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Abstract—Traditional multiuser receiver algorithms developed
for multiple-input–multiple-output (MIMO) wireless systems
are based on the assumption that the channel state information
(CSI) is precisely known at the receiver. However, in practical
situations, the exact CSI may be unavailable because of channel
estimation errors and/or outdated training. In this paper, we
address the problem of robustness of multiuser MIMO receivers
against imperfect CSI and propose a new linear technique that
guarantees the robustness against CSI errors with a certain
selected probability.

The proposed receivers are formulated as probabilistically con-
strained stochastic optimization problems. Provided that the CSI
mismatch is Gaussian, each of these problems is shown to be convex
and to have a unique solution. The fact that the CSI mismatch is
Gaussian also enables to convert the original stochastic problems
to a more tractable deterministic form and to solve them using the
second-order cone programming approach.

Numerical simulations illustrate an improved robustness of the
proposed receivers against CSI errors and validate their better
flexibility as compared with the robust multiuser MIMO receivers
based on the worst case designs.

Index Terms—Multiple-input–multiple-output (MIMO) sys-
tems, multiaccess communications, optimization methods, proba-
bility-constrained optimization, robustness.

I. INTRODUCTION

I N UPLINK CELLULAR communications with multiple
receive antennas at the base station and transmit antennas

at each mobile station, spatial diversity techniques can be
employed to increase the capacity [1]–[3] and improve the
immunity to fading [4]–[6]. Among space–time codes devel-
oped so far, orthogonal space–time block codes (OSTBCs)
are very popular [4], [6], mainly because they enable a very
simple (linear) maximum-likelihood (ML) decoding in the
point-to-point communication case and, at the same time,
achieve the full diversity order [6].
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In the multiaccess MIMO case, the optimal ML receiver be-
comes prohibitively expensive and, hence, suboptimal linear
multiuser receivers have gained recently much interest as com-
putationally attractive alternatives to the ML receiver [7]–[11].
Unfortunately, all the receivers of [7]–[11] assume that the exact
knowledge of the channel state information (CSI) of at least the
user-of-interest is available. When the exact CSI is unavailable,
the performance of these receivers may degrade severely.

Motivated by the latter fact, the problem of robust linear mul-
tiuser MIMO receiver design has been recently addressed in [12]
and [13], where the worst case optimization approach [14]–[21]
has been used to improve the robustness of the minimum vari-
ance (MV) receivers of [11] against CSI mismatches. However,
the actual worst case may occur in practice with a very low
probability. Hence, the worst case approach may be overly pes-
simistic and, therefore, may lead to unnecessary performance
degradation.

In this paper (see also [22] and [23]), we design robust linear
multiuser MIMO receivers which are less conservative than
the worst case optimization-based receivers of [12] and [13].
Our new receivers guarantee the robustness against CSI errors
with a certain selected (high) probability.1 The mathematical
formulation of this receiver design problem is developed in
terms of probability-constrained stochastic optimization (also
referred to as chance programming) [27], [28]. Based on this
approach, we formulate robust receiver design problems whose
convexity is then proven using the assumption that the CSI
mismatch is Gaussian. These problems are further converted
into equivalent deterministic forms based on nonlinear pro-
gramming (NLP) [29] and/or second-order cone programming
(SOCP) [30]–[32]. The latter problems can be efficiently solved
using modern convex optimization algorithms [32], [33]. An
interesting relationship between the proposed techniques and
the worst case optimization-based receivers is also established.

The remainder of this paper is organized as follows. Some
background on multiaccess space–time block-coded (STBC)
MIMO systems and linear multiuser receiver algorithms is
given in Section II. In Section III, we formulate new robust
linear receivers based on probability-constrained stochastic
optimization. Then, we prove the convexity of the obtained
stochastic optimization problems and develop computationally
efficient techniques to solve them. Section IV presents simu-
lation results that compare the performance of the proposed
receivers with the existing techniques. Section V concludes our
work.

1Interestingly, related probabilistic approaches have been recently applied to
several other important problems including robust beamforming [24], robust
multiuser detection [25], and robust signal parameter estimation [26].

