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Abstract 

This article examines the dynamic relationships between output, carbon emission, and 

renewable energy generation of India and China during the period 1972-2011 using a 

multivariate vector error correction model. The results for India reveal unidirectional 

short-run causality from carbon emission to renewable energy generation and from 

renewable energy generation to output, whereas in the long run the variables have 

bidirectional causality. Causalities in China give a rather different scenario, with a 

short-run unidirectional causality from output to renewable energy and from carbon 

emission to renewable energy generation. In the long run for China, unidirectional 

causality is found from output to renewable energy generation, while bidirectional 

causality is found between carbon emission and renewable energy generation. 
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DETERMINANTS OF RENEWABLE ENERGY ADOPTION IN CHINA AND 

INDIA: A COMPARATIVE ANALYSIS  

 

1. Introduction 

The increasing threat of climate change and global warming per se has called for more 

discussion regarding the linkage between economic growth and pollutant emission all over 

the world. Carbon dioxide (CO2) is considered to be the main greenhouse gas (GHG) leading 

to global warming (The World Bank, 2007). CO2 emissions have the nature of the ‘tragedy of 

the commons’ and an emerging economy may not be interested in reducing CO2 emissions 

during its rapid economic expansion phase. Growing concerns over economic growth, climate 

change, and energy dependence are nevertheless driving specific policies to support 

renewable energy sources and more efficient energy usage in some emerging economies so 

that economic growth can be sustained without exerting harmful impacts on the environment.  

The rapid growth of Chinese and Indian economies has accelerated their energy 

demand, posing a difficult question about how non-renewable energy is to be efficiently used, 

given its scarcity and substitutability to renewable energy. Recent renewable energy 

generation data of these two countries show an encouraging increasing trend. Hence, 

identifying linkages that are behind adoption of cleaner energy at this stage of development is 

worth academic research. 

China emitted approximately 23.99% of the world’s total carbon dioxide (CO2) in 

2009 (The World Bank, 2011). This may be attributed to two reasons. The first reason is 

China’s enormous use of fossil fuels, particularly coal. Second, China’s consumption of non-

fossil energy (i.e. hydro and nuclear electricity) accounted for only 8.6% of its total energy 

consumption. The hope for the future is that China’s energy consumption policy will follow 

the philosophy of reducing the overall intensity of carbon emissions by increasing the 

proportion of renewable energy consumption in the total primary energy consumption.  

India was responsible for only about 6.18% of world’s carbon emission in 2009 (The 

World Bank, 2011). Even though India’s economy is growing very rapidly, energy is still 

scarce and the country is not emitting that much CO2 compared to China. This may be 

attributed by the fact that many Indian rural households are still out of the reach of continuous 

electrification and many of these households are still reliant on traditional biomass and 

biogas-type energy sources for their day-to-day living.  

In-depth studies identifying the linkage among output, CO2 emission and renewable 

energy for major emerging economies like China and India are limited in the literature. 
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Furthermore, none of the previous studies attempts to compare the drivers behind the 

increased renewable energy generation in these two economies. Identifying these linkages 

might help policymakers to accelerate the adoption of cleaner energy in developing 

economies. We compare the drivers of renewable energy adoption in two most prominent 

emerging economies, China and India, with the aim of analyzing causality within an error 

correction model formulation. This includes identifying the direction of both short- and long-

run causality as well as examining within-sample Granger exogeneity and endogeneity of 

each variable. Furthermore, to check the robustness of the causality directions and magnitude, 

we present variance decompositions and impulse response functions that provide information 

about the interaction among the variables beyond the sample period. 

This paper is organized as follows. Section 2 provides a basic overview of the 

pollutant emission and renewable energy adoption scenario in China and India and a critical 

review of literature. Section 3 delineates the theoretical settings and empirical methodology 

employed in this paper. Empirical results are offered in Section 4. Sections 5 and 6 present 

the findings from generalized impulse response functions and variance decompositions, 

respectively. Finally, the conclusions and discussion of policy implications are offered in 

Section 7. 

2. Literature Review 

With sustained economic growth for more than three decades, China and India both have 

lifted millions of people out of poverty. However, these higher economic growth trends have 

their costs, as well. One of the triple bottom lines, environmental sustainability, is threatened 

in recent years. The trend of carbon emission for both of these countries shows an increasing 

pattern over the period from 2003 to 2011, while renewable energy generation in China is 

rapidly increasing and is also rising in India. 

