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 Economic growth with coal, oil and renewable energy consumption 

in China: Prospects for fuel substitution 

Abstract 

We examine the relationship between Chinese aggregate production and consumption of three main 

energy commodities: coal, oil and renewable energy. Both autoregressive distributed lag (ARDL) and 

vector error correction modeling (VECM) show that Chinese growth is led by all three energy 

sources. Economic growth also causes coal, oil and renewables consumption, but with negative own-

price effects for coal and oil and a strong possibility of fuel substitution through positive cross-price 

effects. The results further show coal consumption causing pollution, while renewable energy 

consumption reduces emissions. No significant causation on emissions is found for oil. Hence, 

making coal expensive both absolutely and relatively to oil and renewable energy encourages shifting 

from coal to oil and renewable energy, thereby improving economic and environmental sustainability. 
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Highlights 
• Long run bi-directional causality is found between energy consumption of all three types and 

economic growth. 

• Uni-directional causality is found running from coal consumption to pollutant emission, while 
the causality from oil or renewable energy to emission is insignificant. 

• Long-run positive and significant impact of coal consumption on pollutant emission, while 

corresponding impact for renewable energy is negative and significant and for oil is insignificant.  

• Negative own-price elasticities and positive cross-price elasticities are found for coal and oil, 
while no specific price elasticities for renewables are estimated due to lack of suitable data. 

• Overall, results suggest good prospects for substitution from coal and oil to renewable energy 

by increasing fossil fuel prices. 
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Economic growth with coal and oil consumption in China: Prospects 

for fuel substitution 
 

1. Introduction 

 

Climate change, geopolitical tensions and recent nuclear accidents have increased concerns 

about energy supply security and environmental impacts associated with energy production 

and consumption. As a result, several countries are currently proposing strong energy 

substitution policies and radical energy conservation measures. In this setting, it is important 

to assess the prospects for success of those policies, including potential impacts on economic 

growth (Goldemberg & Lucon, 2010). 

Despite the emergence of a bourgeoning literature on the nexus between energy 

consumption and economic growth, consensus remains elusive. Some of the probable reasons 

for not having any consensus in this area are using different data sets, alternative econometric 

methodologies and different countries' diverse characteristics (Ozturk, 2010). 

Studies identifying the relationship between energy consumption (both at aggregate 

and disaggregate levels) and output primarily take two different approaches. The supply-side 

approach analyses the contribution of energy consumption in economic activities within the 

traditional production function framework (see, Stern, 2000; and Oh & Lee, 2004). The 

demand-side approach analyses the relationship between energy consumption, gross domestic 

product (GDP) and energy prices in a tri-variate energy demand model (see, Asafu-Adjaye, 

2000; and Rafiq & Salim, 2007). All previous studies in this field follow one or the other of 

these two approaches and, on that basis, devise energy conservation policies. Application of 

both models concurrently potentially provides more robust estimates and more meaningful 

policy implications.  

Fuel substitution is an energy policy instrument that can enhance sustainable 

development. To reduce global warming many countries are considering substituting oil, 

natural gas or renewable energy for coal, as coal exerts the most detrimental impact on 

environment. Hence, an empirical study analyzing this substitution prospect is warranted. To 

undertake meaningful policy insights in this regard this paper includes coal, oil and 

renewable energy in applying a combined supply-side and demand-side approach to Chinese 

data. We then discuss the possibilities for energy conservation and fuel substitution between 

coal, oil and renewable energy. Coal and oil have been selected as they are two major energy 

sources for the Chinese economy right at this moment and both have good price data 



available. Although prices of renewables are not available, we have included renewables 

consumption data and endeavor to infer the substitution possibilities. 

Why is China a suitable case study? China has been on the ‘news’ for its spectacular 

GDP growth as well as high energy demand (particularly crude oil and coal) in recent years. 

China is the largest producer and consumer of coal in the world, and accounts for almost half 

of the world’s coal consumption. Oil consumption in China is growing very fast in recent 

years and China is the second-largest consumer of oil behind the United States (EIA, 2014). 

Also China is widely blamed for high pollutant emission by media and civil society all 

around the world. Based on the amount and growth potential of demand for energy in the 

Chinese economy, it is now time to search for causal relationships between various forms of 

energy consumption and national output (GDP) in China and also for possible substitutability 

among the three major energy sources for environmental sustainability, coal, oil and 

renewables. 

This paper adds two distinctive contributions to the existing literature. First, this is 

one of the very first papers to investigate the growth, energy and emission linkage in China 

by including oil, coal and renewable energy consumption to reach to robust energy 

conservation policy implications. Second, we examine fuel substitution relationships in China 

using advances in time-series methodology. 

The rest of the paper is structured as follows. The next section presents an overview 

of the energy consumption profile of China. The third section provides a summary of findings 

on the relationship between energy consumption and economic growth in the last decade, 

Section 4 introduces the theoretical framework used in this paper, while description of data 

sources and methodologies are presented in Section 5. Section 6 presents the empirical 

results. Conclusions and policy implications are given in the final section. 

2. Energy Consumption in China: An Overview 

The Chinese economy has experienced phenomenal growth over the last three decades. Since 

the initiation of market reforms in 1978, China’s growth has been about 10% per annum 

(World Bank, 2013). Being the world’s most populous country with a population of over 1.3 

billion, this rapid economic growth has enabled China to lift more than 600 million people 

above the absolute poverty level. However, with strong economic growth, China’s demand 

for energy, particularly for coal and oil has been surging, as has China’s pollutant emission 

(Figure 1). According to British Petroleum [BP] (2013), in 2012, China is the largest 



consumer of coal in the world and also second largest consumer of crude oil with 50.3% and 

12.1% of world total, respectively (see Table 1).  

Table 1: Socio-economic and Oil Consumption Fact Sheet (2013) of China 
 

Indicator(s) Quantity 

Population, total (Millions) 1357.38 
Percentage of world population 19.05% 
GDP (constant 2005 billion US$) 4864.00 
Percentage of World GDP 8.69% 
GDP growth (annual %) 7.67% 
Coal consumption (million tonnes oil equivalent) 1925.3 
Percentage of world coal consumption 50.3% 
Growth in coal consumption 4.0% 
Oil consumption (million tonnes) 507.4 

Percentage of world oil consumption 12.1% 
Growth in oil consumption 3.8% 
Renewable electricity generation (quadrillion BTU) 7.782 

Percentage of world renewable electricity generation 18.13% 

Growth in renewable electricity generation 3.47% 

Source: Data of all the indicators except energy consumption is found from World Development Indicator 

by World Bank while coal, oil and renewable energy consumption data is from BP Statistical Review, 

2014. 
Crompton & Wu (2005) show that China consumed 31.0% of the world’s coal, 7.6% 

of oil, 10.7% of hydroelectricity and 1.2% of world’s total gas in 2003. More recent data 

reveal that the consumption figures for all these types of fuels have increased dramatically. 

For example, China accounted for 50.3% of the world’s coal consumption, 12.1% of oil 

consumption, 24.1% of hydroelectricity consumption and 4.8% of gas consumption in 2013 

(Appendix Table 1). The growth of output and energy consumption has environmental 

consequences, with enormous increases during this period in pollutant emission.  

Figure 1: Real GDP, Coal, Oil and Renewable Energy Consumptions, and Carbon Emission 

Scenario in China 

 

Note: Real GDP is in billion US 2005$, coal, oil and renewables consumptions are in tonnes oil equivalent, carbon emission is in million 

tonnes carbon dioxide. Real GDP data is taken from World Development indicator; coal, oil, renewables consumption and emission are from 

BP. 

According to Figure 2, China’s coal production and consumption have been pretty 

much equal over the years. However, the gap between China’s oil consumption and 



production is increasing, resulting in an increasing trend in oil imports since 1993. With 

respect to pollutant emission, oil is a better alternative source of energy than coal. Hence, 

substitution between coal and oil may help reduce the rate of increase in pollution emissions. 

Further, any substitution from both of these fossil fuels to renewable energy is truly welcome 

for its positive influence on pollution and exhaustion of non-renewable energy sources.  