0733-8716/$20.00 © 2006 IEEE
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II. BACKGROUND

A. Multiaccess STBC MIMO Systems

Let us consider an uplink multiuser MIMO communication
system with multiple transmitters, single receiver, and flat block
fading. Each transmitter is assumed to have the same number of
antennas and to encode information-bearing symbols using the
same STBC.2 Then, the received signal can be written as [11]

(1)

where

(2)

(3)

(4)
are the matrices of the received signals, transmitted signals of
the th transmitter, and noise, respectively, is the
complex channel matrix between the th transmitter and the re-
ceiver, is the number of transmit antennas, is the number
of receive antennas, is the number of transmitters, is the
block length, denotes the transpose, and

(5)

(6)

(7)
are the complex row vectors of the received signals, transmitted
signals of the th user, and noise, respectively. In the sequel, we
make use of the following assumptions.

• The entries of , are independent identi-
cally distributed (i.i.d.) complex zero-mean Gaussian, that
is, the channel is Rayleigh flat fading;

• The noise is spatially and temporally i.i.d. additive white
Gaussian noise (AWGN).

We denote the complex information-bearing symbols of the
th transmitter prior to encoding as

(8)

where is the constellation size. It can be shown that for any
linear dispersion (LD) code, the code matrix can be
written as [34], [35]

(9)

where , , and is the
vector having one in its th position and zeros elsewhere.

Using (9), one can rewrite (1) as [11]

(10)

2The assumption of the same number of antennas and the same STBC across
all transmitters is only needed for notational simplicity and can be relaxed, see
[11] for more detail.

where the “underline” operator for any matrix is defined as

(11)

is the vectorization operator stacking all columns of a
matrix on top of each other, and the real-valued
matrix is given by [35]

(12)

B. Linear Receivers

Without any loss of generality, let us assume that the first user
is the user-of-interest. The estimate of the data vector at the
output of a linear receiver can be expressed as

(13)

where

(14)

is the matrix of the receiver weight coefficients,
and is the weight vector that is used to decode
the th entry of . Given the matrix , the estimate of the
vector of information symbols of the transmitter-of-interest can
be computed as

(15)

where denotes an identity matrix.
The problem of linear receiver design is how to find the matrix
that extracts the signals received from the user-of-interest,

while rejecting the interference and noise components. It has
been proposed in [11] to design using the MV approach.
According to it, each entry of is estimated by minimizing
the receiver output power, while preserving a unity gain for this
particular entry of . The corresponding optimization problem
can be written as [11]

(16)

for all , where

(17)

is the sample estimate of the full rank covariance
matrix

(18)

of the vectorized data, is the th received data block, and
denotes the statistical expectation.
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The solution to (16) is given by

(19)

for . The form of the MV receiver in (19)
is rather similar to that of the MV distortionless response
(MVDR) beamformer [36] and the minimum output energy
(MOE) receiver used in single-input–single-output (SISO)
multiuser detection [37]. The receiver (19) can be also inter-
preted in terms of user-separating receivers; see [38] where
such receivers have been developed for multiuser code-division
multiple-access (CDMA) systems.

Although the receiver (19) is able to reject multiaccess inter-
ference (MAI), it does not completely cancel self-interference,
which, for each , is caused by the other than the th entries of

. Note that the complete cancellation of self-interference is a
strongly desirable feature as, otherwise, the symbol-by-symbol
detector is far from being optimal [11], [25]. More specifically,
the symbol-by-symbol detector uses the assumption that the
output of each linear receiver corresponding to any particular
symbol is independent of the other symbols. However, this as-
sumption is violated in the presence of even a small amount of
noncancelled self-interference.

To incorporate the self-interference cancellation feature into
(16), it was proposed in [11] to use additional zero-forcing (ZF)
constraints

(20)

that guarantee complete cancellation of self-interference. With
the additional constraints of (20), the problem (16) can be refor-
mulated as [11]

(21)

Using the Lagrange multiplier method, the solution to (21) can
be written in the following form [11]:

(22)

Note also that a conceptually similar ZFMV receiver has been
earlier used in multiuser detection [25] and adaptive filtering
[39, Ch. 3, Prob. 4].

It can be seen from (16) and (21) that the MV receivers re-
quire the CSI of the user-of-interest. However, in practice, it is
unrealistic to obtain the exact CSI at the receiver because of a
limited/outdated training, negative effects of interference and
noise, and channel variability. Therefore, the performance of
the MV receivers may be subject to a severe degradation due to
CSI imperfections, and some robustness against imperfect CSI
is required.

