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ABSTRACT:

Exploration of various places using low-cost camera solutions over decades without having a photogrammetric application in mind
has resulted in large collections of images and videos that may have significant cultural value. The purpose of collecting this data is
often to provide a log of events and therefore the data is often unstructured and of varying quality. Depending on the equipment used
there may be approximate location data available for the images but the accuracy of this data may also be of varying quality. In this
paper we present an approach that can deal with these conditions and process datasets of this type to produce 3D models. Results
from processing the dataset collected during the discovery and subsequent  exploration of the HMAS Sydney and HSK Kormoran
wreck sites shows the potential of our approach. The results are promising and show that there is potential to retrieve significantly
more information from many of these datasets than previously thought possible.

1.  INTRODUCTION

There is a long history of documenting sites such as buildings
or temples using commodity cameras, but these datasets have
often been collected without any thought of photogrammetric
analysis. Many datasets may have significant cultural or historic
value such as the 1966 World Cup Final video footage, analysed
by Reid and Zisserman (1996). Generally the collection of this
data is performed to provide a log of events or object placement
and  therefore  these  datasets  are  often  unstructured  and  of
varying  quality.  In  the  last  few  decades  approaches  have
become  available  that  allow  the  use  of  this  data  for
photogrammetric analysis. This research can also be applied to
the  capture  of  image  sets  using  sensor  platforms  such  as
Unmanned  Aerial  Vehicles  (UAV)  and  Remotely  Operated
underwater  Vehicles  (ROV). In these applications commodity
camera solutions are often preferred due to their low weight and
ease of replacement in the event of damage.

However the use of commodity camera systems is not without
its drawbacks. Some of these camera systems may be capable of
recording image locations using GPS, but this information may
be  inaccurate  or  missing.  Also,  depending  on  the  original
purpose for capturing the images and video, the nature of the
data may be problematic for 3D reconstruction.

There  are  often  several  challenges  present  when  processing
datasets captured with commodity cameras which may include:

• Image quality (lighting, focus issues, blur and image
resolution)

• Camera  calibration  (unstable  optics  and  lack  of
calibration)

• Non-existent or inaccurate orientation data
• Large  unordered  dataset  (heterogeneous  data

acquisition of the object  of  interest,  e.g.  sometimes

large temporal gaps between sequences of the same
object)

• Non-optimal  acquisition  of  data  (no  wide  field  of
view  or  still  images  without  sufficient  overlapping
areas)

Despite  these limitations we  believe that  there  is  often  more
useful data than previously thought in many of these datasets. In
this paper we present an approach which can deal with these
conditions and be used to create 3D models from these datasets.

In Section 2 we give an overview of some of the related work in
this area before  outlining our  proposed method in Section 3.
Section 4 shows the results of our method when applied to a
large  dataset.  Finally  in  Sections  5  and  6  we  conclude  and
outline some further work that may further improve out method.

2.  RELATED WORK

The process of structuring large datasets for 3D reconstruction
purposes has been demonstrated previously. One such method is
shown by Agarwal et al. (2009). In Agarwal's approach image
features  are  compared  to  a  pre-prepared  vocabulary  tree  to
determine likely matches. However their method does not make
use of location data where it is available and does not appear to
consider processing video data. Similar to this is the work done
by Abdel-Wahab et al.  (2012) who aim to reconstruct models
from close-range photographs using standard PCs.

In contrast to these, Bartelsen et al. (2012) propose a method for
orientation of wide baseline image sets. This method uses GPS
location data to reduce the number of pairs matched. However
reliance on location data alone to determine the likelihood of an
image  pair  successfully  matching  risks  rejecting  possible
matches when the location data is inaccurate or does not exist.
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Wu  (2011),  Furukawa  and  Ponce  (2010)  and  Jancosek  and
Pajdla  (2011) have independently developed a series of tools
useful  for  performing  3D  reconstruction.  VisualSFM  (Wu,
2011) can be used to perform image matching and sparse point
cloud generation along with automatic camera calibration. This
process can be followed by Furukawa and Ponce's PMVS2 to
generate  a  dense  point  cloud  and  finally  by  Jancosek  and
Pajdla's CMPMVS to create a textured 3D model. These tools
are very powerful however in their current form they provide no
method to make use of either videos sequences or location data.