Figure 2: Coal and Oil Production and Consumption Scenario of China, 1981-2012 

 

Source: BP (2013) 

China substantially subsidizes energy prices to end users (Haley and Haley, 2008). 

Chinese retail prices for energy products are regulated according to location and the type of 

consumers. The Government maintains domestic price ceilings on finished energy products 

that are not consistent with the soaring international energy prices over the past decade. In 

particular, oil refineries get government subsidies to ease the gulf between low domestic 

prices compared to international energy prices.  

The Chinese government has prioritized the expansion of natural gas-fired and 

renewable power plants as well as the electricity transmission system to connect more remote 

power sources to population centers (EIA, 2014). For example, the Three Gorges Dam 

hydroelectric facility, the largest hydroelectric project in the world, started construction in 

2003 and completed construction in 2012. As a result, China has more renewable electricity 

generation capacity than any other country in the world (Dept. of Environment Australia 
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2014). The country also leads the world in the production of many low-emissions 

technologies. In 2013 China invested US$56.3 billion in renewable power and fuels, up from 

US$2.4 billion in 2004 [Table 2]. In 2011 renewables made up a third of the country’s new 

electricity generation capacity, making it the world’s biggest investor in renewable energy 

(Dept. of Environment Australia 2014).  

Table 2: Global Trends in Renewable Energy Investment 2013 data table, $bn  

 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2004-13 

CAGR % 

United 

States 

5.5  11.7 28.2 33.6 35.9 23.5 34.7 53.4 39.7 35.8 23% 

Brazil 0.6  2.6 4.6 11.0 12.2 7.8 7.7 9.7 6.8 3.1 21% 

AMERICA 

(excl. US & 

Brazil) 

1.4  3.3 3.2 3.2 5.8 6.1 11.5 8.7 9.9 12.4 27% 

Europe 19.7 29.4 39.1 61.8  73.4 75.3 102.4 114.8 86.4 48.4 10% 

Middle East 

& Africa 

0.5  0.5 0.9 1.6 2.3 1.4 4.3 3.2 10.4 9.0 37% 

China 2.4  5.8 10.1 15.8 24.9 37.1 36.7 51.9 59.6 56.3 42% 

India 2.5  2.9 4.4 6.3 5.4 4.2 8.7 12.6 7.2 6.1 10% 

ASOC (excl. 

China & 

India) 

6.8  8.2 9.0 10.9 11.4 12.9 20.7 25.3 29.5 43.3 23% 

Total 39.5  64.5 99.6 145.9 171.2 168.4 226.7 279.4 249.5 214.4 21% 

Source: Bloomberg New Energy Finance and UNEP data, from Frankfurt School UNEP Collaborating Centre for Climate and Sustainable 

Energy Finance, Global Trends in Renewable Energy Investment 2014 

3. Evidence on Energy Consumption and Economic Growth 

Since the seminal paper of Kraft & Kraft (1978), literature on the energy consumption and 

growth nexus has been growing in all sorts of directions. The notion that energy consumption 

is one of the basic indicators of economic development has attracted economists from all over 

the world to investigate the relationship between energy consumption and economic growth 

(many studies are summarized in Tugcu et. al. (2012)). Research on this issue has been aimed 

at providing policy guidelines in designing efficient energy conservation policies. 



Tugcu et. al. (2012) characterize the literature relating energy consumption to 

economic growth with four hypotheses about causality dynamics. The first hypothesis 

comprises studies that find that energy consumption leads to economic growth, the ‘growth 

hypothesis’, include Wolde-Rufael (2004) and others. Second, studies that find bi- directional 

causality, the ‘feedback hypothesis’, include Belke et. al. (2011) and Fuinhas & Marques 

(2012). Uni-directional causality from economic growth to energy consumption, the 

‘conservation hypothesis’, is found by Narayan & Smyth (2005) among others, while Stern 

(1993), and others cannot find any causality at all, the ‘neutrality hypothesis’. There are also 

studies that find mixed conclusions, like Asafu-Adjaye (2000) and Soytas & Sari (2006). 

Since the Stern (1993) paper that questions the appropriateness of a bivariate 

approach in the light of omitted variable problems, research in this area takes one of two 

basic approaches. First, a multivariate supply-side or production-side approach, with energy 

consumption, GDP, capital and labor as variables (for example, Stern, 1993 and Oh & Lee, 

2004). Second, a demand-side approach with energy consumption, GDP and prices (for 

example, Masih & Masih (1997), Asafu-Adjaye (2000), Rafiq & Salim (2009)). 

In a recent paper, Apergis & Tang (2013) investigate the validity of the energy-led 

growth hypothesis using a different model specification and different stages of economic 

development for 85 selected countries around the globe. Overall, the authors find a 

systematic pattern, although the causality results are mixed among countries. In particular, 

the results for developed and developing countries provide more support the energy-led 

growth hypothesis compared to the less developed or low-income countries. 

Early studies of energy consumption and growth in China are Ma et. al. (2008) and 

Wolde-Rufael (2009), while two recent papers involving China are Zhang & Xu, (2012) and 

Shahbaz et. al. (2013). Shahbaz et. al. (2013) analyze the dynamic relationship  between  

energy  use  and  economic  growth  in  China  by  incorporating financial development, 

international trade and capital in their multivariate model, finding unidirectional causality 

running from energy consumption to economic growth from 1971 to 2011. Zhang & Xu, 

(2012) examine the causal relationship between energy consumption and economic growth in 

its regional and sectoral aspects by adopting provincial panel data in China from 1995 to 

2008. In contrast to Shahbaz et. al. (2013), the findings support the conservation hypothesis 

for China at both national and sectorial levels. 

Interestingly, none of the above mentioned studies include carbon emission, even 

though carbon emission is an important by-product of energy consumption. However, the 

model of Govindaraju & Tang (2013) does include pollutant emission along with coal 



consumption and economic growth in China and India. They find strong evidence of 

unidirectional causality running from economic growth to CO2 emissions in China in both the 

short and long run, while there is only a short-run uni-directional Granger causality running 

from economic growth to coal consumption in India. Bloch et. al. (2012) investigate the 

linkage between coal consumption, emission and growth in China by estimating both supply-

side and demand-side frameworks. Using data from 1977 to 2008 for the supply-side and 

1965 to 2008 for demand-side, they find evidence supporting the conservation hypothesis for 

China. 

The present article fills a gap in the existing literature by including coal, oil and 

renewable energy separately as well as together in the supply-side and demand-side models 

for China. Including coal, oil as well as renewable energy allows us to examine the causality 

for each energy input separately and also to investigate possible pollution reduction through 

fuel substitution from coal to oil and/or renewable energy. Further, this study employs both 

autoregressive distributed lag (ARDL) and Johansen vector error correction (VECM) models 

along with some recent techniques for checking the robustness of the results. 

4. Theoretical Settings 

This study analyzes the relationship between coal, oil and renewable energy consumption and 

economic activity from both supply-side and demand-side perspectives. For identifying fuel 

substitution possibilities, within each of the models we use two separate frameworks, one in 

which coal, oil and renewable energy consumption are included individually and another in 

which coal, oil and renewables are combined into a single energy measure. 

 The supply-side approach is based on an energy inclusive Cobb-Douglas type 

production function. The two supply-side models take the following multiplicative forms, 

𝑌𝑡 = 𝐴𝑡𝐾𝑡
𝛼𝐿𝑡

𝛽
𝐶𝑡

𝜒
𝑂𝑡

𝛾
𝑅𝐸𝑡

𝜑
𝜀𝑡                 (1) 

 
and, Yt = AtKt

α
Lt

β
COREt

ω
εt                                                                                                                              (2) 

 

where, Yt indicates aggregate output at time t, Kt is the flow of services provided by the 

existing capital stock, Lt is the labour employed in production, At is the level of technology, 

which is also the measure of total factor productivity, Ct is coal consumption, Ot is oil 

consumption, RE t  is renewable energy consumption and COREt is the energy measure 

for combined coal,  oil and renewable energy consumption. α, β, χ, γ, φ and ω are 



estimated parameters that measure the elasticity of output with respect to capital, labour, 

coal, oil, renewable energy and combined energy measure, respectively. 

