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Abstract 

A panel method is described for calculating potential flow around near-surface submarines.  
The method uses Havelock sources which automatically satisfy the linearized free-surface 
boundary condition.  Outputs from the method include pressure field, pressure drag, wave 
resistance, vertical force, trim moment and wave pattern.  Comparisons are made with 
model tests for wave resistance of Series 58 and DARPA SUBOFF hulls, as well as with 
wave resistance, lift force and trim moment of three length-to-diameter variants of the DSTO 
Joubert submarine hull.  It is found that the Havelock source panel method is capable of 
determining with reasonable accuracy wave resistance, vertical force and trim moment for 
submarine hulls.  Further experimental data are required in order to assess the accuracy of 
the method for pressure field and wave pattern prediction.  The method is implemented in 
the computer code “HullWave” and offers potential advantages over RANS-CFD codes in 
terms of speed, simplicity and robustness. 

1. Introduction 

A method for solving the flow field around a fully-submerged object moving near the free 
surface was put forward by Havelock (1932).  The method uses modified sources distributed 
over the surface of the body.  As the method was formulated before the development of 
computers, no numerical results were calculated for general hull shapes using the method.  
However, equations were provided for the source potential which automatically satisfies the 
linearized free-surface boundary condition.  These sources will be referred to as “Havelock 
sources”, following Tuck et al. (2002). 

With the advent of computers, Hess and Smith (1964) developed a panel method for a non-
lifting body in an unbounded fluid using omnidirectional (Rankine) sources.  The body is 
discretised into panels, each of which has uniform source density.  The benefits of this 
method are that analytical expressions exist for the velocity field produced by each panel, 
and the resulting velocity field is non-singular, when using distributed sources rather than 
point sources. 

At the time of publication of Hess and Smith’s panel method, naval architects were searching 
for a new method of ship wave resistance prediction as an improvement over the thin-ship 
theory of Michell (1898).  Bhattacharyya (1965) combined the Hess and Smith (1964) panel 
method with the potential formulation for Havelock sources as a means of calculating ship 
wave resistance.  Such an approach was subsequently followed by many authors, as 
reviewed in Noblesse (2013).  This problem is called the Neumann-Kelvin problem, as it 
uses an exact (Neumann) hull boundary condition with a linearized (Kelvin) free surface 
boundary condition. 

For surface ships, except perhaps SWATH ships, the Neumann-Kelvin problem is 
inconsistent, as linearization of the free surface boundary condition implies a ship with small 
beam-length ratio, for which the hull boundary condition may also be justifiably linearized.  
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When integrating Havelock sources up to the free surface, care must be taken with the 
singularity that occurs at the still water level. 

For submarines the difficulties described above are essentially removed.  Contemporary 
naval submarines have a non-negligible diameter-to-length ratio in the order of 1:7 to 1:12 
and a large stagnation area at the bow.  As a result, a nonlinear hull boundary condition is 
desirable.  However, when fully submerged, submarines produce only a small disturbance 
on the free surface and the free surface boundary condition can be justifiably linearized.  
Also, since every part of the hull lies beneath the free surface, the Havelock source potential 
is finite everywhere except at the source. 

The Havelock source panel method has been applied to submerged spheroids by Farell 
(1973), Guével et al. (1977), Hong (1983) and Doctors & Beck (1987b), and we shall make 
comparisons with the latter predictions in this article. 

Other methods in use for modelling flow around near-surface submarine hulls include RANS-
CFD codes and nonlinear Rankine-source panel codes (for example Flowtech 2012), each 
of which are used to a limited extent in Dawson (2014).  

2. Single Havelock source 

We use a body-fixed coordinate system in which 𝑥 is positive forward, 𝑦 is positive to port 
and 𝑧 is positive upwards, as shown in Figure 1. 

