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ABSTRACT 

The AUSGeoid98 gravimetric quasigeoid model of Australia is augmented in the me-

dium- and long-wavelength bands by removing its EGM96 basis and replacing this with 

GGM02C and EIGEN-GL04C, whose long wavelengths are derived from Gravity Re-

covery And Climate Experiment (GRACE) satellite gravimetry.  No significant im-

provement over AUSGeoid98 is seen: agreements with GPS-levelling change from ±28 

cm to ±27 cm (acknowledging distortions in the levelling); agreements with astrogeo-

detic vertical deflections do not change, remaining at about ±1 arc-second.  While this 

remove-replace approach is not theoretically exact, it is likely that errors in the terres-

trial gravity data are contaminating these combined GRACE solutions in the medium 

wavelengths over Australia.   

 

Keywords: Geodesy, quasigeoid modelling, GRACE, GPS-levelling, vertical deflec-

tions, Australia 

 

INTRODUCTION 

The majority of the long- and medium-wavelength components of the AUSGeoid98 

gravimetric quasigeoid model of Australia (Featherstone et al., 2001) were provided by 

the EGM96 global geopotential model (GGM), which itself was derived from a combi-

nation of satellite tracking data and terrestrial gravity and terrain data available in 1996 

(Lemoine et al., 1998).  Since then, the CHAMP (Challenging Mini-satellite Payload; 

Reigber et al., 1999) and GRACE (Gravity Recovery and Climate Experiment; Tapley 

et al., 2004a; 2004b) dedicated satellite gravimetry missions have been launched (on 15 
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July 2000 and 17 March 2002, respectively).  Overviews of the CHAMP, GRACE and 

the imminent GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) mis-

sion concepts and aims are given by, e.g., Nerem et al. (1995), Balmino et al. (1999), 

Reigber et al. (1999), Rummel et al., (2002), Featherstone (2002) , Chao (2003) and Ta-

pley et al. (2004a; 2004b).   

Since the launches of CHAMP and GRACE, over 20 new GGMs have been re-

leased.  These are distributed freely by the International Centre for Global Earth Models 

(ICGEM) (http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html) as ASCII files of fully 

normalised spherical harmonic coefficients of the Earth’s external gravitational poten-

tial.  Various other gravity-field-related quantities can be computed from these coeffi-

cients, such as gravity anomalies, quasigeoid heights and vertical deflections.  [The sub-

tle differences between the geoid and quasigeoid are outlined in Sjöberg (1995), Rapp 

(1997), Featherstone and Kirby (1997), Featherstone and Kuhn (2006) and Tenzer et al. 

(2006)].  Importantly, CHAMP/GRACE-based gravity field models are much better in 

the long wavelengths than previous GGMs (see Figure 3 later), which relied on tracking 

satellites with a limited range of orbital inclinations (e.g., Featherstone, 2002).   

Work is currently underway to produce a new Australian gravimetric quasigeoid 

model that will incorporate new CHAMP/GRACE-based GGMs, new satellite altimetry, 

new gravity and new terrain data, as well as using improved mathematical models and 

computational techniques (see Featherstone et al. (2007) for a status report).  The re-

lease of this new Australian quasigeoid model is deliberately being delayed until mid-

2008, after the EGM07 GGM and DNSC07 satellite-altimeter-derived gravity anomalies 

are released, probably in early-2008.  EGM07 is currently being computed by the US 

National Geospatial Imagery Agency (NGA) in conjunction with SGT Inc. as a replace-

ment for EGM96, and will be the highest-ever spherical harmonic expansion of the 

Earth’s gravity field, being complete to degree and order 2160 (~10 km spatial resolu-

tion).  DNSC07 marine gravity anomalies will be based on EGM07 and use retracked 

multi-mission satellite radar altimetry, which will improve the gravity data in the notori-

ously problematic coastal zone (cf. Deng and Featherstone, 2006).  