Studies using the demand-side approach mainly focus on estimating the impact of 

economic activities on energy consumption. As mentioned above, most of these studies 

adopt a tri-variate framework consisting of energy consumption, income and CPI, where 

CPI is used as a proxy for energy prices. Instead of CPI, we utilise prices for coal and oil. 

Since there is a lack of renewable energy price data with respect to China for the whole 

studied period, we exclude the price of renewable energy.
1
 For the combined price of coal 

and oil we develop a weighted chain-linked Fisher Index.  

Pollution emissions are recognized as a by-product of energy consumption and 

output. Thus, we include an equation for CO2 emissions in a second demand-side model. 

The second demand-side model then encompasses the dynamic relationship among each 

type of energy consumption, income, oil price, coal price and CO2 emissions. Alternatively, 

we combine all forms of energy consumption into a single index and use the combined price 

of coal and oil along with income and emissions variables. 

The first demand-side model examines the relationship among aggregate output 

and coal consumption, oil consumption, renewable energy consumption or combined coal, 

oil and renewables within the following framework: 

Ct = Yt
δ
CPt

θ
OPt

λ
εt                                                                                                                                           (3) 

 
θ λ 

Ot = Yt
δ
CPt OPt εt   (4) 

 

𝑅𝐸𝑡 = 𝑌𝑡
𝛿𝐶𝑃𝑡

𝜃𝑂𝑃𝑡
𝜆𝜀𝑡   (5) 

      𝐶𝑂𝑅𝐸𝑡 = 𝑌𝑡
𝛿𝐶𝑂𝑃𝑡

𝜐              (6) 

where, Ct is coal consumption, Ot is oil consumption, R E t  i s  r e n e w a b l e  e n e r g y  

c o n s u m p t io n ,  COREt is combined oil,  coal and renewables consumption, Yt is income, 

CPt is coal price, OPt is oil price and COPt is combined coal and oil price index and δ, ϴ, λ 

and υ  are estimated parameters that measure the elasticity of aggregate output, coal price, oil 

prices and combined price index, respectively. 

The second set of demand-side equations is for examining the dynamic 

relationship among carbon emissions, output, coal, oil, renewable energy and their combined 

                                                
1 Omission of a renewable energy price variable might bias the estimated coefficients of remaining variables. 

However, much use of renewable energy in China is mandated by government policy rather than a response to 
market price signals, suggesting that the bias from omitting an energy price variable might be low. 



consumption and is as follows: 

𝐸𝑡 = 𝑌𝑡
𝜉

𝐶𝑡
∏

𝑂𝑡
𝜁

𝑅𝐸𝑡
𝜌

𝜀𝑡                (7) 

𝐸𝑡 = 𝑌𝑡
𝜉

𝐶𝑂𝑅𝐸𝑡
Γ𝜀𝑡                 (8) 

where, E is carbon emission and ξ, П, ζ, ρ and Г are the elasticity of carbon emission with 

respect to output, coal, oil, renewable energy and combined energy consumption, 

respectively. 

 5. Data Sources and Analytical Framework 

5.1 Data sources  

We use annual data from 1977 to 2013 and 1965 to 2011 for the supply-side and demand-side 

analyses, respectively. The rationale behind selecting these periods is the availability of data. 

Variables used in supply-side analysis are output, labor, capital, coal consumption, oil 

consumption, renewable energy consumption and combined energy consumption, while in 

the demand-side analysis the variables are income, coal consumption, oil consumption, 

renewable energy, combined energy consumption, coal price, crude oil price, combined coal 

and oil price index and carbon emissions. Since there are no renewable price data on China 

available over the studied period, we could not include the renewables price in our analyses.  

Output and capital are measured by constant-dollar GDP and constant-dollar gross 

fixed gross capital formation, respectively. Constant-dollar gross domestic product and 

constant-dollar fixed gross capital formation data are collected from World Development 

Indicators (WDI) of July 2013. The base year for both of these series is 2005. The labor 

variable measures the general level of employment collected from LABORSTA Labor 

Statistics Database, an online publication of International Labor Organization (ILO). 

Coal, oil and renewable energy consumption data are collected from the Statistical 

Review of World Energy, 2014 published by British Petroleum (BP). Coal and oil prices 

constructed from the data series of international coal and oil prices, which are adjusted with 

the official exchange rate between Chinese and US currency. International coal and oil prices 

are in US dollars per barrel oil equivalent and are collected from British Petroleum (BP) 

Statistical Review, 2014. The official exchange rate is collected from World Development 

Indicators (WDI), 2013. The price series for combined coal and oil is a weighted chain-linked 

Fisher Price Index, where the weights are the current share of coal or oil in the total combined 

value of coal and oil consumption in that year. The Fisher index is often termed as ‘ideal’ 

because it gets around the practical problem of ‘time reversal’. Total carbon emission data are 

collected from WDI, 2014. All the series are converted to their logarithmic forms. Visual 



presentations of these series for the supply-side and demand-side analyses are given in 

Appendix Figure 1a and 1b, respectively. 

5.2 Analytical Framework 

The empirical estimation is carried out with three objectives. First is to understand how the 

variables are linked in the long run; second is to find the dynamic causal relationship among 

the variables; and the third is to investigate the robustness of the causality directions and 

magnitudes. To achieve these objectives with robust results we employ the ARDL bound 

testing approach along with a dynamic vector error correction model that includes dummy 

variables for structural breaks. We further investigate long-run cointegrating relationships 

and causality dynamics among the variables through Johansen (1988) and Johansen & 

Juselius (1990) maximum likelihood co-integration tests. 

Prior to implementing the model it is imperative to use unit-root tests to ensure first 

that the underlying data are non-stationary at level but become stationary at their first 

difference or I(1) and there exists at least one cointegrating relationship among variables. 

Three of the most widely used unit-root tests are the Augmented Dicky-Fuller (ADF), 

Phillips Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. All three tests are 

applied in this study. However, these standard tests may not be appropriate when the series 

contain structural breaks (Salim & Bloch, 2009). Therefore, the data are also scrutinized for 

possible structural break(s) during the studied periods. 

Perron (1989) points out that ignoring structural breaks in the trend function leads to 

considerable power reduction of traditional unit-root tests. However, Perron’s (1989) 

assumption of an unknown exogenous break point is criticized due of its tendency to favor 

the alternative hypothesis. The assumption of a single break point is criticized because of a 

loss of information from considering just one break instead of two, three or even more. We 

employ relatively new and more powerful methods of Lee & Strazicich (2003 and 2004) to 

test the existence of possible structural break(s). 

 Once the time-series properties of the variables are established, we perform the 

ARDL bounds testing approach in presence of structural break. This procedure has several 

advantages. It is flexible and applies regardless of the order of integration of the variables. 

According to Pesaran & Shin (1999), simulation results show that this approach is superior 

and delivers consistent results for even a small sample. Furthermore, through performing a 

simple linear transformation of the ARDL bounds testing method it is possible to derive a 

dynamic unrestricted error correction model (UECM). The resultant UECM can then easily 



integrate the short-run dynamics with the long-run equilibrium without losing any long-run 

information. Hence, we estimate the following ARDL model:
2
 

∆𝑙𝑛𝑌𝑡 = 𝛼1 + 𝛼𝑡𝑇 + 𝛼𝐷𝐷 + 𝛼𝑌𝑙𝑛𝑌𝑡−1 + 𝛼𝐾𝑙𝑛𝐾𝑡−1 + 𝛼𝐿𝑙𝑛𝐿𝑡−1 + 𝛼𝐶𝑙𝑛𝐶𝑡−1 + 𝛼𝑂𝑙𝑛𝑂𝑡−1 +

𝛼𝑅𝐸𝑙𝑛𝑅𝐸𝑡−1 + ∑ 𝛼𝑖∆𝑙𝑛𝑌𝑡−𝑖
𝑝
𝑖=0 + ∑ 𝛼𝑗∆𝑙𝑛𝐾𝑡−𝑗 + ∑ 𝛼𝑘∆𝑙𝑛𝐿𝑡−𝑘 +  ∑ 𝛼𝑙∆𝑙𝑛𝐶𝑡−𝑙 +𝑠

𝑙=0
𝑟
𝑘=0

𝑞
𝑗=0

∑ 𝛼𝑚∆𝑙𝑛𝑂𝑡−𝑚 + ∑ 𝛼𝑛∆𝑙𝑛𝑅𝐸𝑡−𝑛
𝑢
𝑛=0 + 𝜋1𝑡

𝑡
𝑚=0      (9) 