 

Figure 1: Body-fixed coordinate system for a Havelock point source 

Accurate calculation of the velocity potential due to a single Havelock source is not a trivial 
task.  It is likely that this is the reason for the large scatter in predictions presented by 
different authors, as discussed for surface ships in Doctors & Beck (1987a) and as 
discussed for submerged spheroids in Doctors & Beck (1987b).  The basic formulation for a 
Havelock source is given in Havelock (1932) and Wehausen & Laitone (1960, p484) and 
involves a singular and highly-oscillatory double integral. Here we use the more 
computationally amenable method developed by Noblesse (1981, equation 7) and given in 
Newman (1987, equation 11).  In our coordinate system, the velocity potential Φ due to a 
single positive source of strength 4𝜋 at (𝑎, 𝑏, 𝑐) moving at speed 𝑈 is: 

 Φ(𝑥,𝑦, 𝑧) = −𝑈𝑈 + Φ0 + Φ1 + Φ2 + Φ3 ( 1 ) 

with: 
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Here 𝐻(𝑥) is the Heaviside unit step function and 𝐸1(𝑥) is the exponential integral (see 
Abramowitz and Stegun 1965).  Throughout this article the real part of each expression will 
be assumed for physical quantities. 

The arguments in ( 4 ) and ( 5 ) are: 

 𝑣 = 𝜅(𝑧 + 𝑐)cos2𝜙 + 𝜅|𝑦 − 𝑏|cos𝜙 sin𝜙 + 𝑖𝑖|𝑥 − 𝑎|cos𝜙 ( 6 ) 

 𝑢 = 𝜅(𝑧 + 𝑐)sec2𝜃 + 𝑖𝑖(𝑥 − 𝑎)sec𝜃 + 𝑖𝑖|𝑦 − 𝑏|sec2𝜃 sin𝜃 ( 7 ) 

The term Φ0 is the standard Rankine source positioned at (𝑎, 𝑏, 𝑐).  The term Φ1 is an equal 
sink positioned above the free surface at (𝑎, 𝑏,−𝑐).  The term Φ2 we shall call the “near-field” 
term as it is only important close to the source.  The last term Φ3 we shall call the “far-field” 
term as it is important everywhere downstream of the source and is responsible for the 
wave-like free surface. 

The dynamic free surface boundary condition may be linearized to give the free surface 
height 𝜁 due to a single Havelock source as: 
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2.1 The near-field term 

The (𝑥�,𝑦�, 𝑧̂) velocity components of the near-field term are given by: 
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This equation is solved using Simpson’s Rule.  Care must be taken near the singularity at: 

 𝑥 = 𝑎;  tan𝜙 = −
𝑧 + 𝑐

|𝑦 − 𝑏|
 ( 10 ) 

The near-field term is found to be negligible compared to the far field term, except within a 
small radius of the source. 

2.2 The far-field term 

The (𝑥�,𝑦�, 𝑧̂) velocity components of the far-field term are given by: 
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with 𝑢 given by ( 7 ). In order to deal with the singularity at 𝜃 = ±𝜋/2 we use the substitution 
𝑡 = tan𝜃, giving: 
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 𝑢 = 𝜅(𝑧 + 𝑐)(1 + 𝑡2) + 𝑖𝑖�1 + 𝑡2(𝑥 − 𝑎) + 𝑖𝑖𝑖�1 + 𝑡2|𝑦 − 𝑏| ( 13 ) 

Since the integrand in ( 12 ) is highly oscillatory for large values of |𝑡|, we use Filon 
quadrature (Abramowitz & Stegun 1965, Gourlay 2014) by approximating the exponential 
argument as piecewise linear over each double-interval, as follows: 
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2.3 Example calculation 

Consider a single Havelock source with strength 4𝜋 m3/s, as given by ( 1 ), lying 10m 
beneath the free surface and moving at 5m/s.  The longitudinal velocity produced at 
(𝑥,𝑦, 𝑧) = (𝑥, 0, 0) for this Havelock source is shown in Figure 2. 