To improve the robustness of (19) and (22), it has been pro-
posed in [11] to apply ad hoc diagonal loading (DL) by means
of using the matrix instead of , where is the DL

factor. The DL-based modifications of the MV receivers (19)
and (22) can be written as

(23)

(24)

respectively. Unfortunately, the DLMV receivers (23) and (24)
chose the DL parameter in an ad hoc way. As a result, the
choice of this parameter may be nonoptimal.

To further improve the robustness of the receivers (23) and
(24) against CSI errors, several worst case-based receiver de-
signs have been proposed in [12] and [13]. The latter techniques
have more rigorous theoretical background than the DL-based
receivers, because they chose the DL parameter that is optimally
matched to the worst case. As a result, the techniques of [12] and
[13] substantially outperform the receivers (23) and (24) in sce-
narios with imperfect CSI.

III. PROBABILISTICALLY CONSTRAINED

ROBUST LINEAR RECEIVERS

Although the worst case-based receiver designs provide
excellent robustness against CSI imperfections, they may be
overly pessimistic in practical applications, where the actual
worst case may occur with a very low probability. Motivated by
this fact, in this section, we develop a more flexible approach
based on probabilistic constraints.

Let us consider the CSI error matrix of the user-of-interest.
This matrix can be defined as

(25)

where and denote the actual channel matrix of the
user-of-interest and its estimate available at the receiver, re-
spectively. Using the notations of model (10), we can write that

(26)

where

(27)

and the last equality in (26) follows from the linearity of the
underline operator (11).

Let us obtain the receiver weight vector for the th entry
of as the solution of the following probability-constrained
optimization problem

(28)

(29)

In this problem, the receiver output power is minimized under
the constraint that the distortionless response for the th entry of

is maintained with the probability not smaller than , where
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is selected from the interval (0,1), and denotes the prob-
ability operator whose form is assumed to be known. In fact, the
value of in (28) and (29) determines the probability of outage3

that is allowed at the receiver. Therefore, to restrict the outage
probability to be small, the typical choice of should be close to
one, that is, . It is easy to make the particular choice
of based on quality-of-service (QoS) system specifications.
Note that the problems of the type of (28) and (29) are referred
in the optimization literature to as chance-constrained or proba-
bility-constrained stochastic programming problems [27], [28].

In what follows, we will assume that the CSI errors are
Gaussian distributed. This assumption can be validated by the
results of [40] and [41], where it has been shown that in MIMO
communications with optimal (orthogonal) training signals and
AWGN, the CSI errors are Gaussian.

The following theorem establishes the convexity of the
problem (28) and (29).

Theorem 1: If the entries of are uncorrelated and
each entry has circular complex Gaussian distribution so that

, then the optimization problem (28) and
(29) is convex for .

Proof: The objective function in (28) is a quadratic func-
tion of , and is non-negative definite. Therefore, this func-
tion is convex.

Now, let us prove that the constraint (29) is also convex under
the assumptions of the theorem. First, we note that de-
pends linearly on . Indeed, applying the underline operator
(11) to (26) and using some properties of the Kronecker matrix
product [42], we have

(30)
where

(31)

and denotes the Kronecker matrix product. It follows from
(30) that is a linear combination of the real and imag-
inary parts of all entries of the CSI error matrix . If the en-
tries of are uncorrelated and have circular complex Gaussian
distribution

(32)
then, using (30), we find that has multivariate real
Gaussian distribution. Its mean vector and covariance matrix
can be calculated, respectively, as

(33)

(34)

3In the context of our paper, the receiver outage is defined as the case when
the distortionless response constraint is violated.

where denotes a vector with all zero entries.
Since the only random term in the product

is , and both and are deterministic,
the random variable

(35)

has also Gaussian distribution. Its mean and covariance can be
computed, respectively, as

(36)

(37)

where denotes the Euclidean norm of a vector.
Using the error function for any real Gaussian random

variable

(38)

we can find the probability as follows [43]:

(39)

For the random variable in (35), (39) can be rewritten as

(40)

Applying (40) to (29), we obtain the following equivalent
constraint:

(41)

The inequality (41) is convex if and only if its left-hand side is
positive. The latter is guarantied if or, equivalently,

. In this case, (41) can be rewritten as

(42)

where denotes the inverse error function. The con-
straint (42) is called the second-order cone (SOC) constraint and
is convex; see also [30, pp. 157–158] for an outline of the con-
version of a probabilistic constraint to a SOCP constraint.
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Summarizing, both the objective function and the constraint
are convex. Therefore, the problem (28) and (29) is convex.

