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Earth’s oldest mantle fabrics indicate Eoarchaean
subduction
Mary-Alix Kaczmarek1,2, Steven M. Reddy2, Allen P. Nutman3,4, Clark R.L. Friend4,5 & Vickie C. Bennett6

The extension of subduction processes into the Eoarchaean era (4.0–3.6 Ga) is controversial.

The oldest reported terrestrial olivine, from two dunite lenses within the B3,720 Ma Isua

supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals

defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel

to the maximum finite elongation direction and (010) perpendicular to the foliation plane

define a B-type LPO. In the modern Earth such fabrics are associated with deformation of

mantle rocks in the hanging wall of subduction systems; an interpretation supported by

experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is

consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter

supported by compositional data from nearby mafic rocks. Our results provide independent

microstructural data consistent with the operation of Eoarchaean subduction and indicate

that microstructural analyses of ancient ultramafic rocks provide a valuable record of

Archaean geodynamics.
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I
n the Phanerozoic Earth (B540 Myr to present day),
subduction is a major component of global plate tectonics
and is the most significant mechanism for recycling material,

including water and other volatiles, from the surface into the
deep Earth1,2. This has had a profound effect on Earth’s
geological, geochemical and geophysical evolution. However,
the timing of the initiation of subduction, and its role in shaping
Precambrian Earth evolution, particularly within the Archaean
Eon (4,000–2,500 Myr) is highly controversial3,4. One approach
to understanding Archaean geodynamics is to model the
behaviour of the lithosphere5. However, an alternative, and
complementary approach is direct observation of Earth’s oldest
rock suites. The Isua Supracrustal Belt (ISB) of southern West
Greenland comprises some of Earth’s oldest, best preserved rocks
and these rocks can yield unique data that allow ancient
geological processes to be inferred6,7. The ISB escaped
significant deformation in the Neoarchaean, but most of it is
still strongly deformed due to Eoarchaean deformation8–10. At its
northwestern end, the ISB consist of several fault-bounded
lithotectonic sequences containing rocks inferred to have formed
in an island arc setting. These include pillowed and flow basalts,
gabbroic layers, boninites and chemical sedimentary rocks
including band iron formation7,8,11 (Fig. 1a,b).

The eastern side of the northwestern end of the ISB contains a
suite of strongly deformed ophiolitic rocks, comprising mantle
peridotite lenses, gabbros and related cumulate ultramafic
rocks, pillow lavas and chemical sedimentary rocks6 (Fig. 1).
Geochemical analyses of the magmatic components of these
ophiolitic rocks are consistent with an arc and sub-arc setting that
formed around 3,720 Myr ago6,7,12 (Fig. 1).

Within one strand of ultramafic schists there are two laterally
extensive, relatively unaltered, magnesian dunite bodies (lenses A
and B; Fig. 1b–d). Rocks within the dunite bodies have chemical
characteristics that distinguish them from other types of
ultramafic rocks, including those formed as olivine cumulates,
which are also found within the ISB13. These dunites comprise
forsteritic olivine and chromite but are plagioclase and garnet

free indicating equilibration at o2.0 GPa and above B850 �C
(ref. 14).

Lenses A and B preserve macroscopic high-temperature fabrics
defined by the alignment of olivine grains (Figs 1c,d and 2a). Field
relationships demonstrate these olivine fabrics predate the
schistosity formed during juxtaposition of the dunites with
adjacent crustal rocks and subsequent intra-crustal deformation
under lower amphibolite facies conditions (r550 �C). The spatial
association of lenses A and B with volcanic rocks with arc
geochemical signatures, the tectonic contact between peridotite
and adjacent rocks, their chemical compositions and the
constraining U-Pb zircon geochronology has led to an inter-
pretation that these lenses represent sub-arc mantle interleaved
with supra-subduction ophiolitic material during the Eoarchaean
era6,13,15.

Here we study the microstructure and the lattice-preferred
orientations (LPO) of olivine preserved in lenses of ISB mantle
rocks using electron backscatter diffraction (EBSD). The
microstructural data indicate fabric formation associated with
dislocation creep and indicate the preferential activation of
(010)[001] B-type slip system16,17. B-type fabrics have only been
observed in mantle rocks and experimentally are restricted to
relatively high stress, high pressure and high water content
deformation conditions16–21. Their presence within Phanerozoic
rocks is interpreted to indicate supra-subduction zone mantle
deformation and this discovery of B-type fabrics in Earth’s oldest
mantle rocks suggest that the subduction was already active in the
Eoarchaean era.