∆𝑙𝑛𝐾𝑡 = 𝛽1 + 𝛽𝑡𝑇 + 𝛽𝐷𝐷 + 𝛽𝑌𝑙𝑛𝑌𝑡−1 + 𝛽𝐾𝑙𝑛𝐾𝑡−1 + 𝛽𝐿𝑙𝑛𝐿𝑡−1 + 𝛽𝐶 𝑙𝑛𝐶𝑡−1 + 𝛽𝑂𝑙𝑛𝑂𝑡−1 +

𝛽𝑅𝐸𝑙𝑛𝑅𝐸𝑡−1 + ∑ 𝛽𝑖∆𝑙𝑛𝑌𝑡−𝑖
𝑝
𝑖=0 + ∑ 𝛽𝑗∆𝑙𝑛𝐾𝑡−𝑗 + ∑ 𝛽𝑘∆𝑙𝑛𝐿𝑡−𝑘 +  ∑ 𝛽𝑙∆𝑙𝑛𝐶𝑡−𝑙 +𝑠

𝑙=0
𝑟
𝑘=0

𝑞
𝑗=0

∑ 𝛽𝑚∆𝑙𝑛𝑂𝑡−𝑚 + ∑ 𝛽𝑛∆𝑙𝑛𝑅𝐸𝑡−𝑛
𝑢
𝑛=0 + 𝜋2𝑡

𝑡
𝑚=0      (10) 

∆𝑙𝑛𝐿𝑡 = 𝜆1 + 𝛼𝑡𝑇 + 𝜆𝐷𝐷 + 𝜆𝑌𝑙𝑛𝑌𝑡−1 + 𝜆𝐾𝑙𝑛𝐾𝑡−1 + 𝜆𝐿𝑙𝑛𝐿𝑡−1 + 𝜆𝐶𝑙𝑛𝐶𝑡−1 + 𝜆𝑂𝑙𝑛𝑂𝑡−1 +

𝜆𝑅𝐸𝑙𝑛𝑅𝐸𝑡−1 + ∑ 𝜆𝑖∆𝑙𝑛𝑌𝑡−𝑖
𝑝
𝑖=0 + ∑ 𝜆𝑗∆𝑙𝑛𝐾𝑡−𝑗 + ∑ 𝜆𝑘∆𝑙𝑛𝐿𝑡−𝑘 + ∑ 𝜆𝑙∆𝑙𝑛𝐶𝑡−𝑙 +𝑠

𝑙=0
𝑟
𝑘=0

𝑞
𝑗=0

∑ 𝜆𝑚∆𝑙𝑛𝑂𝑡−𝑚 + ∑ 𝜆𝑛Δ𝑙𝑛𝑅𝐸𝑡−𝑛
𝑢
𝑛=0 + 𝜋3𝑡

𝑡
𝑚=0      (11) 

∆𝑙𝑛𝐶𝑡 = 𝜗1 + 𝜗𝑡𝑇 + 𝜗𝐷𝐷 + 𝜗𝑌𝑙𝑛𝑌𝑡−1 + 𝜗𝐾𝑙𝑛𝐾𝑡−1 + 𝜗𝐿𝑙𝑛𝐿𝑡−1 + 𝜗𝐶 𝑙𝑛𝐶𝑡−1 + 𝜗𝑂𝑙𝑛𝑂𝑡−1 +

𝜗𝑅𝐸 𝑙𝑛𝑅𝐸𝑡−1 + ∑ 𝜗𝑖∆𝑙𝑛𝑌𝑡−𝑖
𝑝
𝑖=0 + ∑ 𝜗𝑗∆𝑙𝑛𝐾𝑡−𝑗 + ∑ 𝜗𝑘∆𝑙𝑛𝐿𝑡−𝑘 + ∑ 𝜗𝑙∆𝑙𝑛𝐶𝑡−𝑙 +𝑠

𝑙=0
𝑟
𝑘=0

𝑞
𝑗=0

∑ 𝜗𝑚∆𝑙𝑛𝑂𝑡−𝑚 + ∑ 𝜗𝑛Δ𝑙𝑛𝑅𝐸𝑡−𝑛
𝑢
𝑛=0 + 𝜋4𝑡

𝑡
𝑚=0      (12) 

∆𝑙𝑛𝑂𝑡 = 𝜌1 + 𝜌𝑡𝑇 + 𝜌𝐷𝐷 + 𝜌𝑌𝑙𝑛𝑌𝑡−1 + 𝜌𝐾𝑙𝑛𝐾𝑡−1 + 𝜌𝐿𝑙𝑛𝐿𝑡−1 + 𝜌𝐶 𝑙𝑛𝐶𝑡−1 + 𝜌𝑂𝑙𝑛𝑂𝑡−1 +

𝜌𝑅𝐸 𝑙𝑛𝑅𝐸𝑡−1 + ∑ 𝜌𝑖∆𝑙𝑛𝑌𝑡−𝑖
𝑝
𝑖=0 + ∑ 𝜌𝑗∆𝑙𝑛𝐾𝑡−𝑗 + ∑ 𝜌𝑘∆𝑙𝑛𝐿𝑡−𝑘 +   ∑ 𝜌𝑙∆𝑙𝑛𝐶𝑡−𝑙 +𝑠

𝑙=0
𝑟
𝑘=0

𝑞
𝑗=0

∑ 𝜌𝑚∆𝑙𝑛𝑂𝑡−𝑚 + ∑ 𝜌𝑛∆𝑙𝑛𝑅𝐸𝑡−𝑛
𝑢
𝑛=0 + 𝜋5𝑡

𝑡
𝑚=0      (13) 

∆𝑙𝑛𝑅𝐸𝑡 = 𝜏1 + 𝜏𝑡𝑇 + 𝜏𝐷𝐷 + 𝜏𝑌𝑙𝑛𝑌𝑡−1 + 𝜏𝐾𝑙𝑛𝐾𝑡−1 + 𝜏𝐿𝑙𝑛𝐿𝑡−1 + 𝜏𝐶𝑙𝑛𝐶𝑡−1 + 𝜏𝑂𝑙𝑛𝑂𝑡−1 +

𝜏𝑅𝐸𝑙𝑛𝑅𝐸𝑡−1 + ∑ 𝜏𝑖∆𝑙𝑛𝑌𝑡−𝑖
𝑝
𝑖=0 + ∑ 𝜏𝑗∆𝑙𝑛𝐾𝑡−𝑗

𝑞
𝑗=0 + ∑ 𝜏𝐾∆𝑙𝑛𝐿𝑖−𝐾

𝑟
𝑘=0 + ∑ 𝜏𝑙∆𝑙𝑛𝐶𝑖−𝑙

𝑠
𝑙=0 +

∑ 𝜏𝑚∆𝑙𝑛𝑂𝑡−𝑚
𝑡
𝑚=0 + ∑ 𝜏𝑛∆𝑙𝑛𝑅𝐸𝑡−𝑛 + 𝜋6𝑡

𝑢
𝑛=0     (14) 

where, Δ is the difference operator, T is time trend and D indicates common structural break 

point based on the findings of the Lee & Strazicich (2003 and 2004) tests.  