 

Figure 2: Longitudinal flow velocity (m/s) produced by a single Havelock source 

On the free surface, the longitudinal velocity components due to Φ0 and Φ1 cancel one 
another.  The total velocity field is continuous across 𝑥 = 0, despite the fact that the near-
field component Φ2 and far-field component Φ3 are each discontinuous across 𝑥 = 0.  This 
serves as a useful check on the accuracy of the independently calculated Φ2 and Φ3. 
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3 The Havelock source panel method 

The coordinate system and principal submarine dimensions used for the Havelock source 
panel method are shown in Figure 3. 

 

Figure 3: Coordinate system and submarine dimensions for the Havelock source panel method 

The panel method approach described here for a near-surface body follows closely that of 
Hess and Smith (1964) for a body in an unbounded fluid.  In that method, the sources used 
are Rankine sources, that is, the component Φ0 in equation ( 1 ).  Here we follow the method 
of Hess and Smith but include the additional terms Φ1, Φ2, Φ3. 

The body is first discretised into 𝑁𝑝 triangular and/or quadrilateral panels of area 𝐴(𝑗) and 
unknown source density 𝜎(𝑗), such that: 
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For each panel, Φ(𝑗) is given by equation ( 1 ) using the coordinates (𝑎, 𝑏, 𝑐) of the panel’s 
null point, as described in Hess and Smith (1964).  The Neumann boundary condition is then 
applied at the null point of each panel such that: 

 ∇Φ.𝑛�(𝑗) = 0, 𝑗 = 1. .𝑁𝑝 ( 16 ) 

This results in a 𝑁𝑝 x 𝑁𝑝 matrix equation which is solved for the source densities 𝜎(𝑗) and 
hence the entire velocity potential Φ. 

When calculating the velocity potential due to each panel Φ(𝑗), the inclusion of the image 
source term Φ1 is straightforward, as each panel vertex can be reflected about the free 
surface and the analytic expressions for the flow velocity induced by each panel remain 
unchanged from those given in Hess and Smith (1964). 

The expressions for Φ2 and Φ3, like Φ1, depend on the position vector from the image 
source, as shown in Figure 4.  For fully-submerged hulls, the receiver panel is generally a 
large distance from the image panel (relative to the panel dimensions), so we may 
approximate the image panel as a point source of strength (<source density> x <panel 
area>).  This conclusion was also reached by Doctors and Beck (1987b). Therefore the 
expressions for Φ2 and Φ3 are evaluated as point sources, which simplifies the analysis. 
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Figure 4: Havelock source panel method. Calculation of 𝚽𝟎 is based on vector from hull source panel to 
receiver panel. Calculation of 𝚽𝟏, 𝚽𝟐, 𝚽𝟑 is based on vector from image source panel to receiver panel. 

Example shows DARPA SUBOFF hull with sail near free surface.  

Having solved for the source strengths and flow velocities as described above, further 
outputs can be computed.  Equations ( 8 ) and ( 15 ) may be combined to yield the total wave 
pattern as: 
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Hydrodynamic pressure is solved using Bernoulli’s equation: 
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Hydrodynamic vertical force on the body (measured +ve upward) is calculated from: 
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The factor of 2 accounts for both sides of the hull.  The hydrodynamic trim moment on the 
body (taken about midships on the centreline and measured positive bow-up) is calculated 
from: 
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Pressure drag is calculated from: 
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Wave resistance is calculated using the far-field wave amplitude function 𝐴(𝜃). As given in 
Newman (1992, p280), we have: 
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In our coordinate system, using the conjugate of the amplitude function defined in Newman 
(1992, p271), the free surface elevation is: 
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Equation ( 23 ) may be compared with equation ( 17 ).  In the far-field downstream from the 
object the only contribution to equation ( 17 ) is from the far-field term Φ3.  Equating 
equations ( 17 ) and ( 23 ) yields the following summation over all panels for the amplitude 
function: 
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The amplitude function is then used in equation ( 22 ) to determine the wave resistance. 

In practice the pressure drag and wave resistance generally show close agreement; 
however, the pressure drag given by equation ( 21 ) is slower to converge and more erratic at 
low Froude numbers than the far-field wave resistance given by equation ( 22 ).  For this 
reason we tend to use equation ( 22 ) to calculate the resistance due to wave making in the 
near-surface submergence condition. 