This deliberate delay will allow EGM07, DNSC07 and other datasets to be 

tested in the Australian context so as to ensure better longevity of the new gravimetric 

quasigeoid model.  The new model will also be fitted to GPS-levelling data at key Aus-

tralian Height Datum (AHD) benchmarks across Australia using cross-validated least-
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squares collocation (cf. Featherstone and Sproule, 2006).  This is so as to give a more 

directly useable product, specifically for GPS heighting (cf. Featherstone, 1998).  

Meanwhile, it is informative to gauge what improvements the current GRACE-derived 

combined GGMs may make upon AUSGeoid98.  

 

THE AUGMENTATION METHOD AND ITS LIMITATIONS 

Hipkin (1996) computed the EDIN891 gravimetric geoid model of Britain from an ear-

lier regional gravimetric geoid model simply by subtracting the degree-360 geoid expan-

sion of the OSU86E GGM (Rapp and Cruz, 1986), then adding back the degree-360 ge-

oid expansion of the OSU91A GGM (Rapp et al., 1991).  In this paper, this procedure is 

termed augmentation of the regional gravimetric quasigeoid model by the GGM.  As 

pointed out by Featherstone and Olliver (2001), this approach is theoretically incorrect 

because it violates the remove-compute-restore approach (cf. Sjöberg, 2006), as follows.   

In the combined solution for the geoid or quasigeoid, a GGM is merged with ter-

restrial gravity and terrain data via some adaptation of Stokes’s integral (see, e.g., Feath-

erstone et al. (2007) for a conceptual overview).  However, this is not a perfect shift-

filtering process when the Stokes integration is over a limited region, and spectral leak-

age occurs among high and low frequencies (Vaníček and Featherstone, 1998).  There-

fore, and strictly, the same spherical harmonic degree and order of the same GGM must 

be subtracted (remove step) from the terrestrial gravity data before Stokes integration 

(compute step) as is added back later (restore step).  If not, spurious long-wavelength 

errors result from the inconsistent use of different GGMs due to the spectral leakage 

problem.  A more rigorous combination procedure is proposed by Sjöberg and Feather-

stone (2004), but this is not used here for reasons of convenience.   

It is extremely difficult to quantify the error that the augmentation used here may 

generate, because numerous factors can contribute, such as the relative quality of the 

GGM and terrestrial gravity data added, the integration radius, etc. (Sjöberg and Feath-

erstone, 2004).  However, a crude guestimate is of the order of 20 cm, which is deduced 

from the standard deviation (STD) of the difference between two GGMs (see Table 1, 

later).   

Nevertheless, it is still informative to see if such augmentation of an existing re-

gional gravimetric quasigeoid model can make any improvement in the Australian con-

text.  It must be stressed that this is only an experiment designed to give some approxi-
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mate idea of likely future improvements from GRACE (cf. Featherstone, 2002).  As 

such, these augmented AUSGeoid models are not official product releases, and users 

should continue to use AUSGeoid98 until the official release of the new model that uses 

all new datasets in a rigorous combined solution (in mid-2008).  AUSGeoid98 and asso-

ciated software can be downloaded free-of-charge from: 

http://www.ga.gov.au/geodesy/ausgeoid/. 

Two recently released GRACE-based combined (i.e., with global terrestrial data; 

see Featherstone, 2002) GGMs will be used in these experiments: GGM02C (Tapley et 

al., 2005) and EIGEN-GL04C (Förste et al., 2007).  GGM02C was produced at the Cen-

tre for Space Research (CSR) at the University of Texas at Austin, USA, and is avail-

able complete to spherical harmonic degree and order 200 (~100 km spatial resolution).  

EIGEN-GL04C was produced at the GeoForschungZentrum (GFZ) Potsdam, Germany, 

and is available complete to spherical harmonic degree and order 360 (~55 km spatial 

resolution).  Both models were downloaded free of charge from the ICGEM website 

(http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html). 