 Testing cointegration involves comparing the compound F-statistics with the upper 

critical bound (UCB) and lower critical bound (LCB) (Pesaran et. al. (2001). The null 

hypothesis 𝐻0: 𝛼𝑌 = 𝛼𝐾 = 𝛼𝐿 = 𝛼𝐶 = 𝛼𝑂 = 0 of no cointegration [in equation 9] is tested 

against alternate 𝐻1: 𝛼𝑌 ≠ 𝛼𝐾 ≠ 𝛼𝐿 ≠ 𝛼𝐶 ≠ 𝛼𝑂 ≠ 0 of cointegration.
3
 The series are 

cointegrated if the computed F-statistic lies above the UCB; and not cointegrated if the 

computed F-statistics is below the LCB; while if the computed F-statistics is between UCB 

                                                
2 For greater understanding, from this point onward we will be elaborating all the models based on the model in 

Equation (1). 
3
 Pesaran et al. (2001) provide two critical values, when the regressors are I(0) and when they are I(1). 



and LCB, the test is uncertain.
4
 We use critical bounds from Narayan (2005), which are more 

appropriate for a small sample, 47 and 36 observations in this case. The parameter stability 

test is checked by applying the CUSUM test proposed by Brown et. al. (1975). This study 

also employs the Chow forecast test for examining structural breaks in the data. 

 For the long-run relation among the variables the following equation is used: 

𝑙𝑛𝑌𝑡 =  𝜃0 + 𝜃1𝑙𝑛𝐾𝑡 + 𝜃2𝑙𝑛𝐿𝑡 + 𝜃3𝑙𝑛𝐶𝑡 + 𝜃4𝑙𝑛𝑂𝑡 + 𝜃5𝑙𝑛𝑅𝐸𝑡 + 𝜇𝑖  (15) 

where, 𝜃0 = − 𝛽1 𝛼𝑌⁄ , 𝜃1 = − 𝛼𝐾 𝛽1⁄ , 𝜃2 = − 𝛼𝐿 𝛽1⁄ ,

𝜃3 = −𝛼𝐶 𝛽1,  𝜃4  = −⁄ 𝛼𝑂 𝛽1, 𝜃5 = −𝛼𝑅𝐸⁄ /𝛽1 and µt is the ‘white noise’ error term. Finally, 

to ensure robustness of the causality findings, we perform generalized forecast error variance 

decompositions as suggested by Koop et. al. (1996) and Pesaran & Shin (1998). 

6. Empirical analysis  

6.1 Time series properties of data  

Prior to carrying out unit root tests for the variables, we first test for the appropriateness of 

the logarithmic transformation of each of the variables in Equations (1) to (8). The test results 

indicate that the natural logarithmic transformations of all the equations are appropriate for 

unit-root testing.
5
 Augmented Dickey-Fuller (ADF), Phillips Perron (PP) and Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) unit root tests are employed to examine the stationarity of 

underlying time-series data. The results of unit root tests reveal that all the concerned 

variables are non-stationary at levels but stationary at their first differences.
6
 We also employ 

Lee & Strazicich (2003 and 2004) tests for one and two structural breaks. The results of these 

tests are provided in Table 3. Since the null cannot be rejected for most of the break dates (Bt, 

Bt1 and Bt2 ), we conclude that all the series are non-stationary at level while stationary at their 

first differences. This confirms that all the variables in both the supply-side and demand-side 

models are integrated at I(1). 

The break dates from both of the tests are pretty consistent with each other. 

Hence, we take at least one statistically significant break date which is common from both 

the tests into our analysis. For output, coal consumption, oil consumption, renewable energy 

consumption, combined energy consumption, oil price, combined coal and oil price and 

pollutant emission the dates of the breaks lie around 2002, 1973, 2003, 1969, 1973, 1973 

and 1997, respectively.  

                                                
4 Under such circumstances, Bannerjee et.al. (1998) suggests that the error correction method is appropriate.  
5 Results not reported considering space limitation. However, results will be provided upon request. 
6 Results not reported here due to the space limitation. However, the authors will provide detailed results upon 
request. 



Table 3: Structural Break Tests 

 LM One Break Unit Root Test 

of Lee and Strazicich (2004) 

 LM Two Break Unit Root Test of Lee and Strazicich 

(2003) 

Series K TB St-1 Bt  k TB1 TB2 St-1 Bt1 Bt2 

Supply-side Analysis        

LY 3 2001 
-0.172 

[-1.518] 

-2.030* 

[-3.404] 
 0 1998 2001 

-0.305 

[-2.285] 

-0.013 

[-1.135] 

-1.212* 

[-4.072] 

LL 1 1983 
-0.074 

[-1.079] 

0.006 

[0.500] 
 4 1983 2009 

-0.081 

[-1.107] 

0.005 

[0.471] 

-0.009 

[-0.776] 

LK 2 1989 
-0.389 

[-2.695] 

-0.031 

[-0.876] 
 8 1988 1991 

-0.439 

[-2.858] 

-0.063 

[-2.168] 

0.083 

[3.038] 

LC 5 2001 
-0.099 

[-1.248] 

-0.014 

[-0.644] 
 2 1997 2003 

-0.121 

[-1.368] 

-0.042 

[-2.429] 

0.042 

[2.474] 

LO 0 1973 
-0.114 

[-1.348] 

-0.045 

[-2.288] 
 7 1973 1979 

-0.129 

[-1.413] 

-0.045 

[-2.307] 

-0.014 

[-0.713] 

LRE 1 2009 
-0.125 

[-1.486] 

0.055 

[1.717] 
 2 1990 2009 

-0.155 

[-1.643] 

-0.047 

[-1.518] 

0.054 

[1.719] 

LCORE 2 2002 
-0.100 

[-1.320] 

0.031 

[1.917] 
 1 2002 2009 

-0.122 

[-1.445] 

0.031 

[1.946] 

0.024 

[1.641] 

Demand-side Analysis        

LY 2 2001 
-0.138 

[-1.741] 

-0.050 

[-2.625] 
 6 1998 2001 

-0.311 

[-2.273] 

-0.013 

[-1.123] 

-0.009 

[-0.812] 

LC 1 2002 
-0.172 

[-1.965] 

0.080* 

[3.338] 
 5 1997 2002 

-0.208 

[-2.157] 

0.080 

[1.417] 

-0.047 

[-3.417] 

LO 7 1973 
-0.043 

[-0.949] 

0.108* 

[3.220] 
 3 1973 1978 

-0.049 

[-1.005] 

0.109 

[3.253] 

0.038 

[1.058] 

LRE 0 2003 
-0.322 

[-2.842] 

0.037** 

[4.154] 
 1 1990 2003 

-0.382 

[-3.114] 

-0.047 

[-.529] 

0.035 

[3.124] 

LCORE 3 1969 
-0.121 

[-1.645] 

0.08** 

[3.610] 
 0 1969 1989 

-0.146 

[-1.800] 

0.08*  

[3.624] 

-0.029 

[-1.324] 

LE 8 1997 
-0.170 

[-1.954] 

0.101** 

[3.688] 
 1 1997 2001 

-0.203 

[-2.126] 

0.102* 

[3.791] 

-0.054 

[-1.991] 

LCP 3 1998 
-0.359 

[-2.996] 

-0.044 

[-0.942] 
 6 1974 1998 

-0.409 

[-3.209] 

0.060 

[1.214] 

-0.043 

[-0.906] 

LOP 8 1973 
-0.70** 

[-4.711] 

0.468* 

[3.298] 
 5 1973 2004 

-0.8*** 

[-5.032] 

0.452 

[3.257] 

0.241 

[1.714] 

LCOP 0 1973 
-0.7*** 

[-4.805] 

-0.134 

[-1.683] 
 4 1973 1989 

-0.7*** 

[-4.880] 

0.292** 

[4.144] 

0.082 

[1.156] 

 

The results reveal a significant break for renewable energy consumption in 2003. This 

is also not surprising. The Chinese government started its own renewable energy program in 

the 1990s. From 1994 to 2004 nearly 20 policies and regulations have been carried out. All 



these policies started to have a combined impact on renewables market within a decade. Some 

of these include: Wind Power Grid Regulations Act 1994, China Electric Power Act 1995, 

China Energy Conservation Law Act 1998, etc. The break in 1997 for pollution might be 

linked with huge increase in Chinese energy imports, especially oil. In response to the rapidly 

growing demand for energy and deteriorating prospect for major new energy discoveries, 

Chinese political leadership and marginal elite have started to encourage energy imports from 

foreign sources. By 1997 the number of countries exporting more than two million tonnes of 

crude oil to China had doubled from 1990 (Umbach, Frank. 2010). 