The Havelock source panel method described here is implemented in a computer code 
entitled “HullWave” developed at the Centre for Marine Science and Technology, Curtin 
University.  The code is written in MATLAB (The Mathworks 2014) and runs on a standard 
desktop PC.  Run times for the Joubert hull with 𝑁𝑝 = 800  in the near-surface condition (see 
Section 8) were 15 minutes for each speed on an Intel i7-940 2.93GHz processor with 12GB 
of RAM. Runs may be split across multiple cores to quickly do a range of speeds. 

4 Comparison with experiments for a deeply-submerged DARPA SUBOFF 
submarine hull 

Offsets for the DARPA SUBOFF standard series submarine hull are given in Groves et al. 
(1989).  This is shown in Figure 5 together with the other standard-series hulls analysed in 
this report, namely the Series 58 models 4165 and 4166 (Gertler 1950) and DSTO Joubert 
models with length-to-diameter ratios 7.3, 8.5 and 9.5 (Dawson 2014). 

 

Figure 5: Comparative geometries of standard-series submarine hulls used for analysis 

Series 58, 4165

Series 58, 4166

DARPA SUBOFF

DSTO Joubert, L/D=7.3

DSTO Joubert, L/D=8.5

DSTO Joubert, L/D=9.5



Predictions using the present method for a deeply-submerged DARPA SUBOFF hull will be 
compared with measured surface pressures from wind tunnel tests described in Huang et al. 
(1994).  For a deeply submerged submarine, the Havelock source panel method described 
here reverts to the standard Hess and Smith (1964) panel method.  A comparison of 
predicted and measured 𝑐𝑃 values is shown in Figure 6.  The predicted results given here 
use a grid of 100 panels longitudinally (𝑁𝑥 = 100)  and 25 panels circumferentially from the 
bottom to the top (𝑁𝑔 = 25), giving a total of 2500 panels on each side (𝑁𝑝 = 2500).  
Gridlines are clustered longitudinally toward the ends using cosine spacing, that is: 
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Figure 6: Pressure coefficient on DARPA SUBOFF bare hull, using HullWave panel method in deep-
submergence condition and experimental wind tunnel results from Huang et al. (1994). 

We see that the pressure is quite well predicted over most of the hull.  However, near the 
stern of the submarine (0 ≤ 𝑥/𝐿 ≤ 0.1) the effects of boundary layer thickening and 
separation cause a lower pressure in the experiments than is predicted using the present 
inviscid theory.  Further differences, which cannot be explained by the neglect of viscosity, 
are observed close to the bow. 

5 Convergence testing for a near-surface spheroid 

In order to check the present method’s convergence with increasing number of panels, a 
5:1:1 prolate spheroid is analysed at very shallow submergence 𝐻/𝐷 = 0.8 and the high 
Froude number 𝐹𝐿 = 0.8.  Panels were evenly spaced in the circumferential direction, with 
cosine spacing in the longitudinal direction as in ( 25 ).  The ratio between longitudinal and 
circumferential panels was 𝑁𝑥/𝑁𝑔 = 4, as used by Doctors and Beck (1987b, Fig. 3). Panel 
densities of 𝑁𝑝 = 36, 64, 100, 400, 900, 1600, 2500, 3600 were used. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x/L

cP

 

 

Stern Bow

HullWave
Experiment



The same configuration was analysed by Doctors and Beck (1987b, Fig. 3) using Havelock 
sources with two different techniques: a “Panel” technique in which flow velocities are 
calculated only at the null points of receiver panels (as done by Hess and Smith (1964)); and 
a “Galerkin” method in which flow velocities are integrated over the receiver panels.  Due to 
the limited computing power available at the time, results were computed for 𝑁𝑝 =
36, 64, 100 and Richardson’s extrapolation technique was used to estimate the fully-
converged solution (shown as “extrap.” on the graphs). 