An in-house computer program, harmonics.f, which is a modified version of 

Rapp’s (1982) FORTRAN77 code, was used to evaluate EGM96, GGM02C and 

EIGEN-GL04C quasigeoid undulations from spherical harmonic synthesis on exactly 

the same 2-arc-minute by 2-arc-minute grid as used for AUSGeoid98 (cf. Featherstone 

et al., 2001).  The main modification to harmonics.f is the addition of Holmes and 

Featherstone’s (2002) recursion routines, which significantly accelerate the computation 

speed.  Note that GGM coefficients directly give quasigeoid undulations; additional 

computations are needed if the geoid is desired (Rapp, 1997; also see Sjöberg, 1995; 

Featherstone and Kirby, 1997; Featherstone and Kuhn, 2006; Tenzer et al., 2007).  

EGM96 quasigeoid heights were evaluated complete to degrees 200 and 360, GGM02C 

to 200 and EIGEN-GL04C to 360. 

The augmentation (i.e., remove-replace) methodology is then rather straightfor-

ward.  To augment AUSGeoid98 by GGM02C, the degree-200 EGM96 quasigeoid grid 

was subtracted (remove step) from the AUSGeoid98 grid, and then the degree-200 

GGM02C quasigeoid grid subsequently added (replace step).  Likewise, to augment by 

EIGEN-GL04C, degree-360 EGM96 was removed from AUSGeoid98, then replaced 

with degree-360 EIGEN-GL04C.  The resulting augmented regional gravimetric quasi-

geoid models are respectively called AG98+GGM02C and AG98+GL04C.  They are 
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both on the same two-arc-minute grid as AUSGeoid98 and likewise refer to the GRS80 

ellipsoid (Moritz, 1980).  

 

RESULTS, ASSESSMENTS AND DISCUSSION 

Differences among GGMs 

First, it is informative to see how GGM02C and EIGEN-GL04C differ from EGM96 

over the AUSGeoid98 computation area.  In Figures 1 and 2, the main differences occur 

in the long and medium wavelengths, which is expected because of the improved low-

frequency gravity field information available from GRACE (Figure 3).  However, the 

treatment of the terrestrial gravity data used in the GGM02C and EIGEN-GL04C com-

bined GGMs also comes into play, also affecting the medium wavelengths.  The more 

detail in Figure 2 is because of the different spatial resolution of the GGMs. 

The largest differences (up to 2 m) in Figures 1 and 2 occur near Indonesia, 

where the gravity field is very variable due to the subduction of the Australian plate be-

neath the Asian plate (e.g., Hillis and Müller, 2003).  There is also a large difference (~1 

m) in the Gulf of Carpentaria (centred at ~12°S, ~140°E), but the exact cause of this re-

mains unknown at present.  It is possible that the satellite altimeter data in this shallow 

sea, where tides are poorly modelled, have contaminated the GGMs.  Over mainland 

Australia, the differences in Figures 1 and 2 are around 25 cm.  

The statistics of these differences, as well as differences from AUSGeoid98, are 

summarised in Table 1.  While these values are biased by the large differences discussed 

above, it is important to show the whole picture because there are AUSGeoid98 users in 

marine areas, and there may even be some users in Indonesia.  From the STDs in Table 

1, the GRACE-based GGMs contribute around 20 cm differences from EGM96.  This 

reflects the use of GRACE data, as well as the different treatment of the terrestrial grav-

ity data (cf. Lemoine et al., 1998; Tapley et al., 2005; Förste et al., 2007).  The STD of 

the differences between AUSGeoid98 and the various GGMs are around 40-50 cm, 

which shows the contribution of Australian gravity and terrain data to the GGMs.   
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Figure 1 Differences between EGM96 and GGM02C quasigeoid heights to degree 200 

(~100 km resolution) over the AUSGeoid98 area (Units in metres; Lambert projection).  

This is identical to the differences between AUSGeoid98 and AG98+GGM02C. 