Results
Petrography. Two samples (G07/10 and G12/12) from lens A
and a single sample from lens B (G07/32) were analysed (Fig. 1).
Lens A is dominated by homogeneous dunite with a granular
texture and olivine grains that range from 0.5 to 1.0 mm in
maximum length and define a weak shape-preferred orientation
(Fig. 2b). The samples contain 490% olivine (Fo91–92) with
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Figure 1 | Maps of Greenland and Isua supracrustal belt. (a) Southern part of Greenland and location of Isua. (b) Outline of the northwestern part of the

Isua supracrustal belt (ISB) and location of ultramafic bodies (purple and pink), lenses A and B, within ca. 3,720 Ma island arc mafic rocks (mauve).

(c,d) Detailed maps of preserved ultramafic rocks for lenses A and B, respectively. Lens A, at GPS 65 08.382 N, 50 09.011 W and lens B, at GPS 65 09.256

N 50 08.704 W (using World Geodetic System, WSG84 map datum).
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retrograde chlorite, serpentine and minor magnetite developed
along the grain boundaries during a younger crustal metamorphic
event (Fig. 2c)12. Both samples from lens A have a macroscopic
foliation and lineation corresponding to the XY plane and the X
direction, respectively, of the principal axes of the finite strain
ellipse. Foliation and lineation are observed at both hand and
thin-section scale (Fig. 2b). The dunite from lens B (sample
G07/32) also has a granular texture but is characterized by brown
olivine (Fo96–98) with grains from 0.4 to 0.8 mm in maximum
length12 (Fig. 2d). Similar to lens A, this sample contains
retrograde serpentine and magnetite. At the hand specimen scale,
this sample has no discernable macroscopic foliation or lineation.
We have, therefore, undertaken X-ray computed tomography
(X-ray CT) on this sample to determine the foliation plane and
lineation orientations (see Methods Summary for X-ray CT
protocols). X-ray CT images of the sample in multiple
orientations have been created with a relatively high contrast to

highlight the density difference between matrix serpentine and
olivine grains and recognise shape-preferred orientations in the
olivine grains (Fig. 3). Using this approach, a weak foliation and
lineation can be determined (Fig. 3). These are used to define the
sample coordinate framework needed to constrain fabric type
from the EBSD data.

Microstructures. We have characterized the deformation
microstructures and LPO preserved in olivine within lenses A and
B of the ISB mantle dunites using EBSD (see Methods section for
EBSD collection protocols). Fabric data from lens A show
alignment of [001] olivine axes with the macroscopic lineation
(X) and [010] axes show a strong alignment perpendicular to the
sample foliation (XY) and parallel to the Z direction of the finite
strain ellipse (Fig. 4a,b). [100] axes show no clear preferred
orientation (Fig. 4a,b).

The sample from lens B (G07/32) also records a strong
alignment of [010] axes, perpendicular to clustered [001] axes and
a very weak [100] distribution (Fig. 4c). X-ray CT data show that
[010] axes are perpendicular to the foliation plane with [001]
parallel to the weak lineation. These relationships mimic those
observed in both samples from lens A (Fig. 4a,b). To assess the
similarity and compare the nature of the fabrics between samples
from lenses A and B, we have rotated the data from lens B to align
[001] axes (lineation) to X and [010] to Z (Fig. 4d). Reorientation
of CPOs is frequently used in unoriented samples such as
peridotite xenoliths and coarse-grained peridotite when lineation/
foliation is difficult to determine, as this facilitates comparison of
the data22,23. The result of the applied rotation highlights a clear
similarity between olivine fabric geometry and intensity between
the samples from lenses A and B.

Discussion
The observed alignment of olivine crystallographic [001] axes
parallel to the lineation (X) and the strong concentration of [010]
parallel to Z in the dunites are characteristic of B-type olivine
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Figure 2 | Texture of Isua dunite peridotite. (a) Picture of anhydrous

peridotite with olivine megacrystals showing a preferred orientation, lens B.