Global new investment in renewable power and fuels was USD 244 billion in 2012, 

down 12% from the previous year’s record [Table 1]. This decline in investment—after 

several years of growth—resulted from uncertainty about support policies in major developed 

economies, especially in Europe (down 36%) and the United States (down 35%). The year 

2012 saw the most extreme shift yet in the balance of investment activity between developed 

and developing economies. Outlays in developing countries reached USD 112 billion, 

representing 46% of the world total. This was up from 34% in 2011, and continued an 

unbroken eight-year growth trend. By contrast, investment in developed economies fell 29% 

to USD 132 billion, the lowest level since 2009. The shift was primarily driven by reductions 

in subsidies for solar and wind project development in Europe and the United States, 

increased investor interest in emerging markets with rising power demand and attractive 
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renewable energy resources, and falling technology costs of wind and solar PV. Europe and 

China accounted for 60% of global investment in 2012 [REN21 2013]. 

At the national level, the top investors in renewable energy included four developing 

countries (most of the BRICS countries) and six developed countries. China was in the lead 

with USD 64.7 billion invested, followed by the United States (USD 34.2 billion), Germany 

(USD 19.8 billion), Japan (USD 16.0 billion), and Italy (USD 14.1 billion). The subsequent 

five were the United Kingdom (USD 8.8 billion), India (USD 6.4 billion), South Africa (USD 

5.7 billion), Brazil (USD 5.3 billion), and France (USD 4.6 billion).
1
 

Table 1: Global Renewable Energy Investment Trend 

  2010 2011 2012 

Investment in new renewable energy capacity (annual)1 Billion USD 227 279 244 

Renewable power capacity (total, including hydro) GW 1,250 1,355 1,470 

Hydropower capacity (total)2 GW 935 960 990 

Bio-power generation GWh 313 335 350 

Solar PV capacity (total) GW 40 71 100 

Concentrating solar thermal power (total) GW 1.1 1.6 2.5 

Wind power capacity GW 198 238 283 

Solar hot water capacity (total)3 GWth 195 223 255 

Ethanol production (annual) Billion litres 85.0 84.2 83.1 

Biodiesel production (annual) Billion litres 18.5 22.4 22.5 

Note: 
1
Investment data are from Bloomberg New Energy Finance. 

2
Hydropower data do not include pumped storage capacity. 

3
Solar hot water capacity data include glazed water collectors only.  

Source: REN 21. 

China accounted for USD 66.6 billion (including R&D) of renewable energy new 

investment, up 22% from 2011 levels, driven by strong growth in the solar power sector, 

including both utility-scale
2
 and small-scale projects (<1 MW). New renewable energy 

investment in India has also been increasing till 2011 (USD 13 billion in 2011). However, like 

some developed countries the investment dropped down to USD 6.5 billion. The trend in 

investment for last decade nevertheless has been upward as a whole. 

 Both India and China aspire to increase renewable energy use as both of them are 

working towards lowering growth in carbon emissions. Some of the major targets in this 

regard are presented in Table 2. 

                                                             
1
 National investment totals do not include government and corporate R&D because such data are not available for all of these 

countries. 
2 Utility-scale refers to wind farms, solar parks, and other renewable power installations of 1 MV or more in size, and biofuel 

plants with capacity of more than 1 million liters. 
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A substantial and growing amount of literature has studied the nexus between energy 

consumption and economic growth (for example, Kraft and Kraft, 1978; Ghosh, 2002; 

Zamani, 2007; Ma et al. 2008; Wolde-Rufael, 2009; Apergis and Payne, 2009; Bloch, et al. 

2012; Apergis and Tang, 2013; and Salamaliki and Venetis, 2013). Research on this issue has 

primarily evolved around two different procedures, the supply-side and the demand-side 

approaches. The supply-side approach analyses the contribution of energy consumption in 

economic activities within the traditional production function framework (Stern, 2000; Ghali 

and El-Sakka, 2004; Oh and Lee, 2004; Sari and Soytas, 2007). While the demand-side 

approach investigates the relationship between energy consumption, gross domestic product 

(GDP) and energy prices (often taking CPI as a proxy) in a tri-variate energy demand model 

(Masih and Masih, 1997; Asafu-Adjaye, 2000; Narayan and Singh, 2007; Rafiq and Salim, 

2009).
3
  

Table 2: Renewable Energy Targets in India and China 

Country Sector/Technology Target 

India Renewable electricity 53 GW capacity by 2017 

 Wind  5GW by 2017 

 Solar 10 GW by 2017; 20 GW grid-connected by 2022; 2,000 MW 

off-grid by 2020; 20 million solar lighting systems by 2022. 