Convergence results from the present method and that of Doctors and Beck (1987b, Fig. 3) 
are shown in Figure 7 for the lift coefficient, Figure 8 for the wave resistance coefficient and 
Figure 9 for the pressure drag coefficient.  The trim moment presented in Doctors and Beck 
(1987b, Fig. 3) was taken about a different axis, and so cannot be directly compared with the 
present results. The present results showed good convergence of the trim moment 
coefficient. 

 

Figure 7: Convergence test for lift coefficient of submerged 𝑫
𝑳
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Figure 8: Convergence test for wave resistance coefficient of submerged 𝑫
𝑳

= 𝟎.𝟐 spheroid at 𝑯
𝑫

= 𝟎.𝟖, 
𝑭𝑳 = 𝟎.𝟖.  

(DB) Results from Doctors and Beck (1987b, Fig. 3b) 

 

Figure 9: Convergence test for pressure drag coefficient of submerged 𝑫
𝑳
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(DB) Results from Doctors and Beck (1987b, Fig. 3a) 
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Convergence testing of the present method at 𝐻/𝐷 = 0.8 and 𝐹𝐿 = 0.3 showed good 
convergence for vertical force, trim moment and wave resistance, but poor convergence for 
pressure drag. 

Comparison was also made with the results given by Doctors and Beck (1987b, Figs. 4,5) for 
a 5:1:1 spheroid at 𝐻/𝐷 = 0.8 and 𝐻/𝐷 = 1.225.  The present results confirmed the Doctors 
and Beck (1987b, Figs. 4a, 5a, 5b) results for wave resistance, including at 𝐹𝐿 < 0.4 where 
Doctors and Beck (1987b) had noted discrepancies with previous studies.  The present 
results also confirmed the lift coefficient across all Froude numbers as given in Doctors and 
Beck (1987b, Fig. 4b).  The trim moment in Doctors and Beck (1987b, Fig. 4c) was taken 
about the free surface, so could not be directly compared with the present results. 

6 Comparison with experiments for a near-surface Series 58 hull 

Calculations of wave resistance were completed using the Havelock source panel method 
for Series 58 models 4165 and 4166 (Gertler 1950).  These are compared with model test 
residuary resistance (Gertler 1950) in Figure 10 and Figure 11.  The geometries of the two 
hulls are shown in Figure 5.  The mesh for each hull had 20 evenly-spaced panels in the 
circumferential direction and 80 panels with cosine spacing in the longitudinal direction, that 
is 𝑁𝑝 = 1600. 

 

 

Figure 10: Predicted wave resistance coefficient, together with residuary resistance coefficient from Gertler 
(1950) experiments, for a Series 58 model 4165 hull with prismatic coefficient 0.65. 
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Figure 11: Predicted wave resistance coefficient, together with residuary resistance coefficient from Gertler 
(1950) experiments, for a Series 58 model 4166 hull with prismatic coefficient 0.70. 

Gertler (1950) calculated residuary resistance by subtracting the resistance of the towing 
strut measured in isolation and the frictional resistance calculated using the Schoenherr 
friction line from the total measured resistance.  Small errors in each of these assumptions 
cause an offset in the plotted residuary resistance, as evidenced at low Froude numbers.  
Taking this offset into account, we see that the peaks at 𝐹𝐿 ≈ 0.5 are well-predicted for both 
hulls. 

The model test data shows very different behaviour of the two hulls in the region of the 
smaller peak at 𝐹𝐿 ≈ 0.3.  The lower-prismatic hull 4165 has low residuary resistance in this 
region, whereas the high-prismatic 4166 has a noticeable peak at 𝐹𝐿 ≈ 0.3.  This different 
behaviour is caused by the marked pressure changes at the forward and aft shoulders of the 
high-prismatic hull. 