6.2 Co-integration tests  

As the variables are non-stationary in levels and stationary in first differences, both ARDL 

and Johansen (1988) and Johansen and Juselius (1990) maximum likelihood co-integration 

tests are employed to examine if the variables are cointegrated. ARDL test results are 

reported in Table 4. This bound test is sensitive to lag length, so we use the Akaike 

Information Criteria (AIC) to determine the optimal lag lengths that are reported in column 

2 of Table 4.
7
 According to ARDL results long-run cointegrating relationships exist among 

all the variables in every single equation. 

Table 4: ARDL Cointegration Test 

Bounds testing to cointegration  Diagnostic tests 

Estimated 

models 

Optimal 

lag  

Structur-

al break 

F-

statistics 

χ2 

NORMAL 

χ2 

ARCH  

χ2 

RESET 

χ2 

SERIAL 

Supply-side Analysis       

LY/LL, LK, LC, 

LO, LRE 

1,0,2,0,

2, 0 

2001 3.973** [2]:0.690 [1] 0.054 [1]:0.875 [1]0.278 

LY/LL, LK, 

LCORE 

2,0,2,2 2001 3.763** [2]:1.672 [1]:0.003 [1]:3.067 [1]0.207 

        

Demand-side Analysis       

LC/LY, LCP, 
LOP 

2,2,2,0 2002 3.351** [2]:0.441 [1]:2.855 [1]:1.395 [1]0.146 

LO/LY, LCP, 

LOP 

2,1,2,0 1973 2.735** [2]:0.441 [1]:3.344 [1]:0.577 [1]0.047 

LRE/LY, LCP, 

LOP 

1,2,1,0 2003 3.613** [2]:0.108 [1]:4.253 [1]:3.058 [1]:0.865 

LCORE/LY, 

LCOP 

3,1,4 1969 2.635** [2]:0.019 [1]:0.272 [1]:0.753 [1]:0.904 

LE/LY, LC, LO, 

LRE 

1,2,1,0,

4 

1997 3.612** [2]:1.503 [1]:0.043 [1]:3.577 [1]0.687 

LE/LY, LCORE 2,0,2 1997 2.204** [2]:3.346 [1]:0.436 [1]:3.002 [1]0.112 
Note: (*), (**) and (***) indicate 1, 5 and 10 per cent level of significance, respectively. Optimal lag length is determined by AIC. [.] is 

the order of diagnostic test. Critical values are collected from Narayan (2005). Critical values were generated via stochastic bootstrapping 
of 40,000 replications. 

                                                
7 In order to determine how many lags to use, several selection criteria can be used. The two most common are 

the Akaike Information Criterion (AIC) and the Schwarz' Bayesian Information Criterion. In our tests (including 

unit root, cointegration and VECM) we have consistently chosen lags based on AIC, following Liew &Sen 
(2004), who find that the AIC is superior in the context of small sample (60 observations or below). 



Results of Johansen & Juselius (1990) cointegration test are also reported in Appendix 

Table 2 to check the robustness of a long-run relationship.
8
We use the optimum lag lengths 

provided by AIC criterion. It is apparent from Appendix Table 2 that, for supply-side 

Equations (1) and (2) there are at most 3 and 2 cointegrating relationships among the 

variables. For the demand-side Equations 3, 4, 5, 6, 7, and 8 there exist at most 1, 2, 2, 3, 2 

and 3 cointegrating relationships, respectively. Hence, these results suggest that there are 

long-run equilibrium relationships among the variables in each of the eight equations. 

 

6.3 Short-run and long-run estimates  

The cointegrating relationships among the variables indicate the existence of both short-run 

and long-run relationships among the variables. The ARDL based estimates for both long and 

short runs are presented in Table 5. 

Results from both of the supply-side models indicate coal, oil and renewable energy 

consumptions are positively related to economic growth and the relationships are significant. 

This implies that all the three energy sources play a vital role to enhance economic growth in 

China. These findings are consistent with the findings of Yuan et. al. (2008) and Wang et. al. 

(2011) that energy use is a crucial input to production in China. The result nonetheless is 

contradictory to Zhang & Xu (2012), who claim a negative impact of energy use on economic 

growth due to the use of energy in unproductive sectors. The results further suggest that in 

the long run, all else constant, a 1% growth in coal, oil, renewable energy and combined 

energy consumption is expected to increase output by 0.492, 0.179, 0.451 and 0.711%, 

respectively. 

With regards to the demand-side, in the long-run economic growth plays a vital role 

in coal, oil and renewables consumption separately as well as jointly. Hence, there exists a 

long-run bi-directional causality among aggregate output and coal or oil or renewable energy 

separately as well as their combined consumption. A 1% increase in output leads to 0.819, 

1.572, 1.106 and 0.297% increase in coal, oil, renewables and combined consumption, 

respectively. The findings in Table 4 for cross-price elasticity in coal, oil and renewable 

energy consumption equations show clear prospects for fuel substitution. Oil price has a long-

run elasticity of 2.316 with the coal consumption, while coal price has-long run elasticity of 

1.972 with oil consumption. Further, coal and oil prices have positive elasticities of 2.711and 

                                                
8 We implemented the test within the option of intercept, no trend. This is done in accordance with the unit root 

test results, where all the test statistics with intercept are significant at 1% level but trend is not statistically 
significant.    



1.257, respectively, with renewable energy consumption. Hence, there exists clear 

opportunity of intra-fuel substitution among coal, oil and renewable energy in China. Most 

importantly, the large positive elasticity of renewable energy consumption to both coal and 

oil prices suggests a clear potential for reducing pollution emissions through raising the price 

of fossil fuels. 

Negative coal and oil own-price elasticity suggest that the intensity of their separate 

use in production can be reduced through actions that raise their price in each case. The own-

price elasticity for coal is -0.848 and for oil is-1.762 in the long run. All the short-run 

causality directions are also consistent with long-run elasticities. Further, it is notable that 

combined use of coal, oil and renewable energy has no statistically significant relationship 

with the combined price index for coal and oil in either the short or long run. Thus, an 

increase in the price of either coal or oil apparently does not reduce overall energy 

consumption, suggesting that there need not be an adverse effect on economic growth from 

raising the price of either fossil fuel. 

Using a simple OECD spreadsheet model for a period of 1986 to 2004, Brook et. al. 

(2004) find long-run oil demand price elasticity as -0.20. A further OECD study of oil 

demand in China by Fournier et. al. (2013) uses an error correction model within the constant 

elasticity of substitution (CES) production function framework. The long-run and short-run 

price elasticity are found by the authors to be -0.238 and 0.083, respectively. These oil price 

elasticity estimates are much smaller than our estimates. Jiao et. al. (2009) use a time-series 

method similar to our own to estimate price elasticity for coal demand over the period 1980 

to 2006. They find long-run price elasticity of -1.161 and short run elasticity of -0.067, 

estimates that are not dissimilar from our own. 

The emission equations in the last two columns of Table 5 show how coal, oil and 

renewable energy consumption separately impact on emissions. In the second last column, 

coal consumption significantly increases pollutant emission in both the short run and the long 

run, while oil consumption only has a weak short-run impact on emission and no significant 

impact in the long run. Renewable energy has negative impact on pollution. In the short run 

there exists a unidirectional causality running from renewable energy to emission. These 

results clearly indicate that increased adoption of renewable energy in China can help reduce 

emission significantly both in short and long run. The last column indicates that combined 

energy consumption of all three types is positively and significantly related to emissions in 

both the short and long run. Clearly, it is changing the composition of energy consumption 



away from coal and towards oil and, especially, renewables that is the key to reducing 

emissions with reducing economic growth in China. 