The main  dataset  we  are  working on consists  of  images  and
video  of  the  wrecks  of  the  HMAS  Sydney  II  and  HSK
Kormoran  –  Australian  and  German  military  vessels
(respectively) which sank each other during World War II. Some
previous work has been done on this dataset to discover which
parts of the wrecks could be modelled using the still images and
available  tools  (Beven,  2012).  However  this  examination  did
not make use of either the video footage or the location data
largely owing to the unstructured nature of the data and the lack
of appropriate tools to analyse it.

In extension of many of the above approaches our aim is to use
all the information present in a dataset to enable us to generate
3D models.  These 3D models  should contain as much of the
scene as possible in as much detail as is available. Many of the
above methods do not make use of all the data that is available
in such datasets, while others make assumptions about the data
that may not be valid in all cases.

3.  METHODOLOGY

The task of finding matching points  between all  images in a
dataset is an O(n2) problem (order of magnitude = the number of
images  squared).  We  have  proposed  several  optimisations  to
reduce  the  time  needed  to  match  relevant  image  pairs.  By
making  use of  the image  data  in  combination  with  available
location data and time data we can greatly reduce the number of
images we attempt to match.

Our  workflow  is  illustrated  in  Figure  1.  We  include  the
information  from  the  dataset  at  different  points  along  the
workflow where it becomes relevant. First we filter the video to
remove  unusable  frames.  Subsequently we  extract  a  minimal
number  of  frames  from  the  video  while  maintaining
connectivity. At this point the still images and video frames are
classified  into  groups  to  assist  the image  matching.  We then
match  the  images  and  video  frames  using  available  location
data,  temporal  data  and  the  classification  to  help  reduce  the
number of images matched.  Finally we generate point clouds
and  then  textured  models.  These  steps  are  outlined  in  more
detail below.

To filter the images the SIFT (Lowe, 2004) keypoint detector is
used. A decision is made as to whether a frame has sufficient
information by defining a threshold  tSIFT. If the frame has less
than tSIFT features then it is discarded. In our implementation tSIFT

is  pre-defined  and  based  on  empirical  tests.  Frames  may be
unusable for several reasons, the most obvious reasons include
the camera pointing at a featureless scene such as a clear sky or
being out of focus such that there is no information left in the
image.

After filtering the video we extract a minimal number of frames
that  preserve connectivity.  The frames  to  extract  are  selected
based  on  one  of  two  criteria.  Firstly  we  attempt  to  preserve
connectivity  by  subsampling  the  video  and  checking  for
sufficient matching SIFT features, defined by tcSIFT, that can be
verified by generating a fundamental matrix for the image pair.
If  there  are  insufficient  matching  features  then  the  sampling
frequency is doubled and the process repeated until either the
number of matching SIFT features is over the threshold tcSIFT or
the sample rate reaches  fMAX.  tcSIFT and  fMAX are predefined and
determined empirically. When either of these conditions are true
the  frame  is  extracted.  This  procedure  is  repeated  until  the
whole video sequence has been processed.

Finally we classify the set of extracted video frames and still
images into groups based on common image features. This is
done by either manually or automatically selecting images as
representatives  for  the  groups.  The  set  of  images  is  first
compared to the manually selected representatives and images
that  share  more  than  tgSIFT SIFT  features  are  added  to  the
appropriate  group.  Images  are  then  selected  automatically  as
representatives for new groups. If an image contains significant
detail, defined by a threshold number of SIFT features, trSIFT, and
is not a member of an existing group a new group is formed
with this image as the representative. Images sharing more than
tgSIFT features are then added to this group and the process is
repeated until  no more groups can be formed. Both  trSIFT and
tgSIFT are  dependant  on  the  dataset  and  are  determined
empirically.

Determining which of the resulting images to apply a matching
operator to is performed by using the results from the above
algorithms.  Firstly  to  take  advantage  of  the  temporal
information, video frames within 20 extracted frames of each
other  are  matched.  Secondly  frames  that  are  within  dMATCH

meters  of  each  other  as  defined  by  location  data  (where
available) are matched. Finally frames that are members of the
same group as determined by the classification are matched. By
combining all of these criteria we minimise the effect of missing
or inaccurate information. The optimal choice for the distance
dMATCH will  be  dependent  on the dataset.  There are  two main
factors  affecting  this  parameter,  the  visible  distance  in  the
images  and  accuracy  of  the  location  data  available.  The
parameter  dMATCH is  directly  proportional  to  the  visibilityFigure 1. Proposed Workflow
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distance  and  inversely  proportional  to  the  accuracy  of  the
location data.