(b) Cross-polarised microphotograph of a thin-section sample G12/12 from

lens A with lineation (dashed-line). X represents the lineation and Z the

normal to the foliation. Scale bar, 0.25 cm. (c) Backscatter (BSE) picture of

olivine grains with serpentine matrix in sample G07/10 from lens A. Scale

bar, 200 mm. (d) BSE picture of olivine grains with serpentine in sample

G07/32 from lens B. Scale bar, 200mm. Cr, chromite; Ol: olivine;

Srp, serpentine.
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Figure 3 | Three-dimensional representation of sample G07/32 using

four images from computer tomography. The block is a schematic view of

the piece of dunite where have been cut the thin section. The top of the

block (green) corresponds to the thin-section side, the backside is blue, the

bottom side is red and the front size is colourless. The white dashed-lines

represent the inferred foliation plane within the four sides.
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fabrics associated with mantle deformation dominated by the
operation of (010)[001] (B-type) slip system16,17,21. The intensity
of olivine B-type fabrics recorded here are quite weak with a
J-index varying from 1.8 to 2.9 (Fig. 4; see Methods Summary for
J-index explanations and reference). These values are similar
to B-type fabrics observed in most16,20,21,24, but not all17

experiments, and in several natural peridotites25–29. Although,
we note that some natural peridotites record strong olivine B-type
fabrics30–34, these are no more common than weaker peridotite
B-type fabrics25–29.

Deformation of this kind has only been reported in ultramafic
rocks of mantle origin. However, B-type fabrics have been
experimentally produced under moderate to high water,
high temperature, pressure and high stress conditions
(200–2,129 p.p.m. H/Si water content, 1.6–11 GPa, B1,000–1,400 �C,
150–516 MPa, respectively)16,17,19–21,35,36. Modelling predicts the
formation of B-type fabrics under such conditions, and such
conditions are predicted to be present in the fore-arc mantle
wedge immediately overlying the slab in supra-subduction zone
environments37. This contrasts with the core of the mantle wedge,
where (010)[100] (A-type), (100)[001] (C-type) or (001)[100]
(E-type) fabrics are more likely37. Seismic anisotropy
measurments that indicate trench-parallel alignment of seismic
fast directions in supra-subduction fore-arc regions are consistent

with the development of B-type fabrics in these settings16,37.
Furthermore, the few examples of naturally occurring B-type
olivine fabrics are mostly associated with mantle peridotites
exhumed from supra-subduction settings such as in the Central
Alps (Cima di Gagnone and Val Malenco)26,29,38, Carpathian-
Pannonian region30, north Qilian mountains in China39,
Shanwang in Eastern China27, Higashi-Akaishi, Japan31,33,34,
the Happo region of Central Japan40, the southern Marian
trench28, southwest Norway25,32,41 and New-Zealand42. The
exception is the formation of a complex B-type fabric
interpreted to be the result of grain boundary sliding in
mylonitic peridotites from the subcontinental mantle43.
However, this interpretation is contentious since B-type fabrics
have not yet been formed by grain boundary sliding in
experiments44.

The texture of most of the above peridotites is granular to
porphyroclastic with the exception of peridotites studied by
Wang et al.32 that are strongly deformed at relatively low
temperatures (600–850 �C). The deformation conditions for
the activation of B-type slip recorded in natural peridotite
from subduction environment vary from low (700 �C to
850 �C)25,26,32,33,40, intermediate (825–975 �C)42 to high tem-
peratures (1,000–1,250 �C)27,30,31,39 over a range of estimated
pressures from 0.8 to 4.27 GPa (refs25–27,32,39,42), and
estimated stress from 8 to 200 MPa25,26,31. Experiments indicate
that B-type fabrics are associated with higher tempera-
ture (41,400 �C), stress (4150 MPa) and pressure (1.6 to
11 GPa)16,17,19–21,24,35,36 conditions. The granular textured
dunites from ISB lenses A and B have estimated pressure
(B2.0 GPa) and temperature (B850 �C) conditions14 that
overlap the pressure temperature conditions recorded in natural
peridotites from subduction environments.

The spatial and temporal relationship of natural B-type fabrics
with mantle rocks in supra-subduction tectonic environments,
combined with a robust explanation of this relationship from
experiment and numerical modelling, lead us to conclude that the
ISB dunites of lenses A and B represent mantle rocks deformed in
a supra-subduction fore-arc setting. Their current position within
a belt of B3,720 Myr deformation represents the tectonic
juxtaposition of these mantle slivers within what has been
interpreted as a dismembered Eoarchaean ophiolite formed by
the interaction of island arc terranes at convergent plate
boundaries6; an interpretation based on field, petrological and
geochemical data. The development of the studied part of ISB
started around 3,720 Myr with the proposed rupture of the
oceanic crust and the formation of island arc magmas (Fig. 5a,b).
The present position of the mantle material within ISB is related
to an active subduction (Fig. 5). This convergence led to crustal
thickening with the intercalation of upper mantle rocks
(peridotites) within crustal rocks, such as layered gabbros and
ultramafic rocks (Fig. 5b–d). The contact between mantle and
crustal rocks is mylonitic and predate the 3,800 Myr tonalite/
trondhjemites that engulf the ultramafic and mafic rocks46,47