Table 5: ARDL Long-Run and Short-Run Results 
 

Estimated 

models 

Supply-side Analysis Demand-side Analysis 

Series LY: LL, 

LK, LC, 

LO,RE 

LY: LL, 

LK, 

LCORE 

LC: LY, 

LCP, LOP 

LO: LY, 

LCP, LOP 

LO: LY, 

LCP, 

LOP 

LCORE: 

LY,  

LCOP 

LE: LY, 

LC, LO, 

LRE 

LE: LY, 

LCORE 

Long-Run Analysis        

LY   0.819* 1.572* 1.106** 0.297** 0.338* 0.490* 

LL 0.046 0.667       

LK 1.021* 0.983***       

LC  0.492*      1.150*  

LO 0.179***      0.012  

LRE   0.451**      -0.481*  

LCORE  0.711***      0.295** 

LCP   -0.848* 1.972** 2.711*    

LOP   2.316* -1.762* 1.257*    

LCOP      2.041   

        

Short-Run Analysis        

Δ LY   0.673* 0.851* 1.489** 2.088 5.034** 0.501** 
Δ LL 0.020 0.336       

Δ LK 21.59* 23.435*       

Δ LC  0.876      53.765*  

Δ LO 4.032**      0.022  

Δ LRE 7.628*      6.773*  

Δ LCORE  4.663**      82.604* 

Δ LCP   -0.154* 0.051* 1.072*    

Δ LOP   0.335*** -0.305 1.170**    

Δ LCOP      0.196   

         

ECMt-1 -0.133* -0.037 -0. 647* -0.192* -0.015** -0.021* -0.200* -0.017** 
         

R2 0.818 0.999 0.732 0.626 0.803 0.997 0.960 0.937 

F-

Statistics 

16.130*  15.015* 15.127* 8.538* 4.905** 9.021* 41.329* 

D.W. 1.794  1.797 1.874 1.958 2.353 2.204 1.980 
Note: (*), (**) and (***) indicate 1, 5 and 10 per cent level of significance, respectively.  

 

To check parameter stability we implement the CUSUM test and find that all the 

parameters used in each of the models are sufficiently stable.
9
 The Chow forecast test is also 

employed to investigate structural changes in the economy for periods of 1977 to 2012 and 

1965 to 2011 for supply-side and demand-side analysis, respectively. Macroeconomic series 

are often affected by exogenous shocks or regime shifts. For example, during the studied 

period China has gone through several macroeconomic changes, including reforms in energy 

regulations and institutional developments in 1980s and 1990s. China also adopted an open 

                                                
9
 Detailed results of the CUSUM tests are available on request from the authors. 



door policy since 1978. These structural reforms, market incentives, and decentralization 

policies led to rapid growth in the energy sector since the late 1980s. These changes may alter 

the effects of the variables we use. However, the results of the Chow forecast test suggest that 

there are no significant structural breaks in the effects of any of the variables during the 

sample periods for both supply-side and demand-side models (Appendix Table 3). These 

results further confirm that the ARDL estimates are reliable. 

 We implement a vector error correction (VECM) model to investigate the robustness 

of ARDL model and identify causal relationships in greater detail. Such knowledge is 

helpful in crafting appropriate energy policies for sustainable growth. Table 6 reports 

results for the direction of long-run and short-run causality. 

The results are consistent with the findings of ARDL model. There exists bi- 

directional causality between growth and coal and/or oil and/or renewable energy 

consumption. Coal, renewable energy and combined coal-oil-renewable energy consumption 

Granger cause pollution emission, but no significant causality is found from oil consumption 

to pollution. 

Table 6: VECM Granger Causality Test 

The Granger causality tests suggest which variables in the system have significant 

impacts on the future values of each of the variables in the system. However, the results do 

not, by construction, indicate how long these impacts will remain effective. Variance 

Model Supply-side  Demand-side   
Series LY: LL, 

LK, LC, 

LO, 

LRE 

LY: LL, 

LK, 

LCORE 

LC: LY, 

LOP, LCP 

LO: LY, 

LCP, 

LOP 

LO: LY, 

LCP, 

LOP 

LCO: 

LY, 

LCOP 

LE: LY, 

LC, LO, 

LRE 

LE: LY, 

LCORE 

Short-run analysis       
Δ LY   4.901* 2.526* 2.917*** 0.806 0.646** 1.460 

Δ LL 1.297 2.370       

Δ LK 33.173* 15.78*       

Δ LC  2.119**      0.185*  

Δ LO 0.242**      0.347  

Δ LRE 0.769**      1.956**  

Δ LCORE  7.634*      9.513* 

Δ LCP   3.254* 2.906* 0.908***    

Δ LOP   4.526* 2.524** 4.176***    

Δ LCOP      0.006   

        
Long run analysis        

ECTt-1 -.004*** -0.022* -0.044* -0.196* -0.021 -0.049* -0.101* -0.084* 

 -0.018** -0.014*  -0.189* -0.108* -0.031 -0.018 -0.019 

 -0.017*     -0.019*  -0.034** 

         

R2 0.784 0.791 0.838 0.937 0.883 0.702 0.740 0.694 

F-Statistics 11.848* 22.005* 18.505* 6.926* 3.436* 6.430* 5.017* 6.199* 

D.W. 2.015 1.826 1.318 1.294 1.974 1.954 2.003 2.251 
Note: (*), (**) and (***) indicate 1, 5 and 10 per cent level of significance, respectively. 



decomposition gives this information. Hence, we conduct generalized variance 

decompositions analysis proposed by Koop et al. (1996) and Pesaran & Shin (1998). A 

distinguishing feature of this approach is that the results from this analysis are invariant to the 

ordering of the variables entering the VAR system. The VECM results for supply-side and 

demand-side models are reported in Table 7 and Table 8, respectively. 

 Variance decomposition gives proportion of the movement in the dependent variable 

that is due to its ‘own’ shocks versus shocks to the other variables. The results of variance 

decomposition in Table 7 for the supply-side model with separate coal, oil and renewable 

energy data over a period of 20-year time horizon indicate that after five years, 64.4% of the 

variation in the forecast error for output is explained by its own innovations, while at the end 

of twenty years, this drops to only 20.7%. In contrast, coal consumption explains almost 

17.0% of output after 5 years rising to 64.1% after 20 years. Thus, shocks to coal 

consumption have long lasting impact on production in China. Shocks to oil and renewable 

energy consumption have a smaller role in explaining variance in aggregate output. The 

pattern of results for combined coal, oil and renewable energy in the second model of Table 8 

is similar to that observed for coal. After 5 years 63.2% variations in output is explained by 

its own innovations, while after 20 years this drops down to 19.4%. Shocks to coal-oil-

renewables combined explain only 28.2% variations in 5 years, but increase to 64.6% after 20 

years. 

 

Table 7: Generalized Forecast Error Variance Decomposition for Supply-side Equations 
 

Series/ Estimated models Horizon LY LL LK LC LO LRE LCORE 

LY 

 

LY: LL, LK, LC, LO, LRE 

1 0.644 0.093 0.382 0.170 0.014 0.152  

5 0.394 0.138 0.437 0.453 0.119 0.042  

10 0.338 0.064 0.152 0.596 0.073 0.033  

15 0.256 0.030 0.055 0.640 0.049 0.026  

20 0.207 0.017 0.029 0.641 0.038 .0220  

LY 

 

LY: LL, LK, LCORE 

1 0.632 0.100 0.534    0.282 

5 0.495 0.082 0.404    0.569 

10 0.367 0.027 0.129    0.656 

15 0.260 0.018 0.056    0.664 

20 0.194 0.023 0.038    0.646 

Note: All figures are estimates rounded to three decimal places. 

 Table 8 reports variance decomposition results of the demand-side models. Other than 

its own innovation, coal consumption is increasingly explained by economic growth and its 

own price. For oil consumption, other than its own innovations, variations are increasingly 

explained by coal prices. After 5 years 0.2% of variations in oil consumption can be 



explained by the innovation in coal prices, while after 20 years 46.7% of variations in oil 

consumption is explained by coal prices. 