Although the problem (28) and (29) is convex, it is nonlinear
and does not have closed-form solution. However, using (42) it
can be equivalently converted to the following SOCP problem:

(43)

(44)

(45)

where

(46)

is the Cholesky factorization of , and is a new optimization
variable such that . Using the standard optimization
tools [33], the problem (43)–(45) can be solved with the com-
plexity order of [45].

Interestingly, if , then (note
that, in particular, this property holds true for the Alamouti’s
code). Then, the constraint (45) is equivalent to

(47)

In this specific case, we can establish a connection between the
proposed receiver (43)–(45) and the worst case optimization-
based receiver of [12]. The latter receiver can be represented as
the following optimization problem:

(48)

(49)

(50)

where is a constant which bounds the uncertainty region of the
CSI mismatch as

(51)

Comparing (47) and (50), we obtain that the problems (43)–(45)
and (48)–(50) become identical if

(52)

Equation (52) illustrates an interesting link between the worst
case-based and probabilistically constrained robust receiver de-
signs. It provides an explicit relationship between the proba-
bility and the uncertainty parameter and, therefore, provides
a practical rule for choosing based on the QoS requirements.

In (28) and (29), both self-interference and MAI are sup-
pressed by minimizing the objective function (28). In [12], it has
been proposed to add separate constraints to the worst case op-
timization problem to mitigate self-interference in the CSI un-
certainty region. With such additional constraints, the problem
(48)–(50) was modified in [12] as

(53)

(54)

(55)

(56)

where

(57)

and, similar to (48)–(50), is a new auxiliary variable. The latter
problem is easily convertible to a SOCP form.

It has been demonstrated in [12] that, due to the aforemen-
tioned self-interference mitigation constraints, the receiver
(53)–(56) significantly outperforms the receiver (48)–(50).

As mentioned before, the worst case receiver designs can be
overly conservative as the probability of the actual worst case
may be quite low [22]–[25]. Therefore, let us use a more flexible
problem formulation with probabilistic constraints which guar-
antee that self-interference is cancelled with a certain selected
probability . With such additional constraints, the problem (28)
and (29) can be modified as

(58)

(59)

(60)

where is the
vector whose values limit the contribution of self-interference,
and is the standard deviation of the waveform of the user-of-
interest.

Note that the contribution of any particular user to the ob-
jective function (58) is proportional to its power. That is why
the scaling by is used in (60). The power of the user-of-in-
terest is assumed to be approximately known (or estimated) at
the receiver.

The following theorem establishes the convexity of the
problem (58)–(60).

Theorem 2: If the elements of are uncorrelated and each
element has circular complex Gaussian distribution

, then the optimization problem (58)–(60) is convex
if .

Proof: See Appendix A.
Since the problem (58)–(60) is convex, a locally optimal so-

lution is also globally optimal. This problem can be converted
into its deterministic equivalent form in the following way.

Let us introduce a new vector

(61)

Minimizing is equivalent to minimizing the objective func-
tion of (58). Hence, introducing a new scalar non-negative vari-
able and a new constraint

(62)
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we can define a new objective function minimization as follows:

(63)

The deterministic equivalent form of the constraint (59) is given
by (42). The probability constraints (60) also can be converted
into their deterministic equivalents. Using (36), (37), and (38),
the left-hand side of (60) can be written as

(64)

Combining (42), (62), (63), and (64) together, we can rewrite
the stochastic programming problem (58)–(60) as the following
equivalent deterministic problem:

(65)

(66)

(67)

(68)

where is given by (61). Note that since the problem (65)–(68)
is equivalent to the problem (58)–(60), the former problem is
also convex.

Although the problems (58)–(60) and (65)–(68) are equiv-
alent when the channel mismatch is Gaussian, the original
stochastic programming problem is computationally in-
tractable, whereas the deterministic problem (65)–(68) belongs
to the class of NLP problems and can be numerically solved
using interior-point algorithms [44] or sequential quadratic
programming (SQP) [29] techniques. The latter technique is
an iterative procedure in which each search direction is the
solution of a particular quadratic programming (QP) sub-
problem. The computational complexity of solving each QP
subproblem using the primal-dual potential reduction method is

[45]. Overall complexity of SQP algorithm
is determined by the number of iterations, which may depend
on problem-specific parameters and the given batch of data. As

a result, the overall computational complexity of solving the
problem (65)–(68) may be prohibitively expensive for practical
wireless communication systems.