 Small-scale hydro 2.1 GW by 2017 

 Bioenergy 2.7 GW by 2017 

 Solar water heating 5.6 GWth (8 million m2) of new capacity to be added between 

2012 and 2017. 

China Renewable electricity 49 GW capacity by 2013 

 Wind 100 GW on-grid by 2015; 200 GW by 2020 

 Solar PV 10 GW in 2013; 20 GW by 2015 

 CSP 1 GW by 2015 

 Hydro 290 GW by 2015 

 Bioenergy 13 GW by 2015 

 Solar thermal 280 GWth (400 million m2) by 2015 

Source: REN21 

 Although pollutant emission is a very important component of growth-energy 

dynamics, many of the earlier studies don’t include emission in their models. Some studies 

that include carbon emission in their analytical frameworks are Ang (2007), Apergis and 

Payne (2009), Chandran and Tang (2013) and Liu (2005). Arouri et al. (2012) extend the 

                                                             
3
 In addition to the above studies, recent research, such as Ang (2008), include pollutant emissions in their analyses to investigate 

the relationship between energy consumption and economic activities. However, since Ang does not include prices in the models, 

this is not a complete demand-side model. 
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findings of Ang (2007), and Apergis and Payne (2009), by implementing recent bootstrap 

panel unit root tests and cointegration techniques to investigate the relationship among carbon 

dioxide emissions, energy consumption, and real GDP for 12 Middle East and North African 

Countries (MENA) over the period 1981-2005. Results show that, in the long run, energy 

consumption has a positive significant impact on CO2 emissions. More interestingly, it is 

shown that real GDP exhibits a quadratic relationship with CO2 emissions for the region as a 

whole.  

Pao and Tsai (2010) also employ a panel cointegration framework to examine 

linkages among pollutant emissions, energy consumption and output for BRIC (Brazil, 

Russia, India, and China) countries. In the long-run equilibrium, energy consumption has a 

positive and statistically significant impact on emissions, while real output exhibits the 

inverted U-shape pattern associated with the Environmental Kuznets Curve (EKC) 

hypothesis. In the short term, changes in emissions are driven mostly by the error correction 

term and short-term energy consumption shocks, as opposed to short-term output shocks for 

each country. 

Employing different model settings, Minihan and Wu (2012) study economic 

structure and strategies for greenhouse gas (GHG) mitigation. Their framework suggests there 

are different technical options in GHG mitigation due to the economic linkages among 

different polluting activities. Another study on greenhouse gas emissions, energy 

consumption and economic growth by Hamit-Haggar (2012) investigates the long-run 

equilibrium relationship by means of the fully modified OLS (FMOLS) technique proposed 

by Pedroni (2000), finding that energy consumption has a positive and statistically significant 

impact on greenhouse gas emissions. In contrast, a non-linear relationship is found between 

greenhouse gas emissions and economic growth, which is consistent with the environmental 

Kuznets curve. 

One of the recent studies focusing on China and India is Chandran and Tang (2013). 

This study investigates the short-run and long-run linkages among CO2 emission, economic 

growth and coal consumption of China and India from 1965 to 2009. This study finds 

cointegrating relationships between the variables for China. However, this study fails to find 

any long-run relationship in case of India. Bi-directional causality, in the short and long run, 

is detected between economic growth and coal consumption as well as between coal 

consumption and CO2 emissions in China. In addition, uni-directional causality is detected 

from economic growth to CO2 emissions. For India, this study finds that a short-run bi-

directional causality exists between economic growth and CO2 emissions and CO2 and 
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between coal consumption. It is also found that economic growth Granger causes coal 

consumption in the short run in India. 

The drivers behind different types of non-renewable energy consumption (i.e. oil, gas 

and coal) have been well studied, but relatively little is known about the drivers behind 

renewable energy consumption. Studies that identify the drivers for renewable energy in G7 

countries and twenty-two emerging countries are Sadorsky (2009a) and Sadorsky (2009b), 

respectively. Both these studies employ the panel cointegration technique and find renewable 

energy consumption is driven by both carbon emissions and GDP in G7 countries, while only 

GDP is a driver in developing countries. Fang (2011) takes the supply-side approach to 

investigate the impact of renewable energy in economic development. Using Chinese data 

spanning from 1978 to 2008, the impact of renewable energy consumption in economic 

welfare is found to be insignificant. However, none of these studies includes pollutant 

emission in their models. 