 

GGM difference Degree Max Min Mean STD 

EGM96 minus GGM02C 200 +0.944 –2.292 –0.001 ±0.207 

EGM96 minus EIGEN-GL04C 360 +1.804 –2.395 –0.002 ±0.231 

AUSGeoid98 minus EGM96 200 +4.743 –11.000 –0.005 ±0.505 

AUSGeoid98 minus EGM96 360 +3.484 –11.444 –0.005 ±0.411 

AUSGeoid98 minus GGM02C 200 +4.158 –10.921 –0.006 ±0.552 

AUSGeoid98 minus EIGEN-GL04C 360 +2.597 –10.968 –0.005 ±0.468 

 

Table 1 Descriptive statistics of the differences among EGM96, GGM02C, EIGEN-

GL04C and AUSGeoid98 quasigeoid heights (Units in metres; 1,781,101 points) 
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Figure 2 Differences between EGM96 and EIGEN-GL04C quasigeoid heights to degree 

360 (~55 km resolution) over the AUSGeoid98 area (Units in metres; Lambert projec-

tion).  This is identical to the differences between AUSGeoid98 and AG98+GL04C. 

 

Comparisons with GPS-levelling 

Following, e.g., Featherstone and Guo (2001) and Amos and Featherstone (2003), the 

AG98+GGM02C and AG98+GL04C augmented quasigeoid models were compared 

with GPS-levelling data on the AHD.  Comparing a quasigeoid with GPS-levelling on 

the AHD is consistent because the AHD uses a normal-orthometric height system 

(Featherstone and Kuhn, 2006).  This comparison was extended to include the AUSGe-

oid98, EGM96, GGM02C and EIGEN-GL04C quasigeoid models.  The ge-

oid_abs_tester.f and geoid_rel_tester.f FORTRAN77 software (Feather-

stone, 2001) was used in both the absolute (single-point) and relative (baseline-by-

baseline) modes (Tables 2 and 3, respectively).   
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Figure 3 Error degree variance (spectral power of the error) of quasigeoid heights for 

EGM96, GGM02C and EIGEN-GL04C, showing the reduced low-frequency errors in 

the GRACE-based GGMs (Units in metres-squared). 

 

This comparison uses the newer 254-point co-located GPS-AHD dataset pro-

vided by Geoscience Australia (cf. Featherstone and Sproule, 2006; Soltanpour et al., 

2006; see Figure 4).  It is acknowledged that this comparison is not conclusive because 

of distortions in the AHD (Featherstone, 2004; 2006; 2007; Featherstone and Kuhn, 

2006), but the STDs in Table 2 give some indication that the GGM02C GRACE-based 

GGM can make some small (~1 cm) improvements to AUSGeoid98 for single-point 

GPS heighting (i.e., in the absolute sense).  This will be improved much further, by ~15 

cm or more in STD, when cross-validated least-squares collocation is used to fit the 

quasigeoid model to the AHD (cf. Featherstone and Sproule, 2006). 
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Figure 4 Coverage of the 254 GPS-levelling points (Lambert projection). 

 

Quasigeoid  Degree Max Min Mean STD 

EGM96  200 +1.093 –1.299 –0.026 ±0.446 

EGM96  360 +0.894 –0.961 +0.009 ±0.334 

GGM02C 200 +0.950 –1.318 +0.007 ±0.415 

EIGEN-GL04C 360 +0.789 –0.653 +0.059 ±0.293 

AUSGeoid98 N/A +0.865 –0.721 +0.077 ±0.284 

AG98+GGM02C N/A +1.066 –0.671 +0.110 ±0.268 

AG98+GL04C N/A +1.079 –0.667 +0.127 ±0.286 

 

Table 2 Descriptive statistics of the absolute differences between quasigeoid models 

and 254 co-located GPS-AHD points (Units in metres) 
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Quasigeoid  Degree Max Min Mean STD ppm 