Below we show that the problem (58)–(60) can be approxi-
mated to a much simpler SOCP form. The key idea is to approx-
imate the nonlinear constraints (60) by SOC constraints. Let us
use Chebyshev inequality, which states that for any random vari-
able and any positive real number

(69)

Since all the constraints in (60) have the same structure, we fur-
ther discuss only the th constraint. Under the assumption that

has Gaussian distribution and using (36) and (37), we
have

(70)

Using (69) and (70), the left-hand side of the th constraint in
(60) can be lower bounded as

(71)

Replacing all the constraints (60) by their lower bounds (71),
we obtain the following set of constraints:

(72)

The constraints (72) can be referred to as a safe approximations
of the original constraints (60), meaning that the constraints in
(72) are more strict than that in (60). Therefore, the constraints
in (60) always hold true provided that those in (72) are satisfied.

For the sake of simplicity, we further approximate the con-
straints in (72) by summing them together to obtain a single
constraint of the following form:

(73)

where

(74)

Substituting the left-hand side of (73) into the objective function
(58) instead of the term , we can eliminate the constraint
(73) from the final optimization problem. Then, the new objec-
tive function can be written as follows:

(75)
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The final optimization problem which approximates the orig-
inal problem (58)–(60) can be written as the following SOCP
problem:

(76)

(77)

(78)

where

(79)

is the Cholesky factorization of , and is a new variable
such that .

The problem (76)–(78) has the same structure as the problem
(43)–(45). However, an important practical difference between
(43)–(45) and (76)–(78) is that in (76)–(78) an additional miti-
gation of self-interference is used. It should be also stressed that
the relaxed SOCP problem (76)–(78) has much lower computa-
tional complexity than the original NLP problem (65)–(68). The
problem (76)–(78) can be easily solved using modern interior-
point methods-based convex optimization software [33]. For ex-
ample, using the primal-dual potential reduction method, this
problem can be solved with the complexity order of
[45].

Note also that the problem (76)–(78) is computationally sim-
pler than (53)–(56), because it has less constraints and smaller
number of optimization variables.

IV. SIMULATIONS

Throughout our simulations, an uplink cellular communi-
cation system with transmitters and a single receiver
equipped with antennas is assumed. The interfering
transmitter uses the same OSTBC as the transmitter-of-interest.
The interference-to-noise ratio (INR) is equal to 20 dB and the
quadrature phase-shift keying (QPSK) modulation scheme is
used. All plots are averaged over 1000 independent simulation
runs. The MIMO channel between the th transmitter and the
receiver is assumed to be quasi-static Rayleigh flat fading with

.
The following receivers are compared in terms of symbol

error rates (SERs): the proposed SOCP-based receiver
(76)–(78), the worst case optimization-based receiver (53)–(56),
the DLMV receiver (24) with the DL factor (where

is the noise variance), the matched filter (MF) receiver [35]

(80)

and the “informed” MV receiver, which corresponds to the ideal
case when (22) is used with the exactly known . Note that
the latter receiver does not correspond to any practical situation
and is included in our simulations for the sake of comparison
only. The receivers (48)–(50) and (43)–(45) are not included
in the subsequent plots because in [12] it has been shown that
the receiver (53)–(56) has better performance than (48)–(50),
and because the receiver (43)–(45) does not provide any perfor-
mance improvements as compared with the receiver (48)–(50).

Fig. 1. SERs versus SNR; first example.

Fig. 2. SERs versus J ; first example.

The latter fact was confirmed through extensive simulations that
are not included below for brevity reasons.

In our first and the second examples, the channel mis-
match is assumed to be independent on with

and (the latter value of
corresponds to quite a substantial CSI estimation error).

Note that to verify the proposed approach, we use in these two
examples the same CSI mismatch model as in Theorems 1 and
2. In both these examples, is taken for the proposed
robust receiver (76)–(78).

In the first example, we simulate a scenario where each trans-
mitter uses antennas with the Alamouti’s code [4]. The
parameter is used for the worst case-based robust re-
ceiver as suggested in [12]. In Fig. 1, SERs of all the receivers
tested are displayed versus the SNR for the number of data
blocks . Fig. 2 shows the SERs of the same receivers
versus the number of data blocks for dB.

In the second example, we consider the scenario with
antennas per transmitter. Both transmitters use the 3/4-rate
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Fig. 3. SERs versus SNR; second example.