Although pollutant emission is directly related to energy generation and renewable 

energy adoption should have some positive impact on emission scenario, only a few studies of 

renewable energy include carbon emission in their models including. Salim and Rafiq (2012) 

employ an autoregressive distribution lag (ARDL) model along with fully modified least 

square and dynamic ordinary least square models for six major emerging economies, Brazil, 

China, India, Indonesia, Philippines and Turkey over the period 1980-2006. They find that 

both income and pollutant emission play a significant role in renewable energy generation in 

Brazil, China, India and Indonesia while income alone is the main determinant in Philippines 

and Turkey. 

In summary, from the above review it is evident that the relationship among 

economic growth, carbon emission, and renewable energy generation is not uniform across 

countries or estimation method.  There are few studies of renewable energy consumption in 

China and India considering emission in analysing the dynamics between renewable energy 

and output. We utilize recent developments in time-series analysis to examine both the supply 

and demand approaches for both these countries applying an error correction model on the 

most recent data. This provides an opportunity to examine similarities and difference in both 

short- and long-run causality among economic growth, carbon emissions and renewable 

energy output.  

3. Theoretical Framework 

Variables selected in this study are based on economic theory and data availability. Real GDP 

is included in the model to measure income; CO2 emission is included for its detrimental 
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impact in environment; and renewable energy generation is included to understand the 

linkages between renewable energy and the other variables. As all the concerned variables 

can be considered endogenous within a single system, we employ a VAR-type model with 

three different equations to identify the dynamic relationships among the variables. The 

equation for economic growth takes the following form: 
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where t = 1972, 1973, ……., 2011 denotes the time period, t  is a white noise, ‘well 

behaved’ random disturbance term with positive definite covariance matrix Ω. LY, LER and 

LC refer to the logarithm for real GDP, renewable energy generation, and carbon emission, 

respectively. 

As it is apparent from previous studies, two of the major determinants of renewable 

energy consumption are income and carbon emission, so this study investigates the following 

equation: 
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Carbon emission is also determined by the level of economic activities and by the 

acceleration of adoption of renewable energy technologies in country. Hence, the following 

equation completes the three-equation VAR model: 

.3

1

1

3

1

1

3

1

1

33 t

p

j

jtj

p

j

jtj

p

j

jtjt LERLYLCLC  
















     (3) 

This study considers annual data of India and China from 1972 to 2011 from World 

Development Indicators (WDI). Real GDP data have the base year of 2005. Carbon emission 

data are in kilo tonnes of CO2 emission and renewable energy generation is electricity 

production from renewable sources (kWh). 

 The empirical estimation carried out has three objectives. First is to understand how 

the variables are linked in the long run; second is to find the dynamic causal relationship 

among the variables; and the third is to investigate the robustness of the causality directions 

and magnitude. To achieve these objectives a reduced form vector auto regression (VAR) 

model is constructed with three variables, output, carbon emission, and renewable energy 

generation. The VAR approach serves the estimation purpose since it avoids imposing 

structural assumptions by treating all variables as endogenous. The reduced form level VAR 

is presented as: 
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p

j tjtjt zAz
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where, zt = [LYt, LCt, LERt]. The series LYt, LCt, and LERt can be either I(0) or I(1). αt is a 

vector of constant terms or ][ ,,0 RECY   and Aj is a matrix of VAR parameters for lag j. 

The vector of error terms is ),0(],,[0  INt

REcY  .  

Before implementing the error correction model it is imperative to ensure first that the 

underlying data are non-stationary at level and there exists at least one cointegrating 

relationship among variables. Hence, we implement Augmented Dicky-Fuller (ADF), Phillips 

Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests for data stationarity. All of 

these tests indicate that each of the variables for both of the countries follow an I(1) process. 

However, these standard tests may not be appropriate when the series contains structural 

breaks (Salim and Bloch, 2009). Therefore, we also employ two structural break tests. Perron 

(1997) develops a procedure for detecting a single structural break that has been widely used 

in the literature. For India, Perron’s test identifies breaks at 2002, 1998 and 1994 for LIY, 

LIER AND LIC, respectively. For China, the break dates for LCY, LCER and LCC are 1990, 

2001 and 1996, respectively. 