 

Table 8: Generalized Forecast Error Variance Decomposition for Demand-side Equations 

Series/ 

Estimated 

models 

Horiz

on 

LY LC LO LRE LCORE LE LCP LOP LCOP 

LC 

 

LC: LY, LCP, 

LOP 

1 0.431 0.899     0.236 0.021  

5 0.412 0.896     0.224 0.018  

10 0.389 0.890     0.212 0.015  

15 0.368 0.882     0.209 0.013  

20 0.348 0.873     0.202 0.011  

LO 

 

 

LO: LY, LCP, 

LOP 

1 0.316  0.958    0.002 0.129  

5 0.311  0.841    0.061 0.182  

10 0.302  0.682    0.221 0.134  

15 0.281  0.545    0.365 0.097  

20 0.265  0.449    0.467 0.074  

LRE 1 0.101   0.848   0.028 0.120  

 5 0.063   0.435   0.071 0.321  

LO: LY, LCP, 

LOP 

10 0.031   0.275   0.135 0.354  

15 0.019   0.208   0.194 0.325  

 20 0.013   0.162   0.256 0.284  

LCORE 

 

 

LCO: LY, 

LCOP 

1 0.034    0983    0.012 

5 0.040    0.926    0.054 

10 0.113    0.824    0.047 

15 0.190    0.723    0.046 

20 0.241    0.652    0.045 

LE1 

 

LE: LY, LC, 

LO, LRE 

1 0.048 0.829 0.014 0.011  0.970    

5 0.021 0.728 0.079 0.194  0.483    

10 0.009 0.713 0.119 0.232  0.360    

15 0.006 0.687 0.190 0.273  0.360    

20 0.005 0.679 0.196 0.323  0.374    

LE2 

 

 

LE: LY, 

LCORE 

1 0.014    0.843 0.996    

5 0.153    0.616 0.656    

10 0.171    0.526 0.545    

15 0.262    0.498 0.517    

20 0.321    0.481 0.510    

Note: All the figures are estimates rounded to three decimal places. Confidence intervals have been taken from bootstrap operation of 

20000 replications. 

 

With respect to the emission equations, most of the variations in emission can be 

explained by its own innovations and the innovations in coal consumption. In the first 



emission equation, coal consumption explains approximately 82.9% of the variations in 

emission after 5 years and after 20 years this is still almost 67.9%. In contrast, the impact of 

oil consumption is relatively small at any time horizon. These results further the argument 

that fuel substitution from coal to oil and/or renewable energy would lower pollution and 

enhance environmental sustainability. 

7. Conclusions and Policy Implications 

This paper investigates the relationship between a g g r e g a t e  o u t p u t  a n d  e n e r g y  

c o n s u m p t i o n  i n  f o r m  o f  c o a l ,  oil and renewable energy in China using both a 

supply-side and a demand-side framework. The ARDL technique and vector error 

correction model (VECM) are used to examine both short-run and long-run dynamic 

relationships. Structural break tests and several investigative techniques, including Chow 

and generalized forecast error variance decompositions, are employed to check for the 

robustness of the results. The impact coal, oil and renewable energy consumption 

separately and jointly are considered in relation to the unprecedented economic growth of 

China. 

According to the findings from both the supply-side and demand-side equations, there 

is long-run bi-directional causality between GDP and coal, oil and renewable energy 

consumption, separately or jointly, where GDP is a measure of aggregate output. Thus, it is 

difficult for China to reduce coal and oil consumption without adversely affecting national 

output. However, switching to greener energy sources might be possible. We find a 

strong prospect for fuel substitution from coal to oil and/or renewable energy in terms of 

positive cross-price elasticity in the demand equation for coal, oil and also for renewable 

energy. We also find negative own-price elasticity for each of coal, oil and their combination, 

suggesting the use of both fossil fuels falls with rising prices. 

In support of the proposition that renewable energy or even oil consumption is less 

polluting than coal consumption, we find that there is unidirectional causality running from 

coal consumption to pollution emission, while the impact of oil consumption on emission is 

insignificant. The impact of renewable energy on pollution is significantly negative. . If coal 

ceases to be a ‘cheap’ source of energy through carbon pricing or other policies, then fuel 

substitution from coal to oil and/or renewables should be very much a reality. Also, raising 

the price of either coal or oil reduces their use and increases the use of renewable energy, 

further reducing carbon emissions. Overall, the message is clear that increased prices for 

fossil fuels would support enhancing the sustainability of further economic growth in China.  
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Appendix Table 1: 2013 Primary Energy Consumption by Fuel in China (mtoe) 
 

Energy Source China World Yearly % Change % of World 
Oil 507.4 4185.1 3.8% 12.1% 
Natural Gas 145.5 3020.4 10.8% 4.8% 
Coal 1925.3 3826.7 4.0% 50.3% 
Nuclear Energy 25.0 563.2 13.9% 4.4% 
Hydroelectricity 206.3 855.5 4.8% 24.1% 
Solar 11.9 124.8 91.3% 9.5% 

Wind 131.9 628.2 37.8% 21.0% 
Geo Biomass  10.4 108.9 - 9.5% 

Other Renewables 42.9 279.3 28.3 15.4% 
Total 2852.4 12730.4 4.7% 22.4% 

Note: Primary energy comprises commercially traded fuels including modern renewables used to 

generate electricity. Oil consumption is measured in million tonnes; other fuels in million tonnes 

of oil equivalent. “Yearly % Change” and “% of World‟ represent percentage change in 

consumption from 2012 to 2013 and percentage of total world consumption for the same fuel 

type, respectively. Source: BP (2013) 

 

  



 

Appendix Figure 1a: Variables Used in the Supply-side Analysis 

 

 

 

Appendix Figure 1b: Variables Used in the Demand-side Analysis 

 

 

 

Note: LY, LL, LK, LC, LO, LRE, LCORE, LE, LCP, LOP and LCOP stand for log of output, labor, 

capital, oil consumption, coal consumption, renewable energy consumption, aggregate coal, oil 



 

and renewables consumption, pollutant emission, coal price, oil price and  combined coal and oil price, 

respectively. 

 

 

  



 

Appendix Table 2: Johansen’s Test for Multiple Cointegrating Relationships [Intercept, no Trend] 

Sides Estimated models Null Optimal lag  Max eig. Trace Stat. 

 
LY: LL, LK, LC, LO, 

LRE 

 1 56.698** 172.655** 

   44.828** 115.957** 

   34.724** 71.129** 

Supply-side 

Analysis 

  17.851 36.404** 

   10.399 18.553*** 

 5r   8.153 8.153*** 

LY: LL, LK, LCORE  2 38.240** 75.486** 

  17.654** 37.246** 

  12.779 16.592 

   6.813 6.813 

 
LC: LY, LCP, LOP  2 20.720** 41.139** 

   11.095 12.418 

   9.323 9.323 

  
 

 6.427 5.145 

Demand-side 

Analysis 

LO: LY, LCP, LOP  2 76.919** 112.070** 

  22.063** 35.150** 

  7.974 13.086 

  5.111 5.111 

LRE: LY, LCP,LOP  4 22.532** 52.659** 

  16.409** 30.127** 

   11.717 10.717 

 
 

 8.951 8.482 

  3 33.836** 74.022** 

 LCO: LY, LCOP   23.047** 40.185** 

   16.841** 17.138** 

 LE: LY, LC, LO, 

LRE 

 4 68.586** 130.494** 

   29.177** 61.907** 

    16.638 31.730 

   9.581 16.092 

   6.510 6.510 

  4 38.677** 66.875** 

 LE: LY, LCORE   17.108** 28.198** 

    11.089** 11.089** 

Note: Cointegration with restricted intercepts and no trends in the VAR. r indicates number of 
cointegrations. The optimal lag length of VAR is selected by AIC. Critical values are based on Johansen 

and Juselius (1990). *, **, and *** indicate significant at 1%, 5%, and 10% level, respectively. 
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Appendix Table 3: Chow forecast test 

Chow forecast test: Forecast from 2000 to 2011  

Supply-side analysis    

F-statistics 1.5319 Probability 0.2913 

Log likelihood ratio 2.1394 Probability 0.1361 

Demand-side analysis    

F-statistics 1.0461 Probability 0.1783 

Log likelihood ration 1.7928 Probability 0.1073 

 