7 Comparison with experiments for a near-surface DARPA SUBOFF submarine 
hull 

Calculations of wave resistance were completed for the DARPA SUBOFF bare hull.  These 
are compared with model test residuary resistance (Dawson 2014) in Figure 12.  The mesh 
had 19 evenly-spaced panels in the circumferential direction and 60 panels with cosine 
spacing in the longitudinal direction, resulting in 𝑁𝑝 = 1140. 
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Figure 12: Predicted wave resistance coefficient (open markers), compared with model test results of 
residuary resistance coefficient (filled markers) from Dawson (2014), for DARPA SUBOFF bare hull 

 

Three peaks are evident in predicted and measured wave resistance curves for the 
shallowest submergence (𝐻/𝐷 = 1.1).  The peaks occur at 𝐹𝐿 = 0.23, 0.29, 0.51.  Calculated 
centreline wave cuts for these Froude numbers are shown in Figure 13. 
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Figure 13: Calculated centreline wave cuts for the DARPA SUBOFF bare hull at 𝑯/𝑫 = 𝟏.𝟏.  (a)  𝑭𝑳 = 𝟎.𝟐𝟐, 
𝝀/𝑳 = 𝟎.𝟑𝟑;  (b)  𝑭𝑳 = 𝟎.𝟐𝟐, 𝝀/𝑳 = 𝟎.𝟓𝟓;  (c)  𝑭𝑳 = 𝟎.𝟓𝟓, 𝝀/𝑳 = 𝟏.𝟔𝟔 

 

The speed of linear deep-water waves 𝑐 = �𝑔𝑔/2𝜋 corresponds to the speed of the 
submarine at the transverse wavelength 𝜆/𝐿 = 2𝜋𝐹𝐿2.  As seen in Figure 13, the wave 
resistance peaks correspond to speeds at which the natural high and low pressure regions 
around the hull resonate with transverse wave production.  At 𝐹𝐿 = 0.23, there is 
approximately a half-wavelength between the natural high-pressure region at the bow and 
low-pressure region at the forward shoulder and approximately two wavelengths from there 
back to the natural low-pressure region at the aft shoulder.  At 𝐹𝐿 = 0.29, there are 
approximately 1.5 wavelengths between the natural high-pressure region at the bow and 
low-pressure region at the aft shoulder.  At 𝐹𝐿 = 0.51, there is approximately one half-
wavelength between the natural high-pressure region at the bow and low-pressure region at 
the aft shoulder. 

It should be borne in mind that, as discussed in Dawson (2014), typical operating Froude 
numbers in the near-surface submerged condition would be unlikely to exceed 0.3 for naval 
submarines.  Therefore predictions and model test results at higher Froude numbers are of 
lesser relevance to operations of submarines at the present time.  Such Froude numbers 
may be relevant to other craft, such as torpedoes or remote/autonomous underwater 
vehicles. 

Comparisons of predicted wave resistance and measured residuary resistance for the 
DARPA SUBOFF hull with sail are shown in Figure 14.  The mesh is shown in Figure 4 and 
has 𝑁𝑝 = 1972. 

 

(a)

(b)

(c)



 

Figure 14: Predicted wave resistance coefficient (open markers), compared with model test results of 
residuary resistance coefficient (filled markers) from Dawson (2014), for DARPA SUBOFF hull with sail 

For the DARPA SUBOFF hull with sail, it is seen that the measured residuary resistance 
agrees quite closely with the calculated wave resistance at the deeper submergences.  At 
the shallowest submergence, the method over-predicts the residuary resistance at all Froude 
numbers, but especially in the region of the local peak at 𝐹𝐿 ≈ 0.3.  A photograph of the 
observed free surface at 𝐹𝐿 = 0.31 is shown in Figure 15, and the calculated centreline wave 
cut at this speed is shown in Figure 16. 