Once the frames to be matched are selected the actual matching
and  sparse  point  cloud  generation  is  performed  using  the
approach in Wu (2011) after which a dense point clouds and
finally a textured surfaces are generated using the approaches of
Furukawa and Ponce (2010) and Jancosek and Pajdla (2011).

Every step outlined here is able to take advantage of parallel
processing to reduce the processing time, however, for ease of
development  our  current  implementations  of  the  video
processing and image classification are single threaded. Given
that there are relatively few dependencies present in these steps
parallel  processing  should  provide  a  significant  performance
improvement.

4.  EVALUATION

We have applied our approach to the dataset collected by the
Finding  Sydney  Foundation  during  the  discovery  and
subsequent  exploration  of  the  HMAS  Sydney  II  and  HSK
Kormoran ship wrecks. The wrecks are located approximately
207 km off the coast of Western Australia at a depth of 2468 m
(HMAS  Sydney  Search,  2010).  The  location  of  the  wrecks
makes further exploration very costly and time consuming, thus
there is considerable value in extracting as much information as
possible from the existing dataset. The images and video were
captured  without  the  intention  of  them  being  used  for
photogrammetry  purposes  and  hence  were  not  taken  in  a
structured manner.

The dataset consists of 1434 digital still (5 megapixel, colour)
images,  and  approximately  40  hours  of  (colour,  analogue,
standard definition, 0.4 megapixel) video. In the dataset there
are 457 digital still images and almost 16 hours of video of the
HMAS Sydney wreck, and 145 still images and 5 hours of video
of the HSK Kormoran. Unfortunately many of the still images
have little or no overlap and thus providing little opportunity for
large  scale  reconstruction  from  these  alone.  Since  3D
reconstruction was not a priority at  the time the footage was
collected, the video does not cover the wreck at a level of detail
usually desired for 3D reconstruction. In addition, through the
lack  of  light  the  images  have  a  high  saturation  in  the  blue
channel and visibility is limited to only a few meters. There is

some location data available, however the accuracy varies quite
considerably  and  the  location  is  not  available  for  all  of  the
images and video footage. 

Figure 2 shows the location data for the ROV as it surveyed the
HMAS Sydney wreck with each colour signifying a different
dive.  The  tracking  information  was  collected  using  an  ultra-
short-baseline (USBL) acoustic system and the accuracy of the
data is limited by the significant depth of the wreck.

After applying our approach to images and video of the HMAS
Sydney wreck 42,000 frames were extracted from the 16 hours
of  video  and  457  still  images  were  selected  for  processing.
Following  this  approximately  40  million  image  pairs  were
selected for matching, which comprises approximately 4.4% of
the possible matches using a naive strategy.

The computation for  the models was performed using a 2.66
GHz Intel i7 processor with 18 GB of system RAM and an 896
MB NVIDIA GeForce GTX 275 graphics card. The time taken
to extract frames from the videos was 8 hours followed by the
time taken to classify the images of 48 hours. Finally matching
the images took approximately 430 hours. Several point clouds
were generated and some of these were further processed using
PMVS2 (Furukawa and Ponce, 2010) and CMPMVS (Jancosek
and  Pajdla,  2011)  to  generate  textured  3D  models.  The
processing time for this part varied depending on the number of
images in each model. For example the model of the side of the
Sydney shown in Figure 3 consists of 1396 images and took 14
hours  to  render  using  CMPMVS.  These  models  were  then
viewed in MeshLab for evaluation.

Part of the HSK Kormoran wreck was also modelled using this
method.  8,590  video  frames  were  extracted  from one  of  the
dives covering the Kormoran wreck, and these were combined
with 145 still images. Using the location data these images were
matched and a model generated also shown in Figure 3. For this
smaller  dataset  the  matching  process  took  approximately  40
hours,  and  a  textured  model  of  the  Kormoran  foredeck
consisting of 1,238 images was produced taking a further  20
hours to render using CMPMVS.