More recently, Lee and Strazicich (2003) develop versions of the LM unit root test to 

accommodate two structural breaks. The endogenous two-break unit root test allows for two 

shifts in the intercept and is described by Zt = [1, t, D1t, D2t], where Djt = 1 for t > Tbj+1, j = 

1, 2 , and zero otherwise. Tbj denotes the date of the structural break. Note that the data 

generating process (DGP) includes breaks under the null (β= 1) and alternative (β< 1) 

hypotheses in a consistent manner. In this model, depending on the value of β, we have the 

following null and alternative hypotheses: 

H0 : yt = µ0+d1B1t+d2B2t+yt-1+v1t,   (5) 

HA: yt = µ0+γt+d1D1t+d2D2t+v2t  ,   (6) 

where v1t and v2t are stationary error terms; Bjt = 1 for t = Tbj+1, j = 1, 2 and 0 otherwise. This 

model can be extended by including two changes in the intercept and the slope and is 

described by Zt = [1, t, D1t, D2t, DT1t, DT2t], where DTjt = t-Tbj for t > Tbj+1, j = 1,2 and 0 

otherwise. For this extended model the hypotheses are: 

H0 : yt = µ0+d1B1t+d2B2t+d3D1t+d4D2t+yt-1+v1t,   (7) 

HA: yt = µ0+γt+d1D1t+d2D2t+d3DT1t+d4DT2t+v2t ,  (8) 
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where v1t and v2t are stationary error terms; Bjt = 1 for t = Tbj+1, j = 1, 2 and 0 otherwise.  We 

use the method of Lee and and Strazicich (2003) to test the existence of possible structural 

break. 

As Engle and Granger (1987) demonstrate, cointegrated variables must have an error 

correction representation with an error correction term (ECT) incorporated into the model. 

Therefore, a vector error correction model (VECM) is formulated to recover the information 

lost in the differencing process, thereby allowing for long-run equilibrium as well as short-run 

dynamics. Assuming that there is only one cointegration relationship, the VECM constructed 

for this study can be expressed as: 
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where εt’s are Gaussian residuals applied by Johansen (1991) and ECTt-1 = LYt-1 + (β21/ 

β11)LCt-1 + (β31/ β11)LERt-1 is the normalized equation. There are two sources of causation, 

through the ECT if α≠0, or through the lagged dynamic terms. ECT shows the long-run 

equilibrium relationship, while the coefficients on the lagged difference terms indicate short-

term dynamics. The statistical significance of negative coefficients associated with ECT 

provides evidence of the error correction mechanism that drives each variable back to its 

long-run equilibrium. 

Three different causality tests are performed, a short-run Granger non-causality test 

along with weak exogeneity and strong exogeniety tests. In equation (11), to test ∆LY does 

not Granger cause ∆LC in the short run, the statistical significance of the lagged dynamic 

terms is examined by testing the null H0: all γij = 0 using Wald test. Non-rejection of the null 

implies ∆LYt does not cause ∆LC in the short run. Further, the weak exogeneity test, based on 

a long-run non-causality test, requires satisfying the null H0: αij = 0. It is a likelihood-ratio test 

which follows a χ
2
 distribution.  

A strong exogeneity test which imposes further restrictions is performed by testing 

the joint significance of both the lagged dynamic terms and ECT. This requires satisfying 

both Granger non-causality and existence of weak exogeneity. In particular, ∆LY does not 

cause ∆LC if the null H0: all γij = αij = 0 is not rejected. The strong exogeneity test does not 
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distinguish between the short-run and long-run causality, but it is a more restrictive test that 

indicates the overall causality in the system. It is important to highlight that this paper uses 

the concept of causality in the predictive rather than in the deterministic sense. 

4. Empirical Analysis 

Augmented Dickey-Fuller (ADF), Phillips Perron (PP) and Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) unit root tests are first employed to examine the stationarity of underlying time 

series data. In Table 3, it is evident that all unit root tests yield similar results: LIYit, LIERit, 

LICit, LCYit, LCERit, and LCCit are non-stationary in their levels but are stationary after 

taking first difference, so each series is integrated of order one I(1). 

