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Abstract  

Image logs are presently the main specialized tools for fracture detection in hydrocarbon reservoirs. 

Where image logs are not available, other less rewarding substitutes such as isolated well tests and type 

curve analysis, drilling mud loss history, core description and conventional petrophysical logs are used 

for fracture detection. In this paper a novel method is proposed for fracture density estimation in the 

fractured zones, using energy of petrophysical logs. Image and petrophysical logs from Asmari 

reservoir in eight wells of an oilfield in southwestern Iran were used to investigate the accuracy and 

applicability of the proposed method. Energy of the petrophysical logs in the fractured zones is 

calculated and linear and non-linear regressions between them are estimated. Results show that there is 

strong correlation between the energy of caliper, sonic (DT), density (RHOB) and lithology (PEF) logs 

with fracture density in each well. In order to find a generalized estimator, a unique normalization 

method are developed, and by using it, a non-linear regression has been found which estimates fracture 

density with correlation coefficient of higher than 80%. The resultant regression has the capability of 

generalization in the studied field. 

 

Keywords: fractured zones, fracture density, petrophysical logs, signal energy, Asmari formation. 

 
1. Introduction 

Natural fractures have significant influence on the reservoir behavior and performance. 

Therefore, in modeling fractured reservoirs, understanding fracture properties is very 

important (Roehl and Choquette 1985). Fractured zones can be probably detected both 

directly and indirectly using seismic sections, petrophysical logs, well tests, drilling mud loss 

history and core description (Thompson 2000, Nelson 2001, Martinez-Torres 2002, Dutta et 

al 2007, Tokhmechi et al 2009a, b). However, each of these methods is subjected to some 

limitations in practice. 

Since mid 1980’s, and introduction of dipmeter technology and image logs, the process of 

fracture detection and characterization of fracture properties; such as dip, dip direction, 

fracture density and opening; has become less problematic (Serra 1989). Presently, these high 

resolution data acquisition devices can detect small scale variations and discontinuities in 

rocks. Unfortunately, no image log is available for thousands of wells drilled before 

introduction of these new technologies. 

 As fractures modeling with an inadequate volume of data can lead to misleading 

interpretations, any direct or indirect techniques which increase the knowledge of fracture 

properties is highly valuable. In general, fracture modeling is an object based practice which 
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requires a larger amount of data, compare to pixel based modeling, because of dividing data 

in some object sets in object based modeling, which each set is separately used in modeling. 

Earlier attempts to detect natural fractures include the use of sonic waves (Hsu 1987), 

wavelet transform (Daiguii et al 1997), a so called velocity deviation log (Flavio and Gregor 

1999), core data (Song et al 1998) and seismic data (Behrens et al 1998). In a recent attempt, 

wavelet transform was applied on porosity log data and it was suggested that high frequency 

variations correspond to the existence of fractures (Sahimi and Hashemi 2001). To validate 

the model, permeability data were used, where large increases in permeability correspond to 

the existence of fractures. Surjaatmadja et al (2002) used a frequency decomposition 

approach to analyze downhole data to detect natural fractures. Martinez-Torres (2002) applied 

a fuzzy logic technique to various petrophysical logs, while a classification algorithm was 

used by Tran (2004) to study and detect natural fractures. Shen and Li (2004) have presented 

a combined approach for characterization of naturally fractured reservoirs. Application of 

shear-wave technique to identify fault zones (Dutta et al 2007), a wavelet transform applied to 

petrophysical logs (Mohebbi et al 2007), factor analysis to detect open fractures near faults 

(Ozkaya and Siyabi 2008) and detecting fracture corridors using probabilistic decision trees 

(Ozkaya 2008) are other methods used by other researchers to identify and characterize 

natural fractures. Yan et al (2009) presented a method to model fracture porosity. They used 

petrophysical logs in order to create a synthetic image log. Proposed method was checked in a 

well of a gas saturated carbonate reservoir. This study revealed that it is possible to identify 

fractures location and some of their properties. Tokhmechi et al (2009a and b) developed 

novel approaches in order to detect fractured zones using petrophysical logs. They have used 

wavelet, classification and data fusion techniques in their approaches. They have checked the 

generalization of proposed methods in eight wells in one of the giant carbonated oil fields of 

south western Iran. The validation of methods has been checked with image logs. It seems 

that methods proposed in these two papers have good validation and capability for fractured 

zone detection.   

