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Abstract— Exploration business deals with structure and 
reservoir data. The carbonate reservoirs, (especially of Juras-
sic age), establish its hydrocarbon potential and production on 
commercial scale in Middle Eastern onshore petroleum sys-
tems. There is an immense scope of exploration and produc-
tion from the fractured horizons and their associated reser-
voirs.  Most of the fractures are networked or interconnected 
through fluid media. The wells drilled in carbonate reservoir 
areas, have been under an unbalanced-stress system that ex-
hibits commonly two types of borehole failures, shear and ten-
sile failure, where the rocks drilled, are replaced with drilling 
mud. Rocks undergo hoop and radial stresses that occur by 
drilling and also natural fracturing. A robust methodology is 
needed to address issues of integrating multiple fracture sys-
tems. Issues relevant to borehole management are addressed 
through ontology modeling of networked fractures. Authors 
propose data warehousing approach supported by ontology 
that can integrate data attributes associated with fractures of 
multiple horizons from several wells, geographically (dis-
tantly) located within a producing basin. Authors attempt to 
make connectivity between structure and reservoir data at-
tributes. Integration is done by mapping and modeling con-
ceptually (more logically) interpreted relationships among 
multidimensional inter-dependent data structures and attrib-
utes through their data property instances that are described 
from different fracture systems. Data mining can separate out 
these stresses, so that driller or well planner knows in advance 
the fracture systems that are being drilled. The proposed 
methodology is robust and can resolve issues relevant to devia-
tion and smart drilling in the fractured reservoir systems. This 
approach integrates and makes connectivity among varying 
common and conceptualized attributes associated with struc-
ture and reservoir. If the proposed methodology is successful, 
it can be applied any fractured shales and tight-gas reservoir 
systems worldwide. 
 

Index Terms—ontology, warehouse modeling, fractured 
reservoirs, borehole planning and production management 

I. INTRODUCTION 

Placement of wells and managing the production from 
the unconventional reservoirs [5], are based upon judicious 
well planning, such as vertical and or horizontal well loca-
tions. Precisely, the well placement is done where dense 
fractures are interpreted. The magnitude and direction of 
fractures and the subsequent causative effects (in the form 
of stress/strain) on reservoir rocks are also significant and 
these are most popularly explored by seismic and or drilling 
methods.  

The rocks withstand both compressive and shear stresses 
but the fluid filling the borehole bears only compressive 
stress and not shear stress. Consequently, concentration of 
stresses takes place around the well borehole in the form of 
hoop stress or tangential stress. When the mud weight is too 
low (radial stress = mud weight minus pore pressure), the 

maximum hoop stress becomes much higher than the radial 

stress. Consequently, a shear failure of rocks exposed to the 
borehole takes place, which is exhibited in the form of 
borehole elongation. On the contrary, when the mud weight 
is too high the radial stress increases and the hoop stress 
decreases. Consequently, rock around the borehole comes 
under tension; the fractures thus created are called induced 
fractures. 

Generally, in vertical wells and those with smaller devia-
tion, the orientation of borehole elongation is aligned with 
the trend of minimum horizontal stress. Similarly, the strike 
of drilling induced is aligned with the trend of maximum 
horizontal stress. However, it may not be the case with the 
deviated wells and particularly those wells that are not 
aligned with either of the two horizontal stresses. In such 
wells, orientations of borehole breakouts and drilled in-
duced fractures may not represent true orientation of the 
two horizontal stresses. It is because of the fact that all 
three principal stresses (vertical and two horizontal) act 
oblique to the borehole. Fracture dimensions are critical in 
well bore planning and production management. 

Three types of fractures occur in shale. They are re-
gional, tectonic and expulsion. All fractures are lithology 
dependent; differ in degree and type of fracturing. Miner-
alization on fracture surfaces is absent. Natural fractures are 
differentiated from induced fractures based on pore size 
(usually a micro-porous surface). Micro-porous surface 
does not occur on freshly broken bedding planes or on in-
duced fractures. Regional fractures form an orthogonal pat-
tern over a wide area and are open in a direction parallel to 
the maximum horizontal stress. In order to determine direc-
tion of horizontal stress, cores are subjected to differential 
strain analysis. Caliper (four-arm) data also provide suffi-
cient clues of direction of break-outs. At times, regional 
fractures are responsible, providing most significant trans-
missibility element for fluids, in which case, north-south 
horizontal drilling direction is preferred.  