EGM96  200 +2.382 –2.391 +0.091 ±0.625 2.45 

EGM96  360 +1.855 –1.665 +0.076 ±0.467 2.31 

GGM02C 200 +2.213 –2.268 +0.090 ±0.581 2.41 

EIGEN-GL04C 360 +1.442 –1.390 +0.066 ±0.410 2.27 

AUSGeoid98 N/A +1.409 –1.587 +0.008 ±0.402 2.24 

AG98+GGM02C N/A +1.737 –1.589 +0.007 ±0.380 2.23 

AG98+GL04C N/A +1.747 –1.578 –0.001 ±0.406 2.25 

 

Table 3 Descriptive statistics of the relative differences between quasigeoid models 

over the 32,131 possible baselines between and 254 GPS-AHD points (Units in metres) 

 

Another observation from Tables 2 and 3 is that AUSGeoid98 provides a better 

fit to the AHD in absolute and relative senses than all the GGMs tested.  This is ex-

pected because of the limited spatial resolution of the GGMs (omission error) versus the 

higher resolution of AUSGeoid98.  The effect of the omission error can be seen when 

comparing the degree-200 and degree-360 expansions of EGM96, where the higher the 

degree of expansion gives a better fit to the GPS-levelling.  However, the commission 

errors (errors in the coefficients) of GGM02C and EIGEN-GL04C are smaller than 

EGM96 (for the same degrees), showing the improvement coming from GRACE (cf. 

Gunter et al., 2006; also see Figure 3).  

 

Comparisons with vertical deflections 

An arguably better validation of a regional gravimetric quasigeoid model and GGM is 

through comparison with astrogeodetically observed vertical deflections (Jekeli, 1999; 

Featherstone, 2006; 2007; Featherstone and Morgan, 2007), which are more independ-

ent and better at sensing the high-frequency components of the gravity field.  The vali-

dation presented here uses a dataset of 1080 vertical deflections (Figure 5), extending on 

that used in Featherstone (2006) by including additional points in Western Australia 

provided by Landgate (Featherstone and Morgan, 2007) and SGT Inc. (see Featherstone, 

2007).   
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Figure 5. Coverage of the 1080 astrogeodetically observed vertical deflections [Lam-

bert projection] 

 

This evaluation required the development of some new software.  Whilst har-

monics.f can determine vertical deflections directly from the fully normalised spheri-

cal harmonic coefficients of any GGM, new code was needed to test the 

AG98+GGM02C and AG98+GL04C augmented models.  This code determined the 

east-west and north-south vertical deflections from the horizontal quasigeoid gradients 

using the equations in Featherstone and Rüeger (2000); also see Featherstone and Mor-

gan (2007).   

The resulting grids of vertical deflections were then compared to the astrogeo-

detically observed vertical deflections using geoid_abs_tester.f (Featherstone, 

2001).  Tables 4 and 5 show the descriptive statistics of the differences between the as-

trogeodetically observed vertical deflections and the vertical deflections derived from 

the various quasigeoid models, after outlier rejection in the east-west and north-south 
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components based on the three-sigma test, which is permitted because the differences 

are near-normally distributed (cf. Featherstone and Morgan, 2007).   

In the outlier rejection, if one component was an outlier, then it was rejected for 

the other component.  This proved to be rather robust in that most of the outliers were 

common among models and common among deflection components.  It should be noted 

that a limitation of this analysis is that curvature and torsion of the plumbline have been 

ignored, as well as the quasigeoid not describing an equipotential surface (cf. Feather-

stone and Morgan, 2007).  However, these effects are probably small in Australia, espe-

cially when taking into account the quality of the astrogeodetic deflections that were ob-

served over 40 years ago (Featherstone and Rüeger, 2000; Featherstone, 2006; 2007; 

Featherstone and Morgan, 2007).   

