.65

0.7

0.75

0.8

0.85

Dimension

A
cc

u
ra

cy

Yale

NMF

LNMF

PNMF

GNMF

Figure 1: Classification accuracies (%) vs. different number
of dimensions on AR-16x12, FERET-16x16, ORL-16x16 and
Yale-16x16 databases.

4.1 Data Sets and Experimental Config

In our experiments, we use 4 benchmark face databases, i.e.
AR, FERET, ORL and Yale. The AR database contains 1400
frontal facial images from 100 persons, each of which has 14
images at 2 different stages. The FERET database used in our
experiments contains 200 persons, each with 2 images. The
ORL database consists of 40 persons, each with 10 images.
The Yale database contains 165 images from 11 persons. For
each database, we resize images in 3 different scales, i.e.
66x48, 33x24 and 16x12 for AR, 60x60, 32x32 and 16x16
for FERET, 64x64, 32x32 and 16x16 for both ORL and Yale.
So, there are totally 12 databases for experiments.

We evaluate performances of different algorithms using
recognition accuracy. For each database, the first half of
the images from each person are used for training and
and the rest for testing. The Nearest Neighborhood clas-
sifier is adopted for classification after dimensionality re-
duction, where the number of reduced dimensions is set as
mn/(m + n), if without extra explanations. For PNMF,
pKNMF and GNMF as well as pKPCA and gKPCA, cross-
validation is used for selecting the kernel parameters d
and σ respectively. For pKNMF and GNMF, features of
a test image xte are extracted as (Φ(X)A)+φ(xte) ≈
A+(Φ(X))+(ΦT (X))+ΦT (X)φ(xte) = A+K−1Kte,
where Kte = ΦT (X)φ(xte). All experiments are carried
out on a PC with 2.7GHz CPU and 1GB RAM.

4.2 Experimental Results

We first compare GNMF with NMF, LNMF, PNMF, and Ta-
ble 1 gives the classification accuracies of under fixed dimen-
sions (r = mn/(m + n)) on the 12 databases. It can be seen
from Table 1 that GNMF outperforms the other three algo-
rithms in most cases and is consistently superior to PNMF.
Table 1 also indicates that in most cases (except on AR) the
four algorithms achieve better performances on small image

16x12 33x24 66x48
0

500

1000

1500

2000

2500

3000

3500

Image Size

T
im

e
 (

s)

AR

NMF
LNMF
PNMF
GNMF

16x16 32x32 60x60
0

100

200

300

400

500

600

700

Image Size

T
im

e
 (

s)

FERET

NMF

LNMF

PNMF

GNMF

16x16 32x32 64x64
0

50

100

150

200

250

300

350

400

450

Image Size

T
im

e
 (

s)

ORL

NMF

LNMF

PNMF

GNMF

16x16 32x32 64x64
0

20

40

60

80

100

120

140

Image Size

T
im

e
 (

s)

Yale

NMF
LNMF
PNMF
GNMF

Figure 2: Running time (second) of the four algorithms under
different image sizes.

Table 1: Classification accuracies (%) of NMF, LNMF,
PNMF and GNMF on the 12 databases.

Data sets NMF LNMF PNMF GNMF

AR-16x12 67.16 60.29 75.46 79.26

AR-33x24 79.51 85.69 82.51 84.67

AR-66x48 77.69 87.73 80.31 81.17

FERET-16x16 76.7 75.2 82.6 84.95

FERET-32x32 72.55 73.6 80.4 83.25

FERET-60x60 65.65 73.5 79.65 82.5

ORL-16x16 88.25 82.75 90.65 91.7

ORL-32x32 86.2 81.45 87.75 89.15

ORL-64x64 81.7 80.3 83.75 85.25

Yale-16x16 82.44 82.44 81.22 83.11

Yale-32x32 80.78 81.78 81.78 83.0

Yale-64x64 77.89 81.89 80.67 82.56

Average 78.04 78.89 82.23 84.21

size than large ones. Furthermore, Fig. 1 gives the classifica-
tion accuracies of the four algorithms when different number
of dimensions are used. We can see from Fig. 1 that GNMF
outperforms other algorithms in most cases and is more ro-
bust to variations on dimensions.

We also investigate the computational costs of four algo-
rithms. It is easy to derive that the computational complexity
for the iterative procedure of GNMF is O(m2rt), where m
is the data size, r is the reduced dimensions and t is the it-
eration numbers. In comparison, the complexities of NMF
and PNMF are O(nmrt) and O(nmrdt), where n is data di-
mensions and d is the order of polynomial kernel. Figure 2
plots the curves of running time vs. different image sizes for
the four algorithms. As we expected, the curves of GNMF is
nearly horizontal on all databases because its computational
complexity is not dependent on the image size, i.e. n. Figure
2 shows that GNMF is much efficient than the other algo-
rithms, especially for high-dimensional cases.

1349



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Level of ’Salt & Pepper’ Noise (%)

A
cc

u
ra

cy

AR

NMF
LNMF
PNMF
GNMF

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Level of ’Gaussian’ Noise (%)

A
cc

u
ra

cy

AR

NMF
LNMF
PNMF
GNMF

Figure 3: Classification accuracies (%) vs. different levels of
noises on AR-16x12.

On the other hand, due to the use of kernel functions both
PNMF and GNMF can deal with nonlinear correlations be-
tween basis vectors and thus are potentially more robust to
image noises than their linear competitors. We carry out ex-
periments on AR database when the test images are corrupted
by different levels of ’Salt & Pepper’ and ’Gaussian’ noises
respectively. Figure 3 gives the classification accuracies of
four algorithms when test images are corrupted by differ-
ent levels of noises. Figure 3 validate that nonlinear meth-
ods PNMF and GNMF are more advantageous for enhancing
robustness to image noises than both NMF and LNMF, and
GNMF consistently outperforms PNMF in both cases.

Finally, we make comparisons between kernel NMF (in-
cluding pKNMF and GNMF) and kernel PCA (including
pKPCA and gKPCA), and the results are given in Table 2.
Table 2 indicates that pKNMF and GNMF achieve better
averaged accuracies than pKPCA and gKPCA respectively
across 12 databases, which validates the usefulness of kernel
NMF. Furthermore, contrasting Table 2 with Table 1, it can
be seen that our pKNMF outperforms PNMF in most cases
and achieves better averaged accuracy.

5 Conclusion

In this paper, we proposed a general flexible-kernel based
framework for nonnegative matrix factorization. We de-
rived an alternative iteration update procedure and proved its
convergence. Specifically, we proposed the Gaussian NMF
(GNMF) algorithm with the Gaussian kernel and evaluated
its performances on several face databases. One extra ad-
vantage of our method is that its computational complexity
is independent on data dimensions and thus is potential for
high-dimensional data decomposition. Moreover, GNMF can
be used for negative data decomposition due to the Gaussian
kernel transform and we will investigate that issue in future.
Another future work is exploiting supervision information in
GNMF to further enhance the discriminant power.
Acknowledgments We thank the the anonymous reviewers
for their helpful comments and suggestions.

References

[Berry et al., 2007] M. Berry, M. Browne, A. Langville,
V. Pauca, and R. Plemmons. Algorithms and applications
for approximate nonnegative matrix factorization. Compu-
tational Statistics & Data Analysis, 52:155–173, 2007.

Table 2: Classification accuracies (%) of pKPCA, gKPCA,
pKNMF and GNMF on the 12 databases.

Data sets pKPCA gKPCA pKNMF GNMF

AR-16x12 68.57 68.14 79.77 79.26
AR-33x24 74.29 74.14 86.26 84.67

AR-66x48 78.0 77.86 83.57 81.17

FERET-16x16 85.5 85.5 82.9 84.95

FERET-32x32 85.0 84.0 77.8 83.25

FERET-60x60 84.5 84.0 77.1 82.5

ORL-16x16 87.5 87.0 91.4 91.7

ORL-32x32 88.5 88.5 87.8 89.15

ORL-64x64 87.5 87.5 84.7 85.25

Yale-16x16 81.11 85.56 82.67 83.11

Yale-32x32 81.11 84.44 83.11 83.0

Yale-64x64 81.11 84.44 82.22 82.56

Average 81.89 82.59 83.26 84.21

[Buciu et al., 2008] I. Buciu, N. Nikolaidis, and I. Pitas.
Nonnegative matrix factorization in polynomial feature
space. IEEE Trans. on NN, 19(6):1090–695, 2008.

[Hoyer, 2004] P.O. Hoyer. Non-negative matrix factorization
with sparseness constraints. Journal of Machine Learning
Research, 5:1457–1469, 2004.

[Lee and Seung, 1999] D.D. Lee and H.S. Seung. Learning
the parts of objects by nonnegative matrix factorization.
Nature, 401:788–791, 1999.

[Lee and Seung, 2001] D.D. Lee and H.S. Seung. Algo-
rithms for non-negative matrix factorization. In NIPS, vol-
ume 13, pages 629–634, 2001.

[Li et al., 2001] S. Li, X. Hou, H. Zhang, and Q. Cheng.
Learning spatially localized, parts-based representation. In
CVPR, pages 207–212, 2001.

[Lin, 2007] C.J. Lin. Projected gradient methods for non-
negative matrix factorization. Neural Computation,
19(10):2756–2779, 2007.

[Pascual-Montano et al., 2006] A. Pascual-Montano, J.M.
Carazo, K. Kochi, D. Lehmann, and R.D. Pascual-Marqui.
Non-smooth non-negative matrix factorization (nsnmf).
IEEE Trans. on PAMI, 28(3):403–415, 2006.

[Shawe-Taylor and Cristianini, 2004] J. Shawe-Taylor and
N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

[Yang et al., 2008] J. Yang, S. Yan, Y. Fu, X. Li, and
T. Huang. Non-negative graph embedding. In CVPR,
pages 1–8, 2008.

[Zafeiriou et al., 2006] S. Zafeiriou, A. Tefas, I. Buciu, and
I. Pitas. Exploiting discriminant information in nonneg-
ative matrix factorization with application to frontal face
verification. IEEE Trans. on NN, 17(3):683–695, 2006.

[Zhang et al., 2006] D. Zhang, Z.H. Zhou, and S. Chen.
Non-negative matrix factorization on kernels. In PRICAI,
pages 404–412, 2006.

1350