In case of expulsion fractures, fracture widths vary from 
10 to 20 microns. Length varies from one-half inch (one 
cm), in which case, fractures are usually horizontal. They 
may have resulted because of pressure release. Both vertical 
and horizontal macro expulsion fractures may exist, how-
ever, distinguishing between small scale regional fractures, 
small tectonic fractures and possible bedding plane breaks, 
is difficult. 

Pressure and production data suggest the character of the 
natural fractures. High fluid pressures and the lack of prop-
ping material within fractures also create a usual drive 
mechanism. In most reservoirs with only rock-
compressibility and solution-gas drives, rock compressibil-
ity is a dominant drive mechanism only above the bubble 
point. It is normally ineffective, resulting in a sharp early 
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decline. Once the bubble point is reached, decline becomes 
more moderate as solution-gas drive becomes dominant. 

II. OBJECTIVES AND PROBLEM DEFINITION 

A. Objectives and problem issues 

1. Distinguish fracture data patterns and their impacts on 
pressure and production  

2. Reservoir uncertainties and risk minimization. 
3. The data acquisition plans, addressing the development 

strategies for each field. 
4. Static field model development 
5. The review of wells (associated with fracture patterns) 

and their completion requirements and facilities. 
6. Economic analysis 

 
First three issues are the present scope of the study and 

analysis. The static reservoir model consists of a structural 
framework that is populated with matrix and fracture prop-
erties. It is constructed by integrating all the available geo-
logical, geophysical, petro-physical and engineering data. 

B. Characterization of the Fracture Systems 

The main objective of the present study was to charac-
terize fracture system at the borehole scale so that in con-
junction with other measurements, like 3D seismic and well 
tests, the information could be used to build a comprehen-
sive fracture model. In addition to fractures, structural dip, 
fault analysis and in-situ stress analysis are carried out and 
used to design and map different data structures. It is im-
portant to understand the fracture characterization to build 
conceptual data models. Basic criteria for identifying the 
fractures are given in the following sections. 

C. Criteria of fracture identification 

Data instances of fracture dimensions are acquired. For 
this purpose, fractures and patterns need to be identified 
and documented. Fractures are planar features with no ap-
parent displacement of blocks along their planes. Generally, 
they possess steep dips in tensional and wrench regimes. In 
compressional regimes, they may have, high to low angle 
dips. Their apertures may be open, tight (closed) or filled 
with minerals such as, clays, calcite, anhydrite, pyrite etc.  

Fractures tend to occur as linear features that generally 
have steeper dip attributes, compared to the structural dip. 
Open fractures and fractures with apertures filled with re-
sistive material, like calcite and anhydrite may have same 
resistive appearance, because open fractures are invaded 
with oil-base mud, have the same resistive appearance as 
the one filled with resistive minerals like calcite and anhy-
drite. Such closed fractures can be differentiated from the 
open fractures using amplitude attributes. The amplitude of 
the acoustic pulse decreases in front of open fractures filled 
with oil-base mud, thus open fractures appear as darker lin-
ear features. The calcite and or anhydrite filled fractures do 
not affect the amplitude image, because the rock matrix and 
fracture filling have more or less same amplitude range. 
However, there could be amplitude contrasts between rock 
matrix and fracture filling material. Clay/shale filled frac-
tures have conductive appearance due to no invasion of oil-
base mud along the planes. Categories of fractures and di-
mensions of each category are continuous open fractures, 

discontinuous open fractures, induced fractures, borehole 
breakouts, horizon bedding dips, large open fractures, par-
tially open fractures and styloites. In each category, several 
dimensions, based on scales and attitude attributes, can hi-
erarchically be classified as depth, fracture type, dip-
magnitude, dip-azimuth, strike-azimuth, borehole coverage, 
confidence level, and average aperture. Here strike and dip 
are key data attributes, when considering the fracture types 
and orientations. 

III. METHODOLOGY & DATA MODELLING FRAMEWORK 

Domain ontologies ([4], [8], [9]) are used to conceptual-
ize relationships among different types of datasets. Local 
geometry and flow capacity dimensions of the natural frac-
ture network are captured in the static fracture model 
framework for reservoir development. Fracture orientation 
and intensity (density) dimensions are attributed to the 
measured and also interpreted data. Flow capacities of frac-
ture systems are compared among production rates of the 
wells from different geological age dimension attributes. 
Besides these data attributes and dimensions, authors at-
tempt to build relationships among rock properties, fracture 
types and strengths. 