(Fig. 5e,f). The continuing collision of crustal segments lead to
further thickening and to generation of tonalite-trodhjemite-
granodiorite/dacite volcanic complexes45 (Fig. 5e).

The high forsterite content (Fo90–96) of olivine supports a
strongly depleted upper mantle origin. The high-field strength
element enriched signature retained in titanoclinohumite of the
dunites provide evidence of subcrustal fluid fluxing processes
associated with coeval crustal rocks with high-field strength
element depletion, all of which are consistent with a subduction
signature6,12,48. These dunites are also associated with deformed
amphibolites that geochemically resemble boninites, island arc
tholeiites and picrites7,11, lavas that are typically linked to a
supra-subduction mantle source49,50.
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In this study, all three Isua samples record B-type fabrics.
However, in a supra-subduction environment (010)[100] A-type
and (001)[100] E-type fabrics are the more commonly observed
fabric types25,27,30–32, and in some case B-type can even be
absent23,51,52. The progression of fabric-type development in
the supra-subduction environment is therefore likely to be
complex and it has been suggested that the earliest stage of
fabric development, associated with subduction initiation, may
be the formation of E-type fabrics51. If this is correct, it may
indicate that the activation of B-type slip system in Isua
dunite may represent deformation in a more mature,

advanced subduction setting. Isua mantle rocks may therefore
record other fabric types that would help to piece together the
geodynamic evolution of these enigmatic, ancient mantle
bodies.

The LPOs preserved in the Isua lenses A and B dunites
represent the oldest known fabrics regarded as exclusive to
mantle rocks and thereby are consistent with the operation of
Eoarchaean subduction proposed from the geochemistry of the
intercalated mafic crustal rocks. The nature and style
of this subduction remains controversial3,5. However, our
results indicate that Isua lenses A and B dunites, even
disassembled from their original lithological association (Fig. 5),
preserve a valuable record of Eoarchaean mantle processes
as well as evidence that the subduction factory was already in
operation during the Eoarchaean era. Since subduction is the
major mechanism of recycling material from the Earth surface
back into deep mantle, including water and other volatiles1,2, the
initiation of global recycling and development of top-down
chemical heterogeneities in the mantle53 started during the
Eoarchaean.

Methods
Electron backscatter diffraction. Petrographic sections were polished during 4 h
with 0.06 mm colloidal silica NaOH (pH 9.8) to remove mechanically induced
surface damage. Crystallographic orientations of olivine were collected using a
Zeiss Evo 40XVP at Curtin University (Perth, Australia) and a Tescan Mira LMU
at the University of Lausanne, Institute for Earth and Environmental Sciences
(ISTE) (Switzerland). There were no observable inconsistencies in the data
obtained from the different SEMs. Automatic EBSD mapping and manual data
collection were done using the CHANNEL 5.10 software by Oxford instruments.
Crystallographic orientation maps were obtained by collecting Electron Backscatter
Patterns (EBSPs) over a regular grid with a 30-mm step size. The EBSD data were
noise reduced using a ‘wildspike’ correction and a five-neighbour zero solution
extrapolation. At each of these steps, the resulting orientation maps were compared
with band contrast maps to ensure that the noise reduction did not compromise
the data.

Pole figures of crystallographic orientation of olivine have been plotted using
the Oxford CHANNEL 5.10 software. Bulk fabric data of olivine are represented
using average Euler angles for each grain (one point per grain) to avoid over-
representation of large grains in thin sections. J-index was calculated to quantify
CPO strength55 using D. Mainprice software (CareWare UNICEF programs)
where 1 represents a random distribution.

X-ray computed tomography. X-ray CT was carried out using a Bruker SkyScan
1,173 at the University of Lausanne, ISTE (Switzerland). The peak accelerating
voltage was 130 kV, exposure was 800 ms, slice thickness 0.225 mm, for a pixel size
of 24.9 and a X-ray tube current 60 nA. CTVox and Dataviewer softwares were
used for data processing.
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