Table 3: Unit Root Tests 

  ADF
a 

PP
a 

KPSS
b 

Variable Intercept 

Trend and 

Intercept Intercept 

Trend and 

Intercept Intercept 

Trend and 

Intercept 

For India       

LIY 2.4804 -1.1604 4.9633 -1.1604 0.7455*** 0.2144** 

ΔLIY -6.2435*** -7.4883*** -6.2400*** -10.2387*** 0.5916** 0.0786 

LIER -1.1550 -2.7098 -1.1381 -2.8023 0.7378** 0.0958** 

ΔLIER -6.1911*** -6.1236*** -6.2432*** -6.1697*** 0.1075 0.0813 

LIC -0.3704 -1.7125 -0.3736 -1.6640 -0.7481*** 0.1636** 

ΔLIC -6.2377*** -6.1975*** -6.2377*** -6.2008*** 0.1026 0.0922 

For China       

LCY 0.8278 -4.7686*** 2.0983 -2.9200 0.7442*** 0.1363* 

ΔLCY -3.4762** .-3.5422* -3.8775*** -4.2351** 0.3299 0.1220* 

LCER 0.8824 -1.5240 0.9672 -1.7229 0.7486*** 0.1202* 

ΔLCER -5.4563*** -5.6048*** -5.4563*** -5.5969*** 0.1679 0.0753 

LCC 0.07372 -2.4478 0.2874 -1.8728 0.7475*** 0.0812 

ΔLCC -3.6781*** -3.6585** -3.7058*** -3.6919** 0.1058 0.0789 
Note: (*) and (**) indicate 10 and 5 per cent level of significance, respectively. 
a
H = the series has a unit toot. Schhwarz Info Criterion (SIC) is used to select lag length. The maximum number of lags is set to 

be 4. 
b
H = the series is stationary. Barlett-Kernel is used as the spectral estimation method. The bandwidth is selected using 

Newey-West method. 

As discussed above, this paper employs Lee and Strazicich (2003) test of two 

structural breaks. This test is superior in terms of power to the widely used Perron (1997) test. 

The results of this test are provided in Table 4. The results reveal that none of the dates are 

significant as indicated by Bt1 and Bt2. Hence, it is concluded that the underlying data are non-

stationary at level but stationary at their first differences without there being any statistically 

significant structural breaks. 

As the variables are non-stationary in levels and stationary in first difference, the 

Johansen (1988) and Johansen and Juselius (1990) maximum likelihood co-integration tests 

are employed to examine if the variables are cointegrated. The superiority of Johansen’s 
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approach compared to Engle and Granger’s residual based approach lies in the fact that 

Johansen’s approach is capable of detecting multiple cointegrating relationships among 

variables (Asafu-Adjaye 2000). This study has not applied autoregressive distributed lag 

(ARDL) approach as the data frame is convincingly large (from 1972 to 2011) and there is no 

confusion from the unit root tests that all the variables follow a I (1) process. The optimum 

lag length for both tests as selected by AIC is 4. The results are reported in Table 5 and show 

that there is a single cointegration relationship among variables at 5 per cent level of 

significance in both India and China. 

Table 4: LM Two Break Unit Root Tests of Lee and Strazicich (2003) 

Country Series TB1 TB2 k St-1 Bt1 Bt2 

India 
LIY 

1978 2006 0 -0.243 

(-2.137) 

-0.046 

(-5.048) 

0.023 

(2.4074) 

 
LIER 

1977 2004 0 -0.458 

(-3.133) 

0.102 

(2.900) 

0.058 

(1.673) 

 
LIC 

1997 2000 0 -0.256 

(-2.203) 

-0.012 

(-0.951) 

-0.020 

(-1.556) 
        

China LCY 1975 1991 0 -0.201 

(-1.921) 

-0.047 

(-4.150) 

0.013 

(1.155) 

 LCER 1990 2003 0 -0.314 

(-2.480) 

-0.042 

(-1.665) 

0.043 

(1.625) 

 LCC 1997 2002 0 -0.167 

(-1.738) 

-0.046 

(-2.676) 

0.051 

(2.776) 

Note: TB1 and TB2 are the break dates, k is the lag length, St-1 is the coefficient on the unit root parameter and Bt1 and Bt2 are the 

coefficients on the breaks in the intercept. The maximum lag length was set as eight (kmax=8), and optimum lag length is selected 

through ‘t-sig’ approach proposed by Hall (1994). Critical values for the LM test at 10%, 5% and 1% significant levels are -

3.504, -3.842, -4.545. Critical values for the other coefficients follow the standard normal distribution. * (**) *** denote 

statistical significance at 10%, 5% and 1%. 

 

Table 5: Johansen’s Cointegration Test 

For India:    

Hypothesized no. of CE(s) r = 0 r ≤ 1 r ≤ 2 

Trace statistic (λ trace) 27.98** 11.69 8.06 

    

Hypothesized no. of CE(s) r = 0 r ≤ 1 r ≤ 2 

Maximum eigenvalue  statistic (λ max) 47.74** 19.77 8.07 

For China:    

Hypothesized no. of CE(s) r = 0 r ≤ 1 r ≤ 2 
Trace statistic (λ trace) 22.229** 11.751 2.796 

    

Hypothesized no. of CE(s) r = 0 r ≤ 1 r ≤ 2 

Maximum eigenvalue  statistic (λ max) 36.776** 14.546 2.795 

    
Note: (*), (**) and (***) indicate 10%, 5% and 1% level of significance, respectively. Optimum lag length selected by Akaike 

Information Criteria (AIC) is 4. 