A. Building rock stress-strain domain ontologies 

The sub-surface of the continental crust rarely remains at 
a stable hydrostatic stress condition - the stress state under 
which all points in the crust are subjected from all direc-
tions to equal stresses. However, such stress conditions are 
rarely met in the earth’s subsurface as many structural 
movements keep taking place in it. The larger portion of the 
disturbance in the equilibrium in the stress state is con-
trolled by plate movements that ultimately result in the 
formation of regional stress system for the area bounded by 
them. However, sometimes the regional stress is completely 
overprinted due to stresses localized to a certain area. The 
source of local stress system may be associated with faults, 
folds, diapirism [5]. The orientation of stresses may be 
changed abruptly over short distances in any area. The 
wells drilled in areas may have been subjected to some kind 
of unbalanced stress system (especially in carbonate reser-
voir systems) often exhibit two types of borehole failures, 
shear and tensile failure, when the rocks drilled by them, 
are replaced with the drilling mud.  

Integrated interpretation of fractures is done from image 
logs with core data and subsequently calibrated into seismic 
data. Interpreted layers (horizons) are linked through verti-
cal fracture connectivity among different stratigraphic unit 
dimensions. Next step is to predict the spatial variations in 
the orientation and intensity of each fracture set. This is 
done by comparison ontology and again integrating magni-
tude and direction dimension components along with attrib-
utes of seismic and well data (gamma, density, sonic) with 
the intensity variations among producing wells. The frac-
ture geometry dimension is evaluated with parametric di-
mensions of structural and reservoir attributes, so that con-
sistent geological implication and validation are achieved.    

Though qualitative fracture geometries are established, 
the flow and storage capacities still need to be established 
in terms of quantifying through fracture hydraulic data at-
tributes. Permeability, aperture and compressibility attrib-
utes are connected and assigned among each and every 
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fracture set. Aperture information is interpreted from frac-
ture image logs. 

B. Building structure and reservoir domain ontologies 
(through fracture systems) 

Establishing connectivity between structure and reser-
voir is a significant issue in planning and management of 
boreholes. In fractured carbonate reservoir systems, it is re-
quired to prove this phenomenon through orientations and 
density of fractures if they pass though structural highs. 
Three types of fractures [5] in terms of their orientation, 
relative to the principal horizontal compressive stress direc-
tion are: extensional; longitudinal; and shear. Extensional 
fractures have dips ranging 70 to 90 degrees and strike di-
rection ranging +ve or -ve 150 degrees to the fold axis. 
Longitudinal fractures have dips that are variable but are 
often normal to bedding and oriented sub-parallel to the 
fold axis. Shear fractures cut the other fractures at an angle 
and occur as conjugate pairs, with the development of one 
of the pair dominating over the other.  

Fractures are also grouped according to their order of 
frequency for each well, with first order fractures having 
highest frequency, 2nd, 3rd, and 4th order fractures having 
lesser frequencies. All the wells have one dominant set of 
fractures (first order) with 2nd and 3rd order fractures oc-
curring at comparative frequency ratios of 2:1-25:1. No one 
fracture type dominates in the order of development and the 
development appears to be random across the structure. Ex-
tensional fractures are common to all the wells, whereas the 
longitudinal and shear fractures are not.  Extensional frac-
tures probably provide a mechanism for connecting other 
fractures that have developed at all scales, from the micro-
scopic to mega-scopic. The result is that extensional frac-
tures may be responsible for draining the reservoir.  

Production in fractured reservoirs is largely controlled 
by fractures. Fracture orientations and their occurrences 
(frequencies) and possible relationship to lithology and sys-
tematic orientation of fracture sets as a response to regional 
compressive stresses. Fracture orientations and number of 
fractures, are key criteria. A fracture set is any set of sys-
tematic joints that are planar and parallel, and continuous in 
orientation from stratum to another. The recognition of 
fracture sets and their orientations can visually be seen from 
contour maps of geological structures. 

 

 
Fig. 1: Correlation well log data from different adjacent drilled wells; con-

necting and interpreting the fracