
Manuscript submitted to doi:10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

VISUAL MISER: AN EFFICIENT USER-FRIENDLY VISUAL

PROGRAM FOR SOLVING OPTIMAL CONTROL PROBLEMS

Feng Yang

School of Automation Engineering, University of Electronic Science and Technology of China

No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, 611731, China

Kok Lay Teo, Ryan Loxton, Volker Rehbock, Bin Li1 and Changjun Yu

Department of Mathematics and Statistics, Curtin University
GPO Box U1987 Perth, Western Australia 6845, Australia

Leslie Jennings

Department of Mathematics, University of Western Australia

Nedlands, Western Australia 6009, Australia

(Communicated by the associate editor name)

Abstract. The FORTRAN MISER software package has been used with great

success over the past two decades to solve many practically important real

world optimal control problems. However, MISER is written in FORTRAN
and hence not user-friendly, requiring FORTRAN programming knowledge.

To facilitate the practical application of powerful optimal control theory and
techniques, this paper describes a Visual version of the MISER software, called

Visual MISER. Visual MISER provides an easy-to-use interface, while retaining

the computational efficiency of the original FORTRAN MISER software. The
basic concepts underlying the MISER software, which include the control pa-

rameterization technique, a time scaling transform, a constraint transcription

technique, and the co-state approach for gradient calculation, are described in
this paper. The software structure is explained and instructions for its use are

given. Finally, an example is solved using the new Visual MISER software to

demonstrate its applicability.

1. Introduction. With the advances of modern computers and the increasing
emphasis on optimal design of large scale dynamical systems under scarce avail-
ability of resources, optimal control theory has become a useful tool for solving
many engineering, industrial and management problems. For a brief selection, see
[1, 2, 3, 4, 5, 7, 9, 10, 11, 14, 17, 18, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 41, 44,
45, 50, 53, 63, 64, 65, 66]. The main theoretical tools for solving optimal control
problems analytically are the famous Pontryagin’s minimum principle [1, 2, 8, 52]
and the Hamilton-Jacobi-Bellman equation [4, 59]. There are many excellent books
devoted to the theoretical aspects of optimal control, such as [1, 2, 5, 8, 52]. How-
ever, most practical problems arising in real world applications are too complex to
solve analytically. Hence, many computational algorithms have been developed to
determine numerical solutions of optimal control problems. Many methods are now

2010 Mathematics Subject Classification. Primary: 49M37, 49M25; Secondary: 65K05.

Key words and phrases. Optimal control, Visual MISER, Intel Visual Fortran, Optimization.
1Corresponding author.

1

http://dx.doi.org/10.3934/xx.xx.xx.xx

2 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

available in the literature. For a brief selection, see [7, 14, 15, 16, 19, 22, 23, 24, 25,
26, 28, 30, 36, 38, 39, 40, 42, 43, 45, 47, 48, 49, 57, 59, 60, 62, 67].

There are also several general purpose software packages for solving optimal
control problems. They include:(i) Recursive Integration Optimal Trajectory Solver
(RIOTS) [56]; (ii) NUDOCCCS (NUmerical Discretization method for Optimal
Control problems with Constraints in Controls and States) [6]; and (iii) The optimal
control software package MISER3.3 [20], which is designed as a FORTRAN package.
For a Matlab version, see [12].

In this paper, we are focused on the software packages MISER 3.3 [20] and MAT-
LAB MISER [12]. Compared with the FORTRAN MISER, MATLAB MISER is
somewhat easier to use, but it is much slower computationally to execute due to
the interpretative nature within the MATLAB environment. This paper presents
a new version of MISER called Visual MISER. This new version makes use of the
Intel FORTRAN Studio XE combined with an optimizing FORTRAN compiler
with high-performance libraries, performance profiling, thread and memory check-
ing, static security analysis and other advanced tools. Intel Performance Libraries
are also included. For example, Intel@Math Kernel Library (Intel@MKL) (for ad-
vanced mathematical processing) and Intel@Integrated Performance Primitives (In-
tel@IPP) (for multimedia, signal and data processing). These libraries offer highly
optimized, threaded, and specialized functions. Furthermore, they have an excel-
lent graphical user interface. With these attractive features, the visual FORTRAN
version of the MISER software is coded in FORTRAN 90 and compiled using Intel
Visual FORTRAN Compiler. It makes extensive use of graphical user interfaces
(GUIs) to allow the user to input the problem at hand and to modify data. The
equations to be defined by the user are compiled as Dynamic Link Library (*.dll)
files, which are called by the main program.

The new Visual MISER is more user-friendly and computationally more effi-
cient when compared with the original FORTRAN MISER and MATLAB MISER,
respectively.

The remainder of the paper is organized as follows. We first describe a stan-
dard combined optimal control and optimal parameter selection problem suitable
for MISER and present some theoretical preliminaries in Section 2. In Section 3,
we introduce the Visual MISER software by explaining the numerical algorithm,
software architecture design and operating procedure. In Section 4, an illustrative
example, which is the well-known optimal Euler buckling beam problem is solved
so as to demonstrate the applicability of the Visual MISER. Finally, in Section 5,
we conclude the paper with a discussion of future research topics.

2. Problem Formulation and Theoretical Preliminaries. In this section, we
present the formulation of a combined optimal control and optimal parameter selec-
tion problem subject to canonical constraints as considered in [59]. Some relevant
theoretical preliminaries are also given in this section.

2.1. Problem Formulation. Consider a dynamical system governed by the fol-
lowing set of differential equations defined on the time horizon [0, tf].

dx(t)

dt
= f(t, x(t), u(t), z), (1)

with initial condition
x(0) = x0(z), (2)

VISUAL MISER 3

where x = [x1, . . . , xns]>, u = [u1, . . . , unc]>, and z = [z1, . . . , znz]> denote the
state, the control and the system parameter vectors, respectively; f = [f1, . . . , fns]>

is a given function continuously differentiable with respect to x, u and z, and piece-
wise continuous with respect to t; and x0 = [x01, . . . , x

0
ns

]> is a given continuously
differentiable function of z.

A combined optimal control and optimal parameter selection problem subject
to canonical constraints, which is referred to as Problem (P), is stated formally as
follows:

Given the dynamical system (1)-(2), find a pair (u, z) such that the cost function

G0(u, z) = φ0(x(tf), z) +

∫ tf

0

g0(t, x(t), u(t), z)dt (3)

is minimized subject to the canonical equality constraints

Gk(u, z) = φk(x(τk), z) +

∫ τk

0

gk(t, x(t), u(t), z)dt = 0, k = 1, . . . , ne, (4)

the canonical inequality constraints

Gk(u, z) = φk(x(τk), z) +

∫ τk

0

gk(t, x(t), u(t), z)dt ≥ 0, k = ne + 1, . . . , nq, (5)

the linear control constraints on the control
nc∑
i=1

αk,iui(t) + βk

{
= 0

≥ 0
, t ∈ [0, tf), k = 1, 2, . . . , ng, (6)

and constraints on the system parameter vector

zLi ≤ zi ≤ zUi , i = 1, . . . , nz, (7)

where αk,i, k = 1, . . . , ng; i = 1, . . . , nc, βk, k = 1, . . . , ng, and zLi and zUi , i =
1, . . . , nz are given constants. Furthermore, τk, k = 0, 1, . . . , nq, are referred to as
characteristic times, with τ0 = 0, τnq

= tf and

τk ≤ τk+1, k = 1, . . . , nq − 2.

Each of the constraints on the control given by (6) may be in the form of an
equality or an inequality. With the use of the control parameterization method, we
assume a piecewise constant or piecewise linear approximation of each component
of the control. Constraints (6) then represent a finite number of constraints on
the corresponding control parameters. In other words, each of these constraints is
equivalent to a set of linear constraints on the control parameters.

2.2. Control Parameterization. The control parameterization technique involves
approximating the control function by a linear combination of basis functions, where
the coefficients in the linear combination are decision variables to be chosen opti-
mally [15, 36, 38, 40, 42, 45, 59, 62]. The approximate problem, which takes the form
of an optimal parameter selection problem, can be solved as a nonlinear optimiza-
tion problem by using gradient-based optimization techniques, such as sequential
quadratic programming [58]. For this purpose, the gradient formulae of the cost
and constraints functions need to be derived.

More specifically, let the time horizon [0, tf] be subdivided into p subintervals
[tk−1, tk), k = 1, . . . , p, where tk, k = 0, 1, . . . , p, are fixed knot points such that

0 = t0 < t1 < · · · < tp−1 < tp = tf .

4 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

Then, the control function is approximated by a piecewise constant function as
defined below.

u(t) ≈
p∑
k=1

σp,kχ[tk−1,tk)(t), (8)

where σp,k = [σp,k1 , . . . , σp,knc
]>, k = 1, . . . , p, are decision vectors to be chosen opti-

mally, and χI is the indicator function defined by

χI(t) =

{
1, if t ∈ I,
0, otherwise.

(9)

Under control parameterization, Problem (P), a combined optimal control and opti-
mal parameter selection Problem (P) is approximated by the following pure optimal
parameter selection problem, referred to as Problem P (p):

Subject to the dynamical system

dx(t)

dt
= f̃(t, x(t), σp, z), t ∈ [0, tf], (10)

with initial condition
x(0) = x0(z), (11)

where

f̃(t, x(t), σp, z) = f(t, x(t),

p∑
k=1

σpχ[tk−1,tk)(t), z),

and σp = [(σp,1)>, . . . , (σp,p)>]> with σp,k = [σp,k1 , . . . , σp,knc
]>, k = 1, . . . , p, find

a (σp, z) such that the cost function

G̃0(σp, z) = φ0(x̃(tf), z) +

∫ tf

0

g̃0(t, x̃(t), σp, z)dt (12)

is minimized subject to the canonical equality constraints

G̃k(σp, z) = 0, k = 1, . . . , ne, (13)

the canonical inequality constraints

G̃k(σp, z) ≥ 0, k = ne + 1, . . . , nq, (14)

and constraints on the control parameter vector
nc∑
i=1

αk,iσ
p,j
i + βk ≥ 0, j = 1, . . . , p, k = 1, . . . , ng, (15)

and constraints on the system parameter vector

zLi ≤ zi ≤ zUi , i = 1, . . . , nz, (16)

where, for each k = 1, . . . , nq,

G̃k(σp, z) = φk(x̃(τk), z) +

∫ τk

0

g̃k(t, x̃(t), σp, z)dt,

with

g̃k(t, x, σp, z) = gk

(
t, x,

p∑
k=1

σpχ[tk−1,tk)(t), z

)
.

2.3. Gradient Computation. The approximate problem (10)-(16) takes the form
of an optimal parameter selection problem. It can be solved as a nonlinear optimiza-
tion problem by using a gradient-based optimization technique, such as sequential

VISUAL MISER 5

quadratic programming. For this, we need the gradient formulae for the cost and
constraint functions.

MISER uses the co-state method for gradient computation [59]. First, define the

Hamiltonian function for each of the canonical functions G̃k, k = 0, 1, . . . , nq, as
follows:

Hk(t, x̃, σp, z, λ) = g̃k(t, x̃, σp, z) +
(
λk
)>
f̃(t, x̃, σp, z) (17)

where k = 0 corresponds to the cost function, k > 0 corresponds to the constraint
functions, and λk is called the co-state or adjoint vector.

For each k = 0, 1, . . . , nq, the co-state system corresponding to the canonical

function G̃k is given by

dλk(t)

dt
= −

[
∂Hk(t, x̃(t), σp, z, λp(t))

∂x̃

]>
, t ∈ [0, τk), (18)

with terminal condition

λk(τk) =

[
∂φk(x̃(τk), z)

∂x̃

]>
. (19)

Let λk(·|σp, z) be the solution of the co-state system (18)-(19) corresponding to
(σp, z).

The gradient formula for each canonical function G̃k, k = 0, 1, . . . , nq, with re-
spect to σp is then given (see [59]) by

∂G̃k(σp, z)

∂σp
=

∫ τk

0

∂Hk(t, x̃(t), σp, z, λp(t))

∂σp
dt. (20)

Furthermore, the gradient of each canonical function G̃k, k = 0, 1, . . . , nq, with
respect to the system parameter vector z is given (see [59]) by

∂G̃k(σp, z)

∂z
= [λk(0)]>

∂x0(z)

∂z
+
∂φk(x̃(tf), z)

∂z
+

∫ τk

0

∂Hk(t, x̃(t), σp, z, λp(t))

∂z
dt.

(21)

2.4. Variable Time Points. Control parameterization requires the planning hori-
zon [0, tf] to be partitioned into p subintervals [tk−1, tk), k = 1, . . . , p, where

0 = t0 < t1 < · · · < tp−1 < tp = tf .

As before, let us assume that the control function is approximated by a piecewise
constant function, i.e.

u(t) ≈ up(t) =

p∑
k−1

σp,kχ[tk−1,tk)(t), (22)

where the control parameter vectors σp,k = [σp,k1 , . . . , σp,knc
]>, k = 1, . . . , p, are

decision vectors to be chosen optimally.
The MISER packages assumes that the switching times tk, k = 1, . . . , p − 1, of

the approximate piecewise constant controls are fixed. However, in practice, it is
desirable that these are also considered as decision variables to be chosen optimally.
Thus, define

νp = [t1, . . . , tp−1]>. (23)

Restricting controls to be of the form (22), the system (1)-(2) becomes:

dx(t)

dt
= f̂(t, x(t), σp, νp, z), t ∈ [0, tf], (24)

6 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

with the initial condition
x(0) = x0(z), (25)

where

f̂(t, x(t), σp, νp, z) = f

(
t, x(t),

p∑
k=1

σp,kχ[tk−1,tk)(t), z

)
. (26)

Similarly, by restricting controls to be of the form (22), the cost function (3),
and the constraints (4) and (5) become:

Ĝ0(σp, νp, z) = φ0(x(tf), z) +

∫ tf

0

ĝ0(t, x(t), σp, νp, z)dt, (27)

Ĝk(σp, νp, z) = 0, k = 1, . . . , ne, (28)

and
Ĝk(σp, νp, z) ≥ 0, k = ne + 1, . . . , nq, (29)

respectively, where, for each k = 1, . . . , nq,

Ĝk(σp, νp, z) = φk(x(τk), z) +

∫ τk

0

ĝk(t, x(t), σp, νp, z)dt, (30)

with

ĝk(t, x, σp, νp, z) = gk

(
t, x,

p∑
k=1

σp,kχ[tk−1,tk)(t), z

)
, (31)

while the constraints (15) and (16) remain unchanged:
nc∑
i=1

αk,iσ
p,j
i + βk

{
= 0

≥ 0
, j = 1, . . . , p; k = 1, . . . , ng, (32)

and
zLi ≤ zi ≤ zUi , i = 1, . . . , nz. (33)

It may be desirable to also allow for variable characteristic times in the canonical
constraints (27). Thus, we need to ensure that there exist mi ∈ {1, . . . , p − 1},
i = 1, . . . , np, such that

tmi
= τi, i = 1, . . . , nq. (34)

For reference, we recall that

0 = t0 < t1 < · · · < tp−1 < tp = tf . (35)

We may now specify the approximate problem with variable time points as fol-
lows. It is referred to as Problem (P̂ (p)).

Given the dynamical system (24)-(25), find a (σp, νp, z) such that the cost func-
tion (27) is minimized subject to the constraints (28)-(29) and (32)-(35).

The gradient formulae of the cost function and the constraint functions with
respect to the switching time vector νp can be readily obtained (see Theorem 5.4.1
of [59]). However, in view of the difficulties mentioned in [36, 42], the following time
scaling transformation [60] is introduced.

Consider the new time variable s ∈ [0, p], where [0, p] is a new time horizon. The
transformation needs to map from [0, tf] to [0, p] such that the variable knots

t1, . . . , tp−1, tp = tf (36)

in [0, tf] are mapped to the fixed knots

0, 1, . . . , p− 1, p (37)

VISUAL MISER 7

in [0, p]. Note that since τi = tmi , i = 1 . . . , nq, each τi ∈ [0, tf] is mapped to
mi ∈ [0, p], i = 1, . . . , nq.

The required transformation from t ∈ [0, tf] into s ∈ [0, p] can be defined by the
following differential equation:

dt(s)

ds
=

p∑
k=1

θpkχ[k−1,k)(s) (38)

with the initial condition
t(0) = 0, (39)

where
θpk ≥ 0, k = 1, . . . , p. (40)

Here, θpk, k = 1, . . . , p are decision variables, and χI is the indicator function as

defined in (9). Define θp = [θp1 , . . . , θ
p
p]> and note that this replaces the role of νp

defined earlier in this section. Clearly, the piecewise constant control defined in (22)
can be written as

up(t(s)) =

p∑
k=1

σp,kχ[k−1,k)(s), s ∈ [0, p]. (41)

Let y(s) = x(t(s)) and σp =
[
(σp,1)>, . . . , (σp,p)>

]>
. Then the time scaling

transformation results in the following dynamical system:

dŷ(s)

ds
= F (ŷ(s), σp, νp, z), s ∈ [0, p], (42)

with initial condition

ŷ(0) =

[
x0(z)

0

]
, (43)

where

ŷ(s) =

[
y(s)
t(s)

]
, (44)

and

F (ŷ(s), σp, θp, z) =

[∑p
k=1 θ

p
kf(ŷ(s),

∑p
k=1 σ

p,kχ[k−1,k)(s), z)∑p
k=1 θ

p
kχ[k−1,k)(s)

]
. (45)

Finally, the transformed optimal parameter selection problem may be stated as
follows. It is referred to as Problem (Q(p)).

Subject to dynamical system (42)-(43), find a (σp, θp, z) such that the cost func-
tion

γ0(σp, θp, z) = φ0(y(p), z) +

∫ p

0

L0(ŷ(s), σp, θp, z)ds, (46)

is minimized subject to the constraints

γk(σp, θp, z) = 0, k = 1, . . . , ne, (47)

γk(σp, θp, z) ≥ 0, k = ne + 1, . . . , nq, (48)

where, for each k = 1, . . . , nq

γk(σp, θp, z) = φk(y(mk), z) +

∫ mk

0

Lk(ŷ(s), σp, θp, z)ds (49)

with

Lk(ŷ(s), σp, θp, z) =

p∑
k=1

θpkgk

(
ŷ(s),

p∑
k=1

σp,kχ[k−1,k)(s), z

)
, (50)

8 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

as well as subject to the constraints
nc∑
i=1

αk,iσ
p,j
i + βk

{
= 0

≥ 0
, j = 1, . . . , p, k = 1, . . . , ng, (51)

zLi ≤ zi ≤ zUi , i = 1, . . . , nz, (52)

and
θpk ≥ 0, k = 1, . . . , p. (53)

Remark 1. Note that in the transformed problem (Q(p)), only the knots of the
piecewise constant control contribute to the discontinuities of the right-hand side
of the state differential equation. Thus, all locations of the discontinuities of the
state differential equation are known and fixed during the optimization process.
These locations will not change from one iteration to the next. Even when two or
more of the original switching times coalesce, the number of these locations remains
unchanged in the transformed problem. Furthermore, the gradient formulae of the
cost function and constraint functions in the transformed problem with respect to
θp can be obtained directly from the gradient formulae for the optimal parameter
selection problem (P (p)) described in Section 2.3. The gradient formulae with
respect to the control parameter vector and the system parameter vector can also
be obtained from those given for Problem (P (p)) in Section 2.3.

Remark 2. The transformation described in this section has to be performed by
the user before the problem is entered int any version of o the MISER software.

2.5. Constraint Transcription. Consider Problem (P) defined in Section 2.1
with the additional continuous inequality constraints

hk(t, x(t), z) ≥ 0, ∀t ∈ [0, tf], k = 1, . . . , ns, (54)

where hk, k = 1, . . . , ns, are continuously differentiable functions of t, x and z.
After control parameterization and the time scaling transformation, the com-

bined optimal control and optimal parameter selection problem is approximated by
Problem (Q(p)) with the additional constraints:

ĥk(y(s), z) ≥ 0, ∀s ∈ [0, p], k = 1, . . . , ns, (55)

where, for each k = 1, . . . , ns,

ĥk(y(s), z) = hk(t(s), y(s), z). (56)

Let this problem be referred to as Problem (Ps(p)).
For each k = 1, . . . , ns the corresponding continuous state inequality constraint

in (55) is equivalent to

γk(σp, θ
p, z) =

∫ p

0

min{ĥk(ŷ(s), z), 0}ds = 0. (57)

However, the equality constraint (57) is non-smooth at those (σp, θ
p, z) which result

in min{ĥi(ŷ(s), z)), 0} = 0.
As the optimization routines built into Miser have difficulties with these non-

smooth equality constraints, we approximate min{ĥi(ŷ(s), z),), 0} by

Lk,ε(ŷ(s), z) =


h̃k(y(s), z), if h̃k(y(s), z) > ε,

(h̃k(y(s), z) + ε)2/4ε, if − ε ≤ h̃k(y(s), z) ≤ ε
0, if h̃k(y(s), z) ≤ −ε,

(58)

VISUAL MISER 9

where ε > 0 is an adjustable small positive parameter. This function is obtained

by simply smoothing out the sharp corner of the function min{ĥi(ŷ(s), z),), 0} = 0.
See [36, 38, 59] for further details.

For each k = 1, . . . , ns define

γk,ε(σ
p, θp, z) =

∫ p

0

Lk,ε(ŷ(s), z)ds (59)

We now define an approximate version of Problem (Ps(p)) by simply replacing the
constraints (57) by

− γ + Υk,ε(σ
p, θp, z) ≥ 0, k = 1, . . . , ns. (60)

Let the resulting approximate problem be referred to as Problem (PS,ε,γ(p)). Note
that the constraints (59) are already in canonical form, i.e., in the form of (47),
where the functions φk are equal −γ.

Since the additional constraints are in canonical form, their gradient formulae
with respect to θp, σp and z can be obtained from those in Sections 2.3 and 2.4.

Remark 3. Note that the constraint transcription described in this section has
already been incorporated into the MISER software, so that the user merely has to
specify these constraints in their original form (54).

3. Software Structure. This section presents the key aspects of the Visual MISER
software program.

3.1. Numerical Computation. After applying control parameterization, Prob-
lem (P) is approximated by an optimal parameter selection problem in the form
of Problem (P (p)). If the time scaling transform is used to supplement the con-
trol parameterization technique, the approximate problem obtained is in the form
of Problem (P̂ (p)), which has the same structure as Problem (P (p)). For prob-
lems involving continuous state inequality constraints, the constraint transcription
technique is used to approximate these continuous state inequality constraints by
inequality constraints in canonical form. Thus, the resulting approximate problems
for all of the situations mentioned above are optimal parameter selection problems
in the form of Problem (P (p)). Problem (P (p)) can be solved as a nonlinear opti-
mization problem by using a gradient-based optimization technique, such as sequen-
tial quadratic programming. The gradients of the cost function and the constraint
functions are derived by using the co-state method.

In summary, to solve a problem the user needs to construct the mathematical
formulation of the combined optimal control and optimal parameter selection prob-
lem. Then, the user also needs to apply the control parameterization method to
approximate the combined optimal control and optimal parameter selection prob-
lem as a pure optimal parameter selection problem in the form of Problem (P (p)).
If the switching times are also considered as decision variables, then the user needs
to apply the time scaling transform to map the variable switching times into pre-
fixed switching times. This yields an optimal parameter selection problem which
is again in the form of Problem (P (p)). If the problem had continuous state in-
equality constrains, the user approximate Problem (Ps(p)) by using the constraint
transcription method.

The resulting optimal parameter selection problem (P (p)) can be solved as a
nonlinear optimization problem by using the SQP method (See [58]). To apply
SQP, the values of the cost function, the constraint functions and the gradients are

10 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

needed. For details, please refer to the following algorithm.
Algorithm 1

• Step 1. Choose an initial starting vector (σp,(0), z(0)).
• Step 2. Solve the state differential equations (10) with initial condition (11).
• Step 3. Compute the values of the cost function (12) and constraint functions

(13) and (14) evaluated at (σp,(m), z(m)).
• Step 4. Solve the co-state differential equations (18) with terminal condition

(19).
• Step 5. Compute the gradients of the cost function (12) and the constraint

functions (13) and (14) with respect to σp,(m) and z(m) by using the gradient
formulas (20) and (21), respectively. For the constraint functions (15), they
depend only on the control variables. Thus, they can be computed readily
without involving co-state.

• Step 6. Call the SQP package.

3.2. Optimization. The sequential quadratic programming approach is used to
solve the optimal parameter selection problem obtained via control parameteriza-
tion. It is at the optimization stage that any error in function and gradient values
is important. If function values are only accurate to 10−6 for example, then the
convergence of the optimization to an accuracy of less than 10−6 is unlikely. Gradi-
ent values determine search directions and these values can be less accurate, except
when testing the gradient of the Lagrangian or the projected gradient against zero
for convergence. MISER’s default accuracy for solving the state and co-state dif-
ferential equations is 10−9. For each of the constraints G̃k, k = 0, 1, . . . , nq, the
quadratures are computed to an accuracy to at least 10−8. For the values of each of
their gradients, the accuracy is at least 10−7. The optimization convergence criteria
defaults are 10−7 for constraints and 10−5 for a zero of the gradient.

3.3. Ill- Conditioning. A problem is said to be ill-conditioned if approximate
solutions with large differences in the control or system parameters have similar
cost values. This implies that even though the optimization has converged to an
accuracy of 10−5 say, the control values could still be far from the exact optimal
control values, even on the subspace of piecewise constant functions over a chosen
set of knots. Yet, the computed control values are such that the same optimality
conditions are satisfied as if they were the exact optimal control values to within
10−5. One possible effect of ill-conditioning is that the computed values of the
Lagrange multipliers do not appear to converge to any fixed values. Another effect
is that the convergence of the optimization process slows down, and the decrease of
the cost function values between successive iterations is negligible. Yet, the change
of the decision parameters is markedly. This situation is similar to the case of
zig-zagging across a long slowly downhill valley floor with steep sides.

3.4. Gradient Checks. There are two forms of gradient checks in MISER. The
first is on the user supplied gradients ∇xf̃ ,∇uf̃ ,∇z f̃ ,∇xg̃k,∇ug̃k,∇z g̃k,∇xφk, k =
0, 1, . . . , nq, and ∇zx0. They are compared with the second order finite difference
approximation

f ′(x) ≈ f(x+ h)− f(x− h)

2h
+O(h2)

with the optimal increment being ε1/3, where ε is ten times the machine precision.
This assumes that f̃ , g̃k, φk and x0 can be computed to an accuracy of ten times

VISUAL MISER 11

the machine precision. This checking procedure can be invoked a various stages in
the optimization process.

The second gradient check is to compute an approximation (to second order
again) to ∇xg̃k,∇ug̃k,∇z g̃k, k = 0, 1, . . . , nq, . If the user supplied gradients are
correct, these should be correct. Discrepancy at this level indicates that the package
is not doing what it should be doing or that the user has set the precision levels on
solving the differential equations too large, or that the quadrature is not accurate
enough (not enough function values are used) or that the cost function or constraint
functions change quickly for small changes in the control parameters. The optimal
value of h in these approximations is δ1/3, where δ is the bound on the error in the
values of the functions g̃k, k = 0, 1, . . . , nq. Subsequently, it is sometimes difficult
to distinguish whether or not the finite difference approximation is actually close to
the gradient computed or not.

3.5. Other Features.

3.5.1. Smoothing the absolute valued function. Suppose that the integral term of
one or more of the canonical functions involved an absolute valued function of the
form ∫ tf

0

|L(t, x(t), u(t), z)|dt.

Clearly, the absolute valued function L is not differentiable when L = 0. Thus, the
smoothing technique proposed in [59] is applied to construct a smooth function to
approximate these non-differentiable functions. Subsequently, it yields a sequence of
approximate optimal parameter selection problems, where the smoothing parameter
ε is varied form 10−2 to 10−3 to 10−4. Facilities exist in MISER can automatically
compute the approximation of |L| and the derivative of the approximation of L.

3.5.2. Cost of Changing Control. MISER has the facility to automatically add a
penalty term to the objective which measures the change of the control. A large
value of the penalty parameter will penalize a large change in the control, while a
small value of the penalty parameter is used to regularize an ill-conditioned compu-
tation. Details can be found in [20, 41, 59]. The inclusion of these terms automat-
ically invokes the absolute value function smoothing so a sequential optimization
process is executed.

3.5.3. Piecewise Linear Control Approximation. In the control parameterization,
the control function can be approximated by piecewise constant or piecewise linear
functions. In fact, it can be approximated by functions of higher order of smoothness
through introducing additional differential equations. For details, see Section 6.8.2
of [59]. Piecewise linear continuous controls can be specified directly in MISER
without the suer having to transform their problem formulation.

3.5.4. Special Classes of Constraints. Consider a combined optimal control and op-
timal parameter selection problem. If a constraint involves only the system pa-
rameters, or only the control functions, or only the system parameters and control
functions, they can be regarded as canonical constraints, and hence are readily han-
dled by MISER. However, it is more efficient to regard them as standard constraints
of underlying optimization problem and MISER allows the user to do so.

12 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

3.6. Software Architecture. The proposed software architecture is conceptual-
ized to provide a consistent organization of the generic formulation (see Figure 1).
There are six types of modules.

Figure 1. Visual MISER software modules

(i) The Project Module is used to create a new project corresponding to an op-
timal control problem.

(ii) The User Specified Module records the problem information from the user.
(iii) The Problem Information Load module is used to load all the problem infor-

mation from an existing project, such as the number of the state, the number
of the constraints, the initial state, the objective function, the constraint func-
tions and their derivatives.

(iv) Information Checking and Processing Module checks whether or not the input
parameters are within the allowable ranges. For example, if the maximum
allowable number of the control variables is set as 50, then this module will
check whether or not the number of control variables exceeds 50. It also checks
the grammar of the functions defined by the user and then compiles these
functions as a dynamic linking library file to be called by the main program
when they are needed for carrying out computation. The advantage of this
arrangement is that the main program will remain the same, even when the
functions defined by the user are changed.

(v) The Optimization Module computes the values of the cost and constraint func-
tions, their corresponding gradients, and then calls a nonlinear optimization
solver to perform the optimization process.

(vi) The Results Output Module displays all outputs, which include state, control,
co-state and the minimum value of the cost function obtained, either as graphs
or text files.

3.7. Parameters Input and Processing. To solve an optimal control problem,
nine types of parameters are required. Figure 2 gives an illustration of these pa-
rameters.

VISUAL MISER 13

Figure 2. Input Parameters.

(i) The system information parameters includes the number of state variables,
the number of control variables and and the number of system parameters,
the initial time and the final time.

(ii) The knot set defines the partition of the time horizon for control parameteri-
zation. It includes the total number of the control knot sets, the types of the
knot sets (equally spaced or specified by the user), and the total number of
knots in each knot set.

(iii) The control definition can only be set after completing specification of the
knot sets. The user can select the type of the continuity of the control function
(piecewise constant or piecewise linear continuous) and set the control bounds
and initial value of the control parameters for each knot. Moreover, it is also
possible to specify various types of regularization on the control ill-conditioned
problems.

(iv) The system parameter specification only requires the initial values and bound
values of the system parameter vector z.

(v) The constraint information is relatively complex because ten distinct types of
constraints are allowed in accordance to different processing situations, and
there are different parameter settings for each type. Information required
includes the number of characteristic times, their values, and wheatear to select
ε− τ smoothing or absolute valued function smoothing if required. Absolute
valued function smoothing can be used for constraints of the form of∫ τi

0

|Li(t, x(t), u(t), z)|dt.

(vi) The accuracy and tolerance module includes initial values of the ε−τ smooth-
ing and the initial values of the absolute valued function smoothing if this is
used. It also includes the tolerances of the numerical state and co-state solu-
tions.

(vii) The optimization selection module is primarily for the selection of the opti-
mization solver (NLPQL, FFSQP or NLPQLP) that is to be used to solve the
underlying optimization problem, setting various operating modes for these
solvers, accuracy of the constraints to be satisfied, and the convergence crite-
rion.

14 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

(viii) The output definition module is used to specify the names of the error file,
restart file, solution file, TTY file, plot file and save file.

(ix) The miscellaneous option module includes the desired frequency of the user
supplied derivatives check, the type of the absolute value function smoothing,
the choice of automatic restart (same number of knots, or double the number of
knots or three times the number of knots), and a set of user specified (typically
used for model constraints) parameters.

The Visual MISER software will check the validity of the information supplied
before writing it into a data file. This checking is executed by Visual MISER
automatically. It is tedious because if one of the parameters is changed, then it is
likely that all the other parameters would also be changed accordingly. Finally, the
validated information is written into a data file which will be called in subsequent
stages.

3.8. Functions Input and Processing. Visual MISER requires user to input
the cost and the constraint functions as well as their derivatives. These functions
are divided into seven groups: (i) G0, (ii) G, (iii) PHI, (iv) F, (v) XZERO, (vi)
GZ, (vii) H. For details, see Figure 3. Note that all REAL variables are DOUBLE
PRECISION in these functions.

Figure 3. Functions input and processing

There are four functions in the G0 and Derivative: (i) OCG0 (g0 in (3)); (ii)
OCDG0DX; (iii) OCDG0DU; and (iv) OCDG0DZ. These functions describe the
cost and its derivatives with respect to the state x, the control u, and the system
parameter z, respectively.

There are four functions in the G and Derivative: (i) OCG (gk in (4)); (ii)
OCDGDX; (iii) OCDGDU; and (iv) OCDGDZ. These functions describe the canon-
ical constraints and their derivatives with respect to the state x, the control u, and
the system parameter z, respectively.

There are three functions in the PHI and Derivative: (i) OCPHI (φ0 in (3) and φk
in (4)); (ii) OCDPDX: and (iii) OCD-PDZ. These functions describe the terminal
cost and the terminal canonical constraints as well as their derivatives with respect
to the state x, and the system parameter z, respectively.

There are four functions in the F and Derivative: (i) OCF (f in (1)); (ii)
OCDFDX; (iii) OCDFDU; and (iv) OCDFDZ. These functions describe the right
hand side of the dynamic system and its derivatives with respect to the state x, the
control u, and the system parameter z, respectively.

VISUAL MISER 15

There are two functions in the XZERO and Derivative: (i) OCXZERO (x(0) in
(2)); and (ii) OCDX0DZ. These functions describe the initial condition for the state
and its derivative with respect to the system parameter z.

There are two functions in the GZ and Derivative: (i) OCGZ ((7)); and (ii)
OCDGZDZ. These functions describe the constraints on the system parameter and
their derivatives with respect to the system parameter z.

There are three functions in the H and Derivative: (i) OCH; (ii) OCDHDX; and
(iii) OCDHDZ. The OCH is catered for state differential equations where the state
can experience jumps at various time points through given jump functions. For such
situations, OCH will return the value of the jump function at each of these jump
points for the state differential equations. The OCDHDX returns the gradient with
respect to the state of each of the jump functions of the state differential equations.
The OCDHDZ returns the gradient with respect to the system parameter of each
of the jump functions of the state differential equations.

Similar to the case of parameters input, the Visual MISER will check the format
and grammar of all the input functions defined by the user and saved them as a
FORTRAN source file. An executable batch file will be generated so as to compile
the source file automatically. In the batch file, the directory and name of the
compiled file are required to be clearly stated. The main program will call the
batch file once it is generated, and the batch file will call the FORTRAN compiler
to compile the FORTRAN source file as a dynamic link library file.

3.9. Optimization Calculation. After the setting up of the parameters and each
of the functions defined by the user being loaded as a dynamic link library file, the
optimization calculation can be executed to solve the optimal parameter selection
problem.

At first, the software calls windows system command “LoadLibrary” to load the
functions as a dynamic link library file and to initialize the user’s defined functions.
Then, it prepares internal parameters for optimization running environment and
checks the gradients of the cost and constraint functions. Finally, it reads parameter
data file to load all the optimization parameters which have been chosen by the user.

Now, the optimization iterations can be executed. The constraint transcription
technique (ε− τ technique) will be applied if there are continuous state inequality
constraints (i.e., the inequality constraints are to be satisfied for all time t ∈ [0, tf]).

In every iteration, it will also calculate the values of the cost and constraint
functions as well as their gradients defined by the user. If revived, the software can
also calculate the numerical gradients of the cost and constraint functions. Finally,
the values of the cost and constraint functions and their gradients are provided to
the optimization solver NLQPL or NLQPLP or FFSQP to execute the optimization
calculation.

At the completion of an iteration, the software will check the stopping condition.
If the stopping condition is not satisfied, it will restart a new iteration; otherwise,
it will write the solutions to different files listed below:

• .err–error messages are written to this file.
• .res–restart file, which is in the same format as the data input file, but contains

the optimal values of the control and system parameters just found.
• .sol–solution file, which contains the final solution.
• .tty–terminal output.
• .plt–offline plot file.

16 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

• .sav–save file for intermediate results (It is possible to save the current iterate
at any step of the optimization).

Figure 4. Optimization calculation process

3.10. Execution. For the Execution, all the parameters needed by the optimiza-
tion calculation (such as system information, knot sets, control definition, system
parameter, constraint information) are set and stored in a data file. Then, the user
defines the cost function, the constraint functions and their derivatives, which will
be compiled as a dynamic link library file. If the creation of the dynamic link library
file fails, the user has to correct the format or grammar of the functions defined by
the user according to the error messages in the compiled report. Once this is done,
the user selects the “calculate” command to compute the desired solution and the
results information will be displayed on the screen. If the optimization computation
is interrupted abnormally, the user may choose to adjust the initial values of the
control or system parameters and run the program again. The minimum value of
the cost function and the running time will be displayed on the screen if the opti-
mization computation is successful. Then, the user can check all the result files or
plot the state and control curves (see Figure 5).

4. An Illustrative Example.

4.1. Optimal Euler Buckling Beam. Let us consider an interesting yet simple
example, where the minimal cross-sectional area is to be obtained for a beam subject
to a force being applied to its ends [65].

min
u,z1

g0(u, z1) = −z1
subject to

ẋ1(t) = x2(t), x1(0) = 0,

ẋ2(t) =
−z1x1(t)

x23(t)
, x2(0) = 1,

ẋ3(t) = u(t),

the constraints are:
x1(1) = 0,∫ 1

0

x3(t)dt− 1 = 0,

x3(t)− 0.5 ≥ 0, ∀t ∈ [0, 1].

VISUAL MISER 17

Figure 5. The operation procedures

Since there is no initial condition on x3, we introduce a new system parameter z2,
with z2 ≥ 0.5, so that x3(0) = z2. Now, the optimization problem has one control
and two system parameters. The third constraint is transcribed automatically by
the software using the ε− τ algorithm.

4.2. Running Environment. We need to identify the information on the running
environment for the Visual MISER test problem. This crucial information includes
operating system, central processing unit and memory size. Table 1 shows the
details of the environment information that is conveniently available.

Item Value

System Manufacturer Dell Inc.

System Model OptiPlex 790

Operating system Windows 7 Enterprise Service Pack1

System type 64-bit Operating System

Processor Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz, 4Core(s)

Installed memory(RAM) 8.00GB

Table 1. Running environment information

4.3. Problem Parameters. For the optimal Euler buckling beam problem, the
state variables are x1, x2, x3, the control variable is u1, and the system parameters

18 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

are z1, z2. To solve this problem, we define a knot set that contains 21 knots. The
knot type is defined to be equally spaced and the control continuity type is defined
as piecewise constant. The control initial value is set to 0 for all time t ∈ [0, tf],
and the initial values of the two system parameters are set as 10 and 1, respectively.
The optimization solver choice is between NLPQLP, NLPQL, and FFSQP. Table 2
shows the details of the problem parameters setting.

Item Value

number of states 3

number of controls 1

number of system parameters 2

number of knot sets 1

knot type Equally spaced

number of knots 21

Control regularization Never

Control continuity type Piecewise constant

Control initial 0

System Parameter initial 1 10

System Parameter initial 2 1

Optimization method NLPQLP/NLPQL/FFSQP

Table 2. Problem parameter setting

4.4. Running results.

4.4.1. MATLAB MISER. The Optimal Control Toolbox, the Matlab version of
MISER3.2, requires Matlab version 5.3 or later. Here, we use Matlab 2012b version
for testing. Upon satisfactory completion, the program provides separate plots of
the control variables and the state variables against time (see Figure 6).

4.4.2. Visual MISER. The standard Visual MISER will calculate optimal control
problems with up to 20 state variables, 10 control variables, 10 system parameters,
10 canonical constraints, and up to 481 quadrature subintervals. For the illustrative
example, the first step creates a new project and we enter the parameters as shown
in Table 2. Then we enter the user defined functions and their gradients. In
particular, note the ordering of Jacobian matrices in the one dimensional arrays.
After the user defined functions and their gradients are successfully compiled as a
the dynamic link library file, we call the“calculate” menu command to calculate
and generate the result files of this problem.

There is a feedback to the user if the optimization fails to converge. The user
is then able to change options for optimization parameters or edit the user defined
functions and their gradients, and restart the optimization calculation. In this illus-
trative example, we choose different nonlinear optimization solvers (NLPQLP/NLPQL

VISUAL MISER 19

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

Time(s)

S
ta

te
s

state1
state2
state3

0 0.2 0.4 0.6 0.8 1

−5

0

5

Time(s)

C
on

tr
ol

s

Figure 6. MATLAB results Figure 7. NLPQLP results

Figure 8. NLPQL results Figure 9. FFSQP results

or FFSQP) to solve the same optimal control problem and output the results as
shown in Figure 7, Figure 8 and Figure 9. It shows that all results obtained by
Visual MISER are similar to those obtained by MATLAB MISER3.2.

4.5. Efficiency Analysis. Now let us focus on the efficiency analysis of different
software packages and optimization solvers. We will compare the optimization re-
sults obtained without compiler optimization. Because all tests use double precision
computation, the optimized cost function value is double precision also. The calcu-
lated results show that the minimum cost function value is -12.7668247 that where
using MATLAB MISER3.2. It is -12.7668070 when using the Visual MISER with
the NLPQL/NLPQLP solver, and it is -12.7697869 when using the Visual MISER
with the FFSQP solver. All the optimal cost values obtained are reasonably similar.

The computational times of different software packages and optimization solvers
are compared also. The MATLAB MISER3.2 uses “tic” and “toc” function and the
Visual MISER call the “cpu time” function to evaluate optimization calculation
time. The elapsed time are measured in seconds and displayed in Figure 10.

We have tested twelve times for all situations and the optimization calculation
time is marked on the curves (see Figure 10). The MATLAB MISER3.2, takes

20 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

51-52 seconds, the Visual MISER with FFSQP takes 2.4-2.5 seconds, while the
Visual MISER with NLPQL/NLPQLP takes 0.10-0.14 seconds to complete the op-
timization calculation. These results show that Visual MISER is much faster than
MATLAB MISER3.2 in a range from one to two orders of magnitude. Meanwhile,
it is noted that the Visual MISER with the FFSQP solver needs slightly more
computational time than Visual MISER with the NLPQL/NLPQLP solver.

Figure 10. Efficiency comparison

4.6. Compiler optimization.

4.6.1. Compiler optimization parameters. The optimization option of Intel FOR-
TRAN compiler is another factor that affects the computational efficiency, in addi-
tion to the Visual MISER software itself. The compiler optimization includes the
following options:

• Optimization. We choose the option of ”Maximize Speed plus Higher Level
Optimization (/O3)”. The compiler with such an option has a much faster
speed in execution. This is especially so for many routines in the shared
libraries for Intel microprocessors.

• Inline Function Expansion. We choose the option of ”Any Suitable”. The
reason for such a choice is that the execution speed of functions compiled
in the form of Inline Function Expansion is much faster than in other form.
Thus, the functions to be used should be compiled as in the form of Inline
Function Expansion when possible.

• Favor Size or Speed. We choose the option of ”Favor Fast Code”. This option
is to ensure that the fastest execution speed is achieved.

• Parallelization. We choose the option of “ Yes (/Q-parallel)”. The choice of
this option is to allow the codes within the loop processing be automatically
converted to parallel multi-threated codes. In this way, the execution speed
of the code will be increased significantly on a multi-processor machine.

VISUAL MISER 21

• Prefetch Insertion. We choose the option of “ Aggressive (/Qopt-prefetch=3)”).
This option is to ensure that the processor will access the data in Cache rather
than in memory.

• Interprocedural Optimization. We choose the option of “Multi-file (/Qipo)”.
This option is to allow the compiler to decide whether to create one or more
object files based on an estimate of the size of the application.

• Enable Matrix Multiply Library Call. We choose the option of “Yes (/Qopt-
matmul)”. The option is to allow the compiler to call the Matmul Library
during the matrix multiplication loop nests so as to improve performance.

When the setting of these options is completed (see Figure 11), the Visual MISER
is compiled again, yielding an optimized version of the compiled Visual MISER,
which is ready to be run.

Figure 11. Compiler optimization parameters

4.6.2. Compiler Optimization Efficiency. We choose NLPQL/NLPQL and FFSQP
solvers to calculate the illustrative problem again with the optimized compiled Vi-
sual MISER. The results show that the minimum cost function value is the same as
above, but the computational time has been cut down significantly (see Figure 12).
The FFSQP solver elapsed time is shortened from 2.4-2.5 seconds to 1.1-1.2 seconds,
and NLPQL/NLPQLP solver elapsed time is shortened from 0.10-0.14 seconds to
0.06-0.07 seconds. It is obviously that the compiler optimization has improved the
computational efficiency by a factor of two.

5. More Examples.

5.1. Example 1. We consider a realistic and complex problem of transferring con-
tainers from a ship to a cargo truck at the port of Kobe. It is taken from [54].
The crane is driven by a hoist motor and a trolley drive motor. For safety reason,

22 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

Figure 12. Comparison of computational time between compiler
normal and compiler optimization

the objective is to minimize the swing during and at the end of the transfer. The
problem is summarized after appropriate normalization as follows:

minimize

{
g0 = 4.5

∫ 1

0

[
(x3(t))2 + (x6(t))2

]
dt

}
,

subject to the dynamical equations
·
x1(t) = 9x4(t),
·
x2(t) = 9x5(t),
·
x3(t) = 9x6(t)
·
x4(t) = 9(u1(t) + 17.2656x3(t)),
·
x5(t) = 9u2(t),

·
x6(t) = − 9

x2(t)
[u1(t) + 27.0756x3(t) + 2x5(t)x6(t)],

where {
x(0) = [0, 22, 0, 0,−1, 0]>, (61a)

x(1) = [10, 14, 0, 2.5, 0, 0]>, (61b)

and
|u1(t)| ≤ 2.83374,

−0.80865 ≤ u2(t) ≤ 0.71265, ∀t ∈ [0, 1],

with continuous state inequality constraints

|x4(t)| ≤ 2.5, ∀t ∈ [0, 1],

|x5(t)| ≤ 1.0, ∀t ∈ [0, 1].

VISUAL MISER 23

The bounds on the states can be formulated as the continuous inequality constraints
as follows:

g1 = −x4(t) + 2.5 ≥ 0, (62)

g2 = x4(t) + 2.5 ≥ 0, (63)

g3 = −x5(t) + 1.0 ≥ 0, (64)

g4 = x5(t) + 1.0 ≥ 0. (65)

The partition is set as 20, and we use Visual Miser to solve this problem. The
optimal state variables and the optimal control are shown in Figure 13 and Figure
14. From Figure 13, we can see that the continuous inequality constraints (62) - (65)
are stratified and the terminal state constraints (61a) - (61b). The corresponding
optimal function value is 5.24207969e − 03 and it is 5.56644743e − 003 by using
Matlab Miser 3.2. The CPU time for running this example with Visual Miser is
0.17160s, while it is 23.41688s with Matlab Miser 3.2.

0 0.2 0.4 0.6 0.8 1

0

5

10

Time

S
ta

te
s

1

0 0.2 0.4 0.6 0.8 1

14

16

18

20

22

Time

S
ta

te
s

2

0 0.2 0.4 0.6 0.8 1

−0.04

−0.02

0

Time

S
ta

te
s

3

0 0.2 0.4 0.6 0.8 1

0

1

2

Time

S
ta

te
s

4

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

Time

S
ta

te
s

5

0 0.2 0.4 0.6 0.8 1

−0.02

0

0.02

0.04

Time

S
ta

te
s

6

Figure 13. The optimal states of Example 1

5.2. Example 2. We consider a minimum time problem with a singular arc as
given below.

min
u,tf

J(u, tf) = tf

subject to the dynamics
·
x1(t) = u(t),
·
x2(t) = cosx1(t),
·
x3(t) = sinx1(t),

24 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.6

0.8

1

1.2

Time

C
on

tr
ol

s
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time

C
on

tr
ol

s
2

Figure 14. The optimal control of Example 1

with the initial conditions
x(0) = [π/2, 4, 0]>,

the terminal state constraints

x2(tf) = x3(tf) = 0, (66)

and the bounds on the control
|u(t)| ≤ 2.

After applying the time scaling transform, we have the canonical form

min
u,tf

J(u, tf) = x4(1)

·
x1(t) = u2(t)u1(t),
·
x2(t) = u2(t) cosx1(t),
·
x3(t) = u2(t) sinx1(t),
·
x4(t) = u2(t),

x(0) = [π/2, 4, 0]>,

G1 = x2(1) = 0, G2 = x3(1) = 0.

The optimal states and optimal control are shown in Figure 15 and Figure 16. As it
is shown in Figure 15, the terminal state constraints (66) are satisfied. The obtained
minimum time is 4.32120, and it is 4.32117s by using Matlab Miser 3.2. The CPU
time for running this example with Visual Miser is 0.07800s, while it is 26.85638s
with Matlab Miser 3.2.

VISUAL MISER 25

0 0.2 0.4 0.6 0.8 1

1.5

2

2.5

3

Time

S
ta

te
s

1

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

Time

S
ta

te
s

2

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

Time

S
ta

te
s

3

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

Time

S
ta

te
s

4

Figure 15. The optimal states of Example 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

Time

C
on

tr
ol

s
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

Time

C
on

tr
ol

s
2

Figure 16. The optimal control of Example 2

26 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

5.3. Example 3. Consider a linear problem with bang-bang control as given below.

min
u
J(u) =

∫ 1

0

(−6x1(t)− 12x2(t) + 3u1(t) + u2(t)) dt

subject to the linear dynamics
·
x1(t) = u2(t),
·
x2(t) = −x1(t) + u1(t),

with the initial conditions
x(0) = [1, 0]>,

and with the bounds on the control

|u1(t)| ≤ 10, |u2(t)| ≤ 10.