The existence of cointegration implies that causality among concerned variables can 

be detected in at least one direction. However, it does not indicate the direction of the causal 

relationship. Hence, to understand the direction of causality, ECM-based causality tests are 
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performed. The results of these ECM-based causality tests in Table 6 show that in the case of 

India, there is short short-run causality where renewable energy Granger causes output at 1 

per cent level of significance. Also, carbon emission Granger causes both output and 

renewable energy at 10 per cent level of significance, but there is no short-run causality of 

carbon emission from either output or renewable energy. These short-run results suggest that 

the Indian economy clean energy is contributing to output growth, but that growth also 

depends on carbon emission.  

The long-run results in Table 6 for India suggest bidirectional relationships among 

variables, which indicate that carbon emission, renewable energy and output cause each other 

in the long run. The long-run causalities are consistent with those found by Salim and Rafiq 

(2012). Overall, the results for India reveal that renewable energy adoption is positively 

contributing to the Indian economy in the short run, while increased pressure from emission 

leads to increased adoption of renewable energy in the long run, which further enhances 

development of the country. 

In China a different picture is revealed. In the short run, output causes renewable 

energy at 5 per cent level of significance. Hence, economic advances in China contribute to 

the renewable energy development. However, no reverse direction in causality is evident. In 

the long run, it is found that output Granger causes both renewable energy and carbon 

emission, while bidirectional causality is found between carbon emission and renewable 

energy. Overall, causality in China seems to run from output to renewable energy, with 

carbon emissions linked in both causal directions with renewable energy production. 

Therefore, in China it is economic growth that leads to accelerated adoption of renewable 

energy, both directly and through its impact in reducing carbon emissions. 

Table 6: Causality Tests 

Hypothesis Short-run Granger 

non-causality 

Long-run weak 

exogeneity test 

 Strong exogeneity test 

For India    

∆LY         ∆LRE 1.527 -1.787* 1.301 

∆LY  ∆LC 0.004 1.942* 0.011 

∆LRE       ∆LY 8.089*** 3.006*** 4.589*** 

∆LRE       ∆LC 0.001 1.942* .318 

∆LC         ∆LY 3.414* 3.006*** 2.808* 

∆LC         ∆LRE 3.603* -1.787* 3.408* 

For China    

∆LY         ∆LRE 2.927** 3.124*** 5.642** 

∆LY         ∆LC 0.342 -2.620** 0.010 

∆LRE       ∆LY 0.331 -.7591 0.184 

∆LRE       ∆LC 0.244 -2.620** 0.583 

H0: ∆LC       ∆LY 0.079 -.7591 0.032 

H0: ∆LC      ∆LRE 3.475* 3.124*** 2.318 
Note: (*), (**) and (***) indicate rejection of the null hypothesis of non-causality at 10%, 5% and 1% level of significance, 

respectively. All statistical tests are performed using Wald χ2 tests.  
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5. Impulse Response Functions 

Granger causality tests suggest which variables in the models have significant impacts on the 

future values of each of the other variables in the system. Nevertheless, the results do not, by 

construction, indicate the direction or duration of these impacts. Variance decomposition 

(VD) and impulse response functions (IRF) provide this information. Generalized variance 

decomposition and generalized impulse response functions are calculated from the 

cointegration results using the methods of Koop et al. (1996), and Pesaran and Shin (1998).  

Figure 1: Impulse response functions: India 
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Figure 2: Impulse response functions: China 
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The generalized impulse response functions trace out responsiveness of dependent 

variables in the VAR to shocks in each of the variables. For each variable from each equation 

separately, a unit shock is applied to the error, and the effects upon the VAR system over time 

are noted (Brooks, 2002). Figure 1 for India shows that the LIER response from a one unit 

standard error (S.E.) shock in the LIY equation is 10% after two years and, after twenty years, 

it reaches to 15%, while the response of LIC is 2.5% after two years and it increase up to 15% 

by twenty years. In response to a shock in the equation for LER an almost continual increase 

of LIY and LIC is revealed. This supports the causality result that LIER and LIC causes LIY. 

For a shock in the LIC equation, a steady increase in both LIY and LIER occur only after 
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some periods of drift or erratic movement. All these results are consistent with the Granger 

causality result for India that there is bi-directional causality between all the variables. 

Figure 2 shows the impulse response functions for China. Shocks in any of the LCY, 

LCER, or LCC equations lead to fairly steady increases in each of the other variables. These 

findings support the causality results discussed above and further indicate the positive 

direction and long duration for the impact of shocks. 