Except the last two mentioned papers, the main deficiency of the majority of the previous 

studies are inadequate volumes of data and failing to validate the method due to lack of image 

logs. More importantly, it is impractical to evaluate generalization possibility in the results, 

even to nearby wells, where the data are inadequate. 

In this paper a new method has been presented to estimate fracture density in fractured 

zones. All available conventional petrophysical logs have been used in proposed 

methodology. Simple linear and non-linear estimators have been used in order to develop an 

equation with high generalization capability. The proposed methodology has been applied to 

eight vertical wells in an oilfield located in the southwest Iran, where sequences of fractured 

zones with variable fracture density is observed along with non-fractured intervals in the 

Oligo-Miocene Asmari carbonate Formation (Alavi 2004). UGC map of the top of Asmari of 

studied oilfield and locations and the number of studied wells in oilfield are shown in figure 

1. As it can be seen in figure 1 existence of some faults in studied area and variation in 

formation curvature introduced some heterogeneity in respect to fracture distribution. A large 

volume of data has been used in this analyzes, which enables us not only to check the 

accuracy of the method, but also to study the possibility of its generalization. 

 

Figure 1 

 

2. Methods and materials 
In this section, two techniques and data used in this study have been briefly presented.  

 
2.1 Petrophysical logs energy 

Calculation of petrophysical logs energy is a simple procedure that magnifies the differences 

between log data. The following procedure has been used to calculate petrophysical log 

energy for each log: 

a. Select suitable logs for each well, 
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b. Identify fractured zones in each well using petrophysical logs and the approaches proposed 

by Tokhmechi et al (2009a and b), 

c. Calculate petrophysical log energy (EPL) for each fractured zone using Equation (1): 
n

1i

2
iPL PLE       (1) 

where PL and n are the amount of petrophysical log and the number of petrophysical log in 

each fractured zone respectively.  

d. Assign the result of part c for each fractured zone. 

 

In the end of the procedure a new log is created which the number of its members is equal 

to the number of fractured zones in studied well. This log is named energy log in this paper.  

 
2.2 Normalization of the energy logs 

Normalization of energy log follows the following algorithm: 

a. Calculate mean of energy log in each well:  

C

j

j

C

j

jPL

PL

n

nE

ME
j

1

1

.

      (2) 

where MEPL is the mean of energy log of certain petrophysical log in each well. PLjE and nj 

are as the same as equation 1 in each fractured zone. C is the number of fractured zones in 

each well. 

b. Calculate the mean of energy log ( jPLMZE ) in each zone: 

 jPLjPL nMEMZE .       (3) 

The amounts of jPLMZE  depend on petrophysical logs, but their variation is independent of 

petrophysical logs. Therefore it is a unique normalization method because normalized 

numbers depends to fractured zones thickness and mean weighted values of various 

petrophysical logs in fractured zones.     
 

2.3 Materials 

More than 300 wells are drilled in the studied field. Whole suit of conventional logs including 

caliper, Density, Neutron, Sonic, resistivity and natural gamma ray spectrometry ran in most 

of them whereas image logs ran in only eight wells. There are some probabilistic methods that 

can help identifying fractured zones in the wells without image logs. As the studied reservoir 

is a naturally fractured formation, estimating fracture density in fractured zones using 

petrophysical logs helps generating valuable data for about 300 wells. Petrophysical logs and 

interpreted image logs of eight studied wells were used to generate an estimator of fracture 

density in fractured zones which can be generalized to all wells. Fractured zones and the 

number of fractures in each fractured zone (fracture density) are identified from interpretation 

of image logs. 

 

3. Discussion 
This approach will be useful if a generalized correlation between energy log and fracture 

density in each fractured zones can be established.  

 
3.1 Correlation between energy log and fracture density 

Good linear regression is observed between energy log of some of the petrophysical logs and 

fracture density in fractured zones of each well. For example, regressions in well #3 are 

shown in figure 2. As it can be seen in this figure, correlation coefficient for caliper, DT, 

RHOB and PEF are higher than 0.97. Therefore it is clear that estimation of fracture density 

in fractured zones using those petrophysical logs leads to accurate prediction of fracture 
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density. Correlation coefficients of linear regressions between energy log and fracture density 

in fractured zones of various wells are listed in table 1. Based on these results, except for well 

4 which has lowest fractured zones, in the other wells correlation coefficient of caliper, DT, 

RHOB and PEF are higher than 0.7. Therefore, above named petrophysical logs were selected 

for generalization stage. The fracture density in each fractured zone and selected 

petrophysical logs of well #1 are shown in figure 3. In figure 4 image log of well #1 and 

corresponding fracture density in each fractured zone are shown. As it can be seen in these 

figures, there is no visible relation between fracture density and petrophysical logs in this 

well.   