We note that the 3D models shown in Figure 3 that have been
extracted using both the images and video frames do have some
limitations – the colour information is dominated by the blue
colour of the video frames mentioned earlier,  and due to  the
limited  resolution  of  the  video  frames,  the  3D models  have
limited resolution – much less than if the models were extracted
exclusively from multi-megapixel digital still cameras.

Using this approach many parts of the HMAS Sydney wreck
can now be reconstructed in varying levels of detail. Figure 4
shows a  schematic  of  HMAS Sydney with areas  that  can be
partially reconstructed highlighted in green. It should be noted
that the bow of the ship is detached from the rest of the ship as
shown by the solid line. While some of the green areas may be
connected  the  models  created  may  not  be  connected.  This
occurs for several reasons, the most common is that the video
has a small  amount of overlap between the two parts but not
enough to connect the models created.

The  resulting  models  created  from  the  dataset  can  only  be
evaluated through visual inspection as there is no reference data
available  apart  from  the  original  build  plans.  However  the
resulting models appear to be generally accurate and show that
this method has potential for processing datasets of this type.Figure 2. Location data for the HMAS Sydney images and

video
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5.  CONCLUSIONS

In  this  paper  we  have  presented  a  method  for  creating  3D
models from large unstructured datasets. Our approach makes
use of several types of data commonly available by extracting
frames from video sequences then combining this with location
data  and  still  images.  The  images  are  classified  and  using
location  and  temporal  information  to  guide  matching  image
pairs  are  matched.  Finally  3D  models  of  the  scenes  are
generated.

In the case of the dataset from the HMAS Sydney and HSK
Kormoran this is the first time to our knowledge that models

have been created using a combination of both the images and
videos.  This  has  resulted  in  unprecedented  coverage  of  the
shipwrecks and much more complete  models  than previously
available.

We believe that using this method several other large datasets
could  be  analysed  and  3D  models  of  other  areas  could  be
produced. This may allow visualisation of other lost places that
can no-longer be visited.

6.  OUTLOOK

As  noted  above,  the  accuracy  of  the  3D  models  we  have

Figure 4. Schematic of HMAS Sydney (HMAS Sydney Search, 2010) with a green overlay showing area which can be partially
reconstructed from the dataset

Figure 3. (top) HSK Kormoran foredeck, (bottom) Side of HMAS Sydney
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extracted  from this  dataset  could  only  be  evaluated  through
visual inspection. Our next step is to verify our approach using
datasets with available reference data.

Our  proposed  workflow  does  cut  down  the  computational
complexity  of  the  image  matching  compared  to  a  naive
approach,  however  the computation  time for  this  step is  still
significant  compared  to  the  other  steps.  This  process  could
potentially be further improved upon by creating tracks for each
video individually by combining available position and visual
odometry data using a Kalman filter to generate a more accurate
position  of  the  ROV.  Once this  has  been generated  for  each
video sequence tracks could be matched and only segments that
are  within  a  specified  distance  are  selected  for  matching.
Further  to this,  we  currently do not consider orientation data
from sources such as compass or accelerometers. If available,
using such information would also help optimise the number of
image  pairs  selected  for  matching,  further  reducing  the
computation time for image matching. This could be combined
with  an  iterative  matching  approach  where  images  are  first
matched with a small value for dMATCH then matched again with a
larger value taking into account the calculated orientation.

As  noted  by Bartelsen et  al.  (2012)  SIFT is  not  fully affine
invariant  and  this  affects  the  results  of  the  image  matching
because  there  cannot  be  significant  rotation  or  perspective
change between image pairs. An approach that deals with larger
viewpoint  changes is that  of Morel  and Yu (2009) known as
ASIFT. Due to the unstructured nature of these datasets and the
large viewpoint changes that result ASIFT would likely provide
a  significant  increase  in  useful  image  matches  and  a  higher
number of matching points between images.

Many of  the  images  present  in  the dataset  contained  motion
blur, some work has been done attempting to remove this type
of blur Hanif and Seghouane (2012) have proposed a method of
blur  removal  which  may be  able  to  increase  the  number  of
keypoints that are able to be detected in the dataset we have
used and hence improve the number of matching points between
affected images.
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