Fig. 4. SERs versus J ; second example.

( ; ) OSTBC from [6]. The parameter
is taken for the worst case-based receiver as suggested in [12].
Fig. 3 shows the receiver SERs versus the SNR for ,
while Fig. 4 displays the receiver SERs versus the number of
data blocks for dB.

In the third and fourth examples, we assume that the channel
knowledge at the receiver is obtained by means of training-
based channel estimation. In both these examples, the least-
squares (LS) technique with the optimal training sequence [46]
is used to estimate the CSI based on a single training data block,
and is chosen for the proposed receiver. To compute
the value of for the proposed receiver, (12) from [46] is used.

In the third example, we simulate a scenario with the same
parameter setup as that of our first example. Fig. 5 displays the
receiver SERs versus SNR for . Fig. 6 shows the receiver
SERs versus for dB. Furthermore, Fig. 7 displays
the performance of the proposed receiver versus the mismatch
between the actual value of the standard deviation of the channel
estimation error and the value of used in our design. In the
latter figure, dB and .

Fig. 5. SERs versus SNR; third example.

Fig. 6. SERs versus J ; third example.

In the fourth example, we simulate a scenario with the same
parameter setup as that of our second example. Fig. 8 shows the
receiver SERs versus SNR for , while Fig. 9 displays the
receiver SERs versus for .

From Figs. 1–9, it follows that in all simulation examples, the
proposed robust receiver (76)–(78) consistently provides better
performance as compared with the nonrobust receivers and the
worst case robust receiver. Note that throughout all the figures,
the “informed” MV receiver has quite a poor performance
which can be explained by its insufficient robustness against
finite sample effects in the case when the signal of interest “con-
taminates” the sample estimate of the interference-plus-noise
covariance matrix. This signal “self-nulling” phenomenon is
well known in adaptive beamforming and multiuser detection,
see [14] and references therein. It can also be seen from Fig. 7
that the proposed receiver is relatively insensitive to a mismatch
in .
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Fig. 7. SERs versus the channel estimation error standard deviation mismatch;
third example.

Fig. 8. SERs versus SNR; fourth example.

From Figs. 1, 3, 5, and 8, it can be seen that the DLMV re-
ceiver experiences substantial performance degradation at high
SNR values. This effect has been earlier observed in [12] and
can be explained by the fact that the DLMV receiver uses non-
adaptive (fixed) DL factor.

In summary, Figs. 1–9 clearly demonstrate that the proba-
bility-based robust designs are, as expected, more flexible than
the worst case designs.

V. CONCLUSION

The problem of robustness of multiuser MIMO receivers
against imperfect CSI has been addressed, and a new approach
that guarantees the robustness against CSI errors with a certain
selected probability has been proposed. The new receiver tech-
niques have been formulated as probabilistically constrained
stochastic optimization problems. In the case of Gaussian CSI
mismatch, these problems have been proved to be convex, and

Fig. 9. SERs versus J ; fourth example.

have been converted to a more tractable deterministic SOCP
form whose computational complexity is lower than that of the
known worst case optimization-based robust receivers.

Simulation results have validated an improved performance
of the proposed approach as compared to the existing linear mul-
tiuser MIMO receivers.

APPENDIX A
PROOF OF THEOREM 2

Let us first introduce the following lemma.
Lemma 1: Let vectors have a joint real Gaussian

distribution with a covariance matrix , so that

(81)

where are some constants. Then, the set

(82)

is convex for . Here, denotes the set intersection op-
eration, , and are arbitrary real constants.

Proof: See [28, p. 312].
To prove Theorem 2, we first observe that the objective func-

tion (58) is a sum of two convex quadratic functions. Thus, it is
convex.

It has been proven earlier in this paper [see (42)] that the
constraint (59) is convex if and

.
The constraints (60) share the same structure. Thus, it is

enough to show that at least one of them is convex. Let us
rewrite the th constraint in (60) in the following equivalent
form:

(83)

The constraint (83) is called joint chance constraint in the sto-
chastic programming literature [27], [28].
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To be consistent with the notations used in Lemma 1, let us
denote

(84)

(85)

(86)

(87)

Then, (83) can be equivalently written as

(88)

Using (34), we obtain that the vectors and have joint
Gaussian distribution with

(89)

(90)

where

(91)

From (89) and (90), it is obvious that Lemma 1 can be directly
applied. Thus, the constraints (60) are convex if .

This completes the proof.
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