 

Figure 2 

 

Table 1 

 

Figure 3 

 

Figure 4 

 

Energy log data of selected petrophysical logs of eight studied wells are gathered together to 

investigate linear or non-linear regression between energy log and fracture density. The 

results are shown in figure 3. According to the results, no strong linear or nonlinear regression 

is observed. Only coefficient correlation of non-linear regression of caliper and PEF are 

higher than 0.63. Although these two correlations are not poor, but they are less than 0.7, 

indicating that estimation is not reliable. Therefore we should generate other regressions with 

better correlation.  

 
3.2 Generating better generalized regressions 

Figure 5 shows that in generalization stage, fitness of simple non-linear regression to data is 

better than linear regression. Therefore, a new generalized simple non-linear regression with 

higher correlation coefficient should be found. For this purpose, energy log data of all wells 

are accumulated and normalized using equations 2 and 3. As mentioned before, normalized 

data merely depend on the thickness of fractured zones and are independent of the type of 

petrophysical logs. Non-linear regression between normalized energy log (NEL) and fracture 

density in eight studied wells for four selected petrophysical logs is shown in figure 6. As it 

can be seen in this figure, the correlation coefficients of non-linear regressions are higher than 

0.7 (i.e. 0.74) and independent from petrophysical logs. The figures of four non-linear 

regressions are similar, but their coefficients differ, because they just depend on the MEPL 

(equation 2).    

 

Figure 5 

 

Figure 6 

 

As it can be seen in figure 6, the parametric figure of non-linear regression equations show a 

general form of: 

  
bNELaFD .        (4) 

 

where a and b are constant and depend on the mean of fracture density and mean of energy 

log in each zone. The simple way for definition a and b is converting an exponential curve to 

a linear one, using the following algorithm: 

 

 )log()log()log().log()log( NELbaFDNELaFD b
 (5) 
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This expresses that log(fracture density) is a linear function of log(NEL), where b is line slope 

and log(a) is intercept. Therefore, if we find the best fit line, using log(fracture density) as a 

function of log(NEL), fracture density can obtained. 

Of course, there is another tentative way for defining a and b. Slope a is defined as follows: 

 

85.36MEL

MFD
a       (7) 

 

where MFD is the mean of fracture density in each fractured zone and MEL is the mean of 

energy log in the resolution thickness of petrophysical logs (0.1526 meter). The coefficient 

36.85 is calculated using numerical optimization of estimation with the aim of minimizing 

error. Based on these parameters, calculation of coefficient a is very simple.  

Power b just depends to MFD and it is independent of energy log. Therefore it is constant 

for various petrophysical logs. b can be calculated using following equation: 

  

060MFDb .       (8) 

 

where 0.06 is a constant coefficient and independent from studied data. For example, as it can 

be seen in figure 6, b remains constant with changing the petrophysical logs. In figure 6, b 

approaches to one, which means non-linear regression approaches to a linear one.  

It is clear that the error of estimation, which is the difference between the number of 

fractures in each fractured zone find in image log minus the estimated number of fractures; 

varies for various petrophysical logs. This is because slope a depends on the MEL. According 

to the results, sonic log (DT) is the best petrophysical log with the least error for fracture 

density estimation (figure 7). In this figure, error is increased with increasing the energy log 

corresponds with increasing the thickness of fractured zones. 

 

Figure 7 

  

Two trends are visible in figures 3 and 4. Fracture density of fractured zones of wells #1, 2 

and 5 are underestimated, whereas in other wells we face overestimation. This has happened 

because of variation in fracture density. In table 2, fracture density of eight wells, as well as 

all wells and two separated groups of wells, in each unit thickness (0.1526 meter), are 

reported. As it can be seen in this table, based on fracture density, obviously two categories of 

wells exist. Fracture density per unit thickness, for group one and two are 0.67 and 0.31 

respectively. 