6. Variance Decompositions 

Variance decomposition explains the strength of the movements in each of the dependent 

variables that is due to its own shocks, contrasted with shocks in the other variables. The 

effects of these shocks are analysed over a 20 year prospective period in Table 7. In India 

variations in LIY are initially mostly explained by shocks in the LIY equation, whereas over 

time shocks to LIER become more important. Shocks to the LIC equation are initially of 

some importance, but decline in importance over time. Variation in LIER is initially most 

influenced by shocks in its own equation, with shocks to LIY and LIC of some importance. 

The importance of shocks to LIY and LIC decline somewhat over time, while shocks to LIER 

become increasingly important. Variation in LIC is initially mostly explained by its own 

shocks, but over time shocks to both LIY and LIER rise in importance, eventually surpassing 

the role of LIC shocks. Overall, the results for India suggest that shocks to economic activities 

and renewable energy production are more important to the evolution of all variables than 

shocks to carbon emissions, which opens a role for policy supporting renewable energy 

investment to reduce emissions without impeding economic activity. 

Results in Table 7 show that compared to India shocks to carbon emissions in China 

are much important in explaining the evolution of all variables in both the short and long run. 

Shocks to each variable are initially of greatest importance to its own generalized forecast 

error variance decomposition, but eventually shocks to LCY are of greatest importance and 

shocks to LCC of second importance in each equation. Shocks to LCER are of much lesser 

importance in the long run than for either LCY or LCC. Overall, this suggests that in the case 

of China direct action to cut carbon emissions has been more important than efforts to 

increase renewable energy production. 

 

7. Conclusion 

The main objective of this article is to empirically identify the drivers of renewable energy 

adoption by examining the dynamic relationship between output, carbon emissions, and 

renewable energy generation in India and China. This is done by applying a multivariate 

vector error-correction model to data from 1972 to 2011. Understanding the past causal 



15 

 

relationships among these variables can provide guidance as to feasible directions for 

sustainable future development in these rapidly growing economies. 

The results of the empirical analysis show that in India there is statistically significant 

unidirectional short-run causality from carbon emission to both renewable energy generation 

and output, as well as from renewable energy generation to output. This suggests that 

renewable technologies are being used to reduce the detrimental impacts of growing 

emissions while also helping to boost economic growth. In the long run, all the variables have 

bidirectional causality, which points to the inherent interdependence of growth, energy 

production and pollution. The picture of renewable energy implementation in India 

nevertheless shows an encouraging trend as renewable energy technologies are contributing to 

the sustainable development of the country. 

The results for short-run causalities in China show unidirectional relationships 

running from output to renewable energy and from carbon emission to renewable energy 

generation. In the long run, the only unidirectional causality is found from output to 

renewable energy generation, while bidirectional causality is found between carbon emission 

and renewable energy generation. These results suggest that China has already started to 

commit its sustainable development through the adoption of cleaner technologies linked to 

both output and carbon emission growth. However, with the huge environmental degradation 

caused by human activities in the backdrop, further effort is required through increasing 

investment in renewable energy sources to help mitigate the adverse effects of carbon 

emission while sustaining economic growth.  
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Table 7: Findings from Generalized Forecast Error Variance Decomposition 

a. India 

Years Variance Decomposition of LIY Variance Decomposition of LIER Variance Decomposition of LIC 

LIY LIER LIC  LIY LIER LIC  LIY LIER LIC  

1 0.982 0.387 0.319  0.981 0.388 0.319  0.264 0.029 0.987  

5 0.805 0.599 0.066  0.682 0.751 0.275  0.513 0.311 0.752  

10 0.756 0.721 0.026  0.715 0.782 0.229  0.606 0.463 0.606  
15 0.759 0.789 0.039  0.727 0.798 0.209  0.650 0.556 0.509  

20 0.759 0.819 0.061  0.731 0.806 0.199  0.674 0.617 0.444  

 

b. China 

 
Years Variance Decomposition of LCY Variance Decomposition of LCER Variance Decomposition of LCC 

LCY LCER LCC  LCY LCER LCC  LCY LCER LCC  

1 0.972 0.374 0.272  0.181 0.843 0.651  0.340 0.129 0.966  

5 0.941 0.141 0.331  0.645 0.409 0.581  0.376 0.541 0.629  

10 0.931 0.170 0.405  0.717 0.367 0.585  0.612 0.414 0.624  

15 0.918 0.191 0.439  0.767 0.327 0.575  0.676 0.383 0.612  

20 0.910 0.199 0.457  0.788 0.311 0.568  0.724 0.352 0.601  
        Note: All the figures are estimates rounded to three decimal places. 
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