 

Figure 15: Observed wave pattern for the DARPA SUBOFF hull with sail at 𝑯/𝑫 = 𝟏.𝟏 and  𝑭𝑳 = 𝟎.𝟑𝟑 
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Figure 16: Calculated centreline wave cut for the DARPA SUBOFF hull with sail at 𝑯/𝑫 = 𝟏.𝟏 and  
𝑭𝑳 = 𝟎.𝟑𝟑 

We see in Figure 15 that the sail produces its own Kelvin wave pattern, but no ventilation or 
wave breaking is observed.  As calculated in Figure 16, the sail is very close to the free 
surface. We expect that the linear wave assumption may break down locally where the hull 
pierces or comes very close to the free surface.  Also, by comparing the measured residuary 
resistance for the hull and sail with that of the bare hull, we see that the measured residuary 
resistance for the hull with sail is surprisingly low at the shallowest submergence.  Further 
theoretical and experimental testing with an appended hull would be desirable to better 
understand the physics of wave production when the sail is very close to the free surface. 

8 Comparison with experiments for a near-surface Joubert submarine hull 

The DSTO “Joubert” standard-series submarine hulls were extensively tested in the near-
surface condition in the work of Dawson (2014).  Measurements include vertical lift force, 
trim moment, resistance and wave elevations.  Three length-to-diameter ratio configurations 
all with a common maximum diameter were tested, as shown in Figure 5.  The model test 
results for lift coefficient, trim moment coefficient and residuary resistance are compared with 
predictions from the present theory in Figures 17-25.  

 

Figure 17: Predicted lift coefficient (open markers), together with model test results (filled markers) from 
Dawson (2014), for Joubert hull with L/D=7.3 
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Figure 18: Predicted trim moment coefficient (open markers), together with model test results (filled 
markers) from Dawson (2014), for Joubert hull with L/D=7.3 

 

Figure 19: Predicted wave resistance coefficient (open markers), together with residuary resistance 
coefficient model test results (filled markers) from Dawson (2014), for Joubert hull with L/D=7.3 
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Figure 20: Predicted lift coefficient (open markers), together with model test results (filled markers) from 
Dawson (2014), for Joubert hull with L/D=8.5 

 

Figure 21: Predicted trim moment coefficient (open markers), together with model test results (filled 
markers) from Dawson (2014), for Joubert hull with L/D=8.5 
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Figure 22: Predicted wave resistance coefficient (open markers), together with residuary resistance 
coefficient model test results (filled markers) from Dawson (2014), for Joubert hull with L/D=8.5 

 

Figure 23: Predicted lift coefficient (open markers), together with model test results (filled markers) from 
Dawson (2014), for Joubert hull with L/D=9.5 
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Figure 24: Predicted trim moment coefficient (open markers), together with model test results (filled 
markers) from Dawson (2014), for Joubert hull with L/D=9.5 

 

Figure 25: Predicted wave resistance coefficient (open markers), together with residuary resistance 
coefficient model test results (filled markers) from Dawson (2014), for Joubert hull with L/D=9.5 

We see that the comparison between predictions and model tests is fairly consistent across 
all three hulls.  Lift force, trim moment and wave resistance are quite closely predicted at 
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typical operating Froude numbers up to 0.3, at all submergences.  In the region of the lift 
force peaks at 𝐹𝐿 ≈ 0.4 and trim moment and wave resistance peaks at 𝐹𝐿 ≈ 0.5, the 
predictions have the correct form but underpredict the magnitude. 

Predicted near-field wave elevation is shown in Figure 26, together with model test results 
from Dawson (2014).  In these model tests, the model was held in place by a surface-
piercing strut, which affected the wave elevation downstream of the submarine’s stern.  
Therefore comparisons are only given upstream of the submarine’s stern. We see fairly good 
agreement between the predicted and measured results, with a slight phase shift in the 
𝐹𝐿 = 0.3 case, and a slight over-prediction of the wave elevations in general.  

 

Figure 26: Wave elevation at 𝒚/𝑫 = 𝟏.𝟐𝟐 for Joubert hull with 𝑳/𝑫 = 𝟕.𝟑. Experimental results from 
Dawson (2014) 

9 Conclusions 

A Havelock source panel method for near-surface submerged submarines has been 
developed by combining the source potential of Havelock (1932) with the panel method of 
Hess and Smith (1964).  The method predicts lift force, trim moment, wave resistance and 
wave patterns of near-surface submarines, with or without appendages. 