 

Table 2 

  

Non-linear regression for two groups of wells, with high and low fracture density, is fitted 

separately. Results are presented in figure 8. The equations of figure 8 can be calculated using 

equations 4 to 8. Based on these figures, new non-linear regressions are better fitted to data, 

which means the error of estimation is decreased and coefficient correlations are increased to 

about 0.8. In figure 9 estimation error of fracture density for all wells are plotted, which 

shows the boundary of error is decreased to about half in comparison with figure 7. Therefore 

it can be concluded that fracture density estimation error will decrease if we can separate 

wells with high and low fracture density.  
 

Figure 8 

 

Figure 9 
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4. Conclusion 

This paper proposes a novel method to estimate fracture density in fractured zones using 

petrophysical logs. High volume of the data used in this study is one of the points of strength 

which can support the validity of the results. Image logs of eight wells in an Iranian oil field 

were used in order to identify fractured zones and fracture density. Petrophysical logs of the 

wells are used for estimation of fracture density in fractured zones. Energy logs and NELs are 

calculated as the base data of estimation. In order to find better generalized estimator, NEL is 

calculated and non-linear regression is utilized. According to the results, if MFD in various 

wells strongly differs, the high and low MFD wells should be separated. In conclusion, the 

findings of this paper are: 

 It is possible to fit linear regressions between energy log and fracture density in each 

well separately. 

 For this purpose four petrophysical logs, caliper, sonic (DT), density (RHOB) and 

lithology (PEF), are more suitable.  

 The arithmetic average correlation coefficient of linear regression between energy log 

and fracture density in eight studied wells for caliper and sonic logs is about 90%, 

which indicates existence of high correlation between them.  

  A simple power regression is established which as an unbiased estimator approximate 

fracture density in fractured zones with about 0.74 correlation coefficient.  

 The figure of this estimator is independent from utilized petrophysical log, and just its 

slope and intercept depend on the MFD and MEL.  

 After separation of high and low MFD, the average correlation coefficient increased to 

about 0.80.  
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Table 1. Correlation coefficient of linear regression between energy log and fracture density in the 

fractured zones for eight studied wells. 

 

Table 2. Mean of fracture density in unit thickness of eight studied wells as well as high and low 

density groups. 

 

 

 

 

Figure 1. UGC map of oilfield and locations of the studied wells. 

 

Figure 2. Linear regression between energy log and fracture density in the fractured zones for well #3. 

 

Figure 3. The fracture density in each fractured zone and selected petrophysical logs for well #1. 

 

Figure 4. Interpreted image log and fracture density in 30 meters of well #1. 

 

Figure 5. Linear and non-linear regression between energy log and fracture density in fractured zones 

of eight studied wells. a) Caliper, b) DT, c) RHOB and d) PEF. 

 

Figure 6. Non-linear regression between NEL and fracture density in fractured zones of eight studied 

wells 

 

Figure 7. Error of estimation fracture density using sonic (DT) log and equation 4 in eight studied 

wells. 

 

Figure 8. Non-linear regression between NEL and fracture density in fractured zones of two groups of 

wells with high (a) and low (b) fracture density 

 

Figure 9. Error of estimation fracture density using sonic (DT) log and equations 4 to 8 in eight studied 

wells. Here the energy of petrophysical logs is normalized. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Figure 3. The fracture density in each fractured zones and selected petrophysical logs for well #1. 
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(c) 

Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Table 1 

 

 
Well 

1 2 3 4 5 6 7 8 
PL 

Caliper 0.94 0.81 0.98 0.60 0.97 0.89 0.92 0.95 

Uranium 0.70 0.44 0.21  0.54   0.96 

CGR 0.66 0.36 0.31 0.49 0.79 0.43 0.05 0.32 

SGR 0.77 0.54 0.30  0.64 0.90 0.87 0.97 

RT 0.11   0.00 0.05 0.11 0.75  

DT 0.89 0.81 0.98 0.75 0.94 0.91 0.91 0.95 

RHOB 0.89 0.78 0.99 0.51 0.96 0.89 0.92 0.88 

PEF 0.79 0.76 0.97 0.42 0.94 0.70 0.89 0.73 

NPHI 0.16 0.32 0.74  0.71 0.76 0.46 0.92 

 

 

 

Table 2 

 

 

Wells 1 2 3 4 5 6 7 8 

Group of wells 

All  
1, 2 

and 5 

3, 4, 6, 

7 and 

8 

Mean of 

FD per 

unit 

thickness 

0.79 0.53 0.30 0.32 0.79 0.39 0.25 0.21 0.48 0.67 0.31 

 

 