The optimal states and optimal control are shown in Figure 17 and Figure 18. As
it is shown in Figure 18, the optimal control is in the form of Bang-Bang type. The
corresponding optimal objective function value is −41.34000 and it is the same by
using Matlab Miser 3.2. The CPU time for running this example with Visual Miser
is 0.09360s, while it is 55.83362s with Matlab Miser 3.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

2

3

4

5

Time

S
ta

te
s

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

Time

S
ta

te
s

2

Figure 17. The optimal states of Example 3

6. Concluding Remarks and Future Research. In this paper, we decribe the
result of applying the Visual Fortran Package to the Miser optimal control soft-
ware. This provides a user-friendly way to carry out the cumbersome computations
involved for solving a general combined optimal control and optimal parameter
selection problem, where various types of constraints are formulated in a unified

VISUAL MISER 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−10

−5

0

5

10

Time

C
on

tr
ol

s
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−10

−5

0

5

10

Time

C
on

tr
ol

 2

Figure 18. The optimal control of Example 3

canonical formulation. Experience with the software is encouraging. In view of
the user-friendly nature of the software, it is expected to attract researchers and
practitioners to make use of the software to solve the optimal control problems that
they encounter in their research or work place.

Future work includes the extension of the software to discrete time optimal con-
trol problems, optimal control problems with time delays, and optimal control prob-
lems governed by distributed parameter systems. A real challenge is to improve the
speed of the software can run fast enough to solve practical optimal control prob-
lems online. In this way, it would be possible to obtain optimal feedback control
for the optimal control problem via solving a sequence of receding horizon optimal
control problem online.

Acknowledgments. This work was partially supported by the Australian Re-
search Council (under grant DP110100083) and the National Natural Science Foun-
dation of China (under grant 61450010). We also wish to thank our colleagues Dr.
Lei Wang and Dr. Zhaohua Gong who have helped test run the software on various
optimal control problems.

REFERENCES

[1] N.U. Ahmed, Dynamic Systems and Control with Applications, World Scientific, Singapore,
2006.

[2] M. Athans, and P.L. Falb, Optimal Control, McGraw-Hill, 1966.
[3] V. Azhmyakov, Optimal Control of mechanical Systems, Differential Equations and Nonlinear

Mechanics, Volume 2007. doi:10.1155/2007/18735
[4] R. Bellman, and R.E. Dreyfus, Dynamic Programming and Modern Control Theory, Orlands,

Florida, Academic Press, 1977.

28 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

[5] A.E. Jr. Bryson, and Y.C. Ho, Applied Optimal Control, Hemisphere Publishing, DC, 1975.
[6] C. Bskens, NUDOCCCS, FORTRAN-Subroutine NUDOCCCS (Numerical Discretisation

method for Optimal Control problems with Constraints in Controls and States), 2010.

http://www.swmath.org/software/8606
[7] C. Buskens, and H. Maurer, Nonlinear Programming Methods for Real-Time Control of an

Industrial Robot, Journal of Optimization Theory and Applications, Vol. 107, pp. 505-527,
2000.

[8] L. Cesari, Optimization: Theory and Applications, Springer-Verlag, New York, 1983.

[9] Q.Q. Chai, C.H. Yang, K. L. Teo and W.H. Gui, Optimal Control of an Industrial-scale
Evaporation Process: Sodium Aluminate Solution, Control Engineering Practice, Vol. 20, pp.

618-628, 2012.

[10] B.D. Craven and S.M.N. Islam, Optimization in Economics and Finance Springer, The Nether-
lands, 2005.

[11] M. Fikar, M.A. Latifi and Y. Creff, Optimal Changeover Profiles for an Industrial De-

propanizer, Chemical Engineering Science, Vol. 54, pp. 2715-2720, 1999.
[12] M.E. Fisher and L.S. Jennings, MATLAB MISER http://www.acad.polyu.edu.hk/ majlee/AMA483-

523/OCTmanual.pdf

[13] P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright , User’s
Guide for NPSOL 5.0: Fortran package for nonlinear programming, 1986.

http://web.stanford.edu/group/SOL/npsol.htm
[14] W.E. Gruver and E. Sachs, Algorithmic Methods in Optimal Control, Research Notes in

Mathematics, Vol. 47, Pitman (Advance Publishing Program), London, 1981.

[15] C.J. Goh and K.L. Teo, Control Parameterization: a Unified Approach to Optimal Control
Problems with General Constraints. Automatica, Vol. 24, pp. pp3-18, 1988.

[16] S. Gonzalez and A. Miele, Sequential Gradient-Restoration Algorithm for optimal Control

Problems with General Boundary Conditions, Journal of Optimization Theory and Applica-
tions, Vol. 26, pp. 395-425, 1978.

[17] G.R. Duan, D.K. Gu and B. Li, Optimal Control for Final Approach of Rendezvous with

Non-cooperative Target, Pacific Journal of Optimization, Vol. 6 (7), pp. 3157-3175, 2010.
[18] P. Howlett, The Optimal Control of a Train, Annals of Operations Research, Vol. 98, pp.

65-87, 2000.

[19] H. Jaddu, Direct Solution of Nonlinear Optimal Control Problems Using Quasilinearization
and Chebyshev Polynomials, Journal of the Franklin Institute, Vol. 339, pp. 479-498, 2002.

[20] L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3.3 Optimal Control Software
Version: Theory and User Manual, the University of Western Australia, 2004.

[21] L.S. Jennings and K.L. Teo, A Computational Algorithm for Functional Inequality Con-

strained Optimization Problems, Automatica, Vol. 26, pp. 371-375, 1990.
[22] C. Jiang, K. L. Teo, R. Loxton and G. R. Duan, A Neighboring Extremal Solution for an

Optimal Switched Impulsive Control Problem, Journal of Industrial and Management Opti-
mization, Vol. 8, pp. 591-609, 2012.

[23] C. Jiang, K. L. Teo and G.R. Duan, A Suboptimal Feedback Control for Nonlinear Time-

varying Systems with Continuous Inequality Constraints, Automatica, Vol. 48, pp. 660-665,

2012.
[24] C. Jiang, Q. Lin, C. Yu, K. L. Teo and G. R. Duan, An Exact Penalty Method for Free

Terminal Time Optimal Control Problem with Continuous Inequality Constraints, Journal of
Optimization Theory and Applications, Vol. 154, pp. 30-53, 2012.

[25] C.Y. Kaya and J.M. Martnez, Euler Discretization and Inexact Restoration for Optimal Con-

trol, Journal of Optimization Theory and Applications, Vol. 134, pp. 191-206, 2007

[26] C.Y. Kaya and J.L. Noakes, Leapfrog for Optimal Control, SIAM Journal on Numerical
Analysis, in press, 2008.

[27] M.I. Kamien and N.L. Schwartz, Dynamic Optimization - The Calculus of Variations and
Optimal Control in Economics and Management, North Holland, 1991.

[28] T.T. Lam, and Y. Bayazitoglu, Application of the Sequential Gradient Restoration Algorithm

to Terminal Convective Instability Problems, Journal of Optimization Theory and Applica-
tions, Vol. 49, pp. 47-63, 1986.

[29] B. Li, C. Xu, K. L. Teo and J. Chu, Time Optimal Zermelo’s Navigation Problem with Moving

and Fixed Obstacles, Applied Mathematics and Computation, Vol. 224, pp. 866-875, 2013.

VISUAL MISER 29

[30] B. Li, C. J. Yu, K. L. Teo and G.R. Duan, An Exact Penalty Function Method for Contin-
uous Inequality Constrained Optimal Control Problem, Journal of Optimization Theory and

Applications, Vol. 151, pp. 260-291, 2011.

[31] B. Li, K.L. Teo, C.C. Lim and G.R. Duan, An Optimal PID Controller Design for Nonlinear
Constrained Optimal Control Problems, Discrete and Continuous Dynamical Systems Series

B, Vol. 16, pp. 1101-1117, 2011.
[32] B. Li, K.L. Teo and G.R. Duan, Optimal Control Computation for Discrete Time Time-

delayed Optimal Control Problem with All-time-step Inequality Constraints, International

Journal of Innovative Computing, Information and Control, Vol. 6, (3), pp. 521-532, 2010.
[33] B. Li, K.L. Teo, G.H. Zhao and G.R. Duan, An Efficient Computational Approach to a

Class of Minimax Optimal Control Problems with Applications, Australian and New Zealand

Industrial and Applied Mathematics Journal, Vol. 51 (2), pp. 162-177, 2009.
[34] C.J. Li, K.L Teo, B. Li and G.F. Ma, A Constrained Optimal PID-like Controller Design for

Spacecraft Attitude Stabilization, Acta Astronautica, Vol. 74, pp. 131-140, 2011.

[35] C.C. Lim and K.L. Teo, Optimal Insulin Infusion Control to a Mathematical Blood Glu-
coregulatory Model with Fuzzy Parameters, Cybernetics and Systems, Vol. 22 (1), pp. 1-16,

1991.

[36] Q. Lin, R. Loxton and K.L. Teo, The Control Parameterization for Nonlinear Optimal Control:
A Survey, Journal of Industrial and Management Optimization, Vol. 10 (1), pp. 275-309, 2014.

[37] R. Loxton, K. L. Teo, V. Rehbock, and W.K. Ling, Optimal Switching Instants for a Switched-
capacitor DC/DC Power Converter, Automatica, Vol. 45, pp. 973-980, 2009.

[38] R. Loxton, K. L. Teo, V. Rehbock, and K. F. C. Yiu, Optimal Control Problems with a

Continuous Inequality Constraint on the State and the Control, Automatica, Vol. 45, pp.
2250-2257, 2009.

[39] R. Loxton, K. L. Teo, and V. Rehbock, Computational Method for a Class of Switched

System Optimal Control Problems, IEEE Transactions on Automatic Control, Vol. 54 (10),
pp. 2455-2460, 2009.

[40] R. Loxton, Q. Lin, V. Rehbock, and K. L. Teo, Control Parameterization for Optimal Con-

trol Problems with Continuous Inequality Constraints: New Convergence Results, Numerical
Algebra, Control and Optimization, Vol. 2, pp. 571-599, 2012.

[41] R. Loxton, Q. Lin and K.L. Teo, Minimizing Control Variation in Nonlinear Optimal Control,

Automatica, Vol. 49, pp. 2652-2664, 2013.
[42] R. Loxton, Q. Lin and K.L. Teo, Switching Time Optimization for Nonlinear Switched sys-

tems: Direct Optimization and the Time Scaling Transformation, Pacific Journal of Opti-
mization, Vol. 10 (3), pp. 537-560, 2014.

[43] R. Luus, Iterative Dynamic Programming, Chapman & Hall/CRC, Boca Raton, 2000.

[44] R. Luus and O.N. Okongwu, Towards Practical Optimal Contorl of Batch Reactors, Chemical
Engineering Journal, Vol. 75, pp. 1-9, 1999.

[45] R. Martin, and K.L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy,
World Scientific, 1994, 185pp.

[46] MATLAB - The Language of Technical Computing, http://www.mathworks.com/products/matlab/,

2008.

[47] H. Maurer, C. Buskens, and G. Feichtinger, Solution Techniques for Periodic Control Prob-
lems: A Case Study in Production Planning, Optimal Control Applications and Methods,

Vol. 19, pp. 185 - 203, 1998.
[48] H.H. Mehne, and A.H. Borzabadi, A Numerical Method for Solving Optimal Control Problems

Using State Parametrization, Numerical Algorithms, Vol. 42, pp. 165-169, 2006.

[49] A. Miele, and T. Wang, Primal-Dual Properties of Sequential Gradient- Restoration Algo-

rithms for Optimal Control Problems, Part 2, General Problem, Journal of Mathematical
Analysis and Applications, Vol. 119, pp. 21-54, 1986.

[50] H. J. Oberle, and B. Sothmann, Numerical Computation of Optimal Feed Rates for a Fed-
Batch Fermentation Model, Journal of Optimization Theory and Applications, Vol. 100, pp.

1-13, 1999.

[51] R. Petzold and A.C. Hindmarsh, LSODA, Ordinary Differential Equation Solver for Stiff or
Non-Stiff System, 2005.

[52] L.S. Pontryagin, V.G. Boltayanskii, R.V. Gamkrelidze, and E.F. Mischenko. Mathematical

Theory of Optimal Processes. CRC Press, 1987.
[53] V. Rehbock, and I. Livk, Optimal Control of a Batch Crystallization Process, Journal of

Industrial and Management Optimization, Vol. 3 (3), pp. 331-348, 2007.

30 F. YANG, K.L. TEO, R. LOXTON, V. REHBOCK, B. LI, C. YU AND L. JENNINGS

[54] Y. Sakawa, and Y. Shindo, Optimal control of container cranes, Automatica, Vol. 18, pp.
257-266, 1982.

[55] K. Schittkowski , NLPQLP: A New Fortran Implementation of a Sequential Quadratic Pro-

gramming Algorithm for Parallel Computing, 2010.
[56] A. L. Schwartz, RIOTS-A Matlab Toolbox for Solving General Optimal Control Problems,

2008. http://www.accesscom/adam/RIOTS/
[57] Y. Shindo, and Y. Sakawa, Local Convergence of an Algorithm for Solving Optimal Control

Problems, Journal of Optimization Theory and Applications, Vol. 46, pp. 265-293, 1985.

[58] W. Sun and Y.X. Yan, Optimization Theory and Methods, Springer, 2006.
[59] K.L. Teo, C.J. Goh, and K.H. Wong, A Unified Computational Approach to Optimal Control

Problems, Longman Scientific and Technical, England, 1991.

[60] K.L. Teo, L.S. Jennings, H.W.J. Lee and V. Rehbock, The Control Parameterization Enhanc-
ing Transform for Constrained Optimal Control Problems, Journal of Australian Mathemat-

ical Society, Series B, Vol. 40, pp. 314-335, 1999.

[61] K.L. Teo, V. Rehbock and L.S. Jennings, A New Computational Algorithm for Functional
Inequality Constrained optimization Problems, Automatica, Vol. 29, No. 3, pp. 789-792, 1993.

[62] K.L. Teo, and K.H. Wong, Nonlinearly Constrained Optimal Control Problems, Journal of

Australian Mathematical Society, Series B, Vol. 33, pp. 517-530, 1992.
[63] K.L. Teo, C.J. Goh and C.C. Lim, A Computational Method for a Class of Dynamical Op-

timization Problems in which the Terminal Time is Conditionally Free, IMA - Journal of
Mathematical Control and Information, Vol. 6, pp. 81-95, 1989.

[64] K.L. Teo and C.C. Lim, Time Optimal Control Computation with Application to Ship Steer-

ing, Journal of Optimization Theory and Applications, Vol. 56 (1), pp. 145-156, 1988.
[65] N.S. Trahair and J.R. Booker, Optimum Elastic Columns, International Journal of Mechanical

Sciences, Vol. 12, no. 11, pp. 973-983, 1970.

[66] O. von Stryk, Optimization of Dynamic Systems in Industrial Applications, in H.J. Zimmer-
mann (ed.): Proc. 2nd European Congress on Intelligent Techniques and Soft Computing

(EUFIT), Aachen, Germany, pp. 347-351, 1994.

[67] C.Z. Wu, and K.L. Teo, Global Impulsive Optimal Control Computation, Journal of Industrial
and Management Optimization, Vol. 2, pp. 435-450, 2006.

[68] J.L. Zhou and A. Tits, User’s guide for FFSQP version 3.7 : A Fortran Code for Solving

Optimization Programs, Possibly Minimax,with General Inequality Constraints and Linear
Equality Constraints, Generating Feasible Iterates, (1997), Institute for Systems Research,

University of Maryland, Technical Report SRC-TR-92-107r5, College Park, MD 20742.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: fyang@uestc.edu.cn

E-mail address: k.l.teo@curtin.edu.au

E-mail address: r.loxton@curtin.edu.au

E-mail address: v.rehbock@curtin.edu.au

E-mail address: bin.li@curtin.edu.au

E-mail address: yuchangjun@126.com

E-mail address: les.jennings@uwa.edu.au

mailto:fyang@uestc.edu.cn
mailto:k.l.teo@curtin.edu.au
mailto:r.loxton@curtin.edu.au
mailto:v.rehbock@curtin.edu.au
mailto:bin.li@curtin.edu.au
mailto:yuchangjun@126.com
mailto:les.jennings@uwa.edu.au

	1. Introduction
	2. Problem Formulation and Theoretical Preliminaries
	2.1. Problem Formulation
	2.2. Control Parameterization
	2.3. Gradient Computation
	2.4. Variable Time Points
	2.5. Constraint Transcription

	3. Software Structure
	3.1. Numerical Computation
	3.2. Optimization
	3.3. Ill- Conditioning
	3.4. Gradient Checks
	3.5. Other Features
	3.6. Software Architecture
	3.7. Parameters Input and Processing
	3.8. Functions Input and Processing
	3.9. Optimization Calculation
	3.10. Execution

	4. An Illustrative Example
	4.1. Optimal Euler Buckling Beam
	4.2. Running Environment
	4.3. Problem Parameters
	4.4. Running results
	4.5. Efficiency Analysis
	4.6. Compiler optimization

	5. More Examples
	5.1. Example 1
	5.2. Example 2
	5.3. Example 3

	6. Concluding Remarks and Future Research
	Acknowledgments
	REFERENCES