 

Quasigeoid  Degree Max Min Mean STD Rejected  

outliers 

EGM96  200 7.73 –8.15 –0.18 ±1.79 15 

EGM96  360 6.21 –7.31 –0.19 ±1.54 19 

GGM02C 200 6.99 –6.90 –0.18 ±1.64 14 

EIGEN-GL04C 360 6.15 –6.28 –0.18 ±1.46 21 

AUSGeoid98 N/A 3.28 –3.91 –0.25 ±0.84 26 

AG98+GGM02C N/A 3.26 –3.87 –0.24 ±0.82 28 

AG98+GL04C N/A 3.28 –4.02 –0.26 ±0.83 25 

 

Table 4 Descriptive statistics of the differences between quasigeoid-derived east-west 

vertical deflections and astrogeodetic east-west vertical deflections (Units in arc-

seconds) 

 

From the results in Tables 4 and 5, the augmented models (AG98+GGM02C and 

AG98+GL04C) make virtually no difference to the vertical deflections.  This is to be 

expected because vertical deflections have most of their power in the high frequencies, 

so are relatively insensitive to the change in GGM.  [Another factor is the quality of the 

astrogeodetic vertical deflections.]  Instead, the deflections are mainly influenced by the 

local gravity and terrain data, so reflect the residual quasigeoid computed for AUSGe-
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oid98.  This is why the statistics in Tables 4 and 5 are virtually identical for all of AUS-

Geoid98, AG98+GGM02C and AG98+GL04C. 

 

Quasigeoid  Degree Max Min Mean STD Rejected  

outliers 

EGM96  200 9.61 –10.69 –0.15 ±2.71 15 

EGM96  360 9.45 –9.33 –0.08 ±2.19 19 

GGM02C 200 9.45 –9.99 –0.12 ±2.66 14 

EIGEN-GL04C 360 9.76 –9.47 –0.10 ±2.23 21 

AUSGeoid98 N/A 3.76 –3.62 –0.14 ±1.09 26 

AG98+GGM02C N/A 3.77 –3.59 –0.14 ±1.08 28 

AG98+GL04C N/A 4.00 –3.72 –0.15 ±1.12 25 

 

Table 5 Descriptive statistics of the absolute differences between quasigeoid-derived 

north-south vertical deflections and astrogeodetic north-south vertical deflections 

(Units in arc-seconds) 

 

CONCLUSION AND DISCUSSION 

The experiments reported here on augmenting AUSGeoid98 with two recently released 

GRACE-based combined GGMs have proven somewhat inconclusive in that they do not 

provide any significant improvement over AUSGeoid98 alone when compared to GPS-

levelling and vertical deflections.   

From Figure 3, however, the GRACE-based models do make significant im-

provements on EGM96 in the low frequencies in a global sense, but this is not mani-

fested in comparisons with Australian GPS-levelling and astrogeodetic vertical deflec-

tion data.  A limitation is the distortions in the AHD and the vintage of the astrogeodetic 

vertical deflections.  On the other hand, the spatial differences between AUSGeoid98 

and the two augmented models (Figures 1 and 2) show ~25 cm differences in most 

places, which indicates that the spatial sampling of GPS-levelling and astrogeodetic ver-

tical deflections (Figures 4 and 5) does not capture these changes properly.  

Another limiting factor is that the GGM02C and EIGEN-GL04C combined 

GGMs use largely the same terrestrial gravity data as EGM96, which is also largely the 
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same terrestrial gravity data that was used in AUSGeoid98.  Therefore, they are highly 

correlated in the medium frequencies, so the results merely reflect the effect of the same 

data.  If these data are in error, then the improvements from GRACE will be obscured.  

As such, it will be important to carefully look at the use of filters in the production of 

the next AUSGeoid (cf. Kern et al., 2003; Featherstone 2003).  

Finally, these experimental results should not be seen as a definitive statement 

that the inclusion of GRACE data will not make an improvement over AUSGeoid98.  

This is because the remove-replace augmentation procedure used here is theoretically 

inexact, and thus might not give a complete picture.   
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