The method has been compared with model test data for residuary resistance of two Series 
58 hulls, the DARPA SUBOFF hull with and without its sail appendage, and three DSTO 
Joubert hulls of differing length-to-diameter ratio.  The method has also been compared with 
measured lift force and trim moment of the three Joubert hulls.  The simulation results for the 
SUBOFF and Joubert bare hulls showed close agreement with all measured quantities 
through the range of typical submarine operating speeds up to 𝐹𝐿 = 0.3.  Residuary 
resistance for the SUBOFF hull with sail agreed well with the simulation predictions except in 
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the extreme near-surface condition.  In this instance, additional model testing and theoretical 
work are desirable to better understand the differences observed. 

In the near field, the method was found to slightly over-predict wave elevations for the 
Joubert hull, with otherwise good agreement. In the absence of model test data for far-field 
submarine wave patterns, this aspect of the code has not yet been validated.  The 
computational method as described offers an alternative to RANS-CFD codes, being fast, 
robust and simple to run. 

Nomenclature 

(𝑎(𝑗),𝑏(𝑗), 𝑐(𝑗))  (𝑥,𝑦, 𝑧) position of null point of jth panel 
𝐴(𝜃) Far-field wave amplitude function 
𝐴(𝑗) Area of jth panel 
𝑐 Wave phase velocity 
𝑐𝐷 𝑅𝑃

1
2𝜌𝑈

2𝑆
  Pressure drag coefficient 

𝑐𝑀 𝑀
1
2𝜌𝑈

2𝑆𝑆
 Trim moment coefficient 

𝑐𝑃 𝑃−𝑃∞
1
2𝜌𝑈

2  Pressure coefficient 

𝑐𝑊 𝑅𝑊
1
2𝜌𝑈

2𝑆
 Wave resistance coefficient 

𝑐𝐿 
𝐹𝑧

1
2𝜌𝑈

2𝑆
 Lift coefficient 

𝐷 Maximum hull diameter 
𝐸1(𝑣) Exponential integral function, see Abramowitz and Stegun (1965, Chapter 5) 
𝐹𝐿 

𝑈
�𝑔𝑔

  Froude number 

𝐹𝑍 Hydrodynamic vertical force on submarine, positive upward 
𝑔 Acceleration due to gravity 
𝐻 Hull centreline submergence beneath undisturbed free surface 
𝐿  Submarine hull length 
𝑀  Hydrodynamic trim moment about midships, positive bow-up 
𝑛�(𝑗) Unit outward normal from jth panel 
𝑁𝑔 Number of panels circumferentially, from bottom to top on one side 
𝑁𝑝 Number of panels on one side of hull (2𝑁𝑝 panels on entire hull) 
𝑁𝑥 Number of panels longitudinally 
𝑃 Hydrodynamic pressure (pressure above hydrostatic) 
𝑃(𝑗) Pressure at null point of jth panel 
𝑟 Local submarine hull radius 
𝑃∞ Hydrodynamic pressure in undisturbed fluid 
𝑅𝑃 Pressure resistance  
𝑅𝑊 Wave resistance  
𝑆 Hull wetted surface area 
𝑈 Free stream or ship speed 
𝑥  Body-fixed streamwise coordinate, origin at stern, positive forward 
𝑥� Unit vector in 𝑥  direction 
𝑦 Transverse coordinate, origin at hull centreline, positive to port 
𝑦� Unit vector in 𝑦  direction 
𝑧  Vertical coordinate, origin at still water level, positive upwards 
𝑧̂ Unit vector in 𝑧  direction 
𝜅 𝑔/𝑈2 



𝜆 Transverse wavelength 
𝜌 Fluid density 
𝜁 Free surface elevation above undisturbed level 
𝜎(𝑗) Source density of jth panel 
Φ Velocity potential  
Φ(𝑗) Velocity potential due to a single Havelock source at null point of jth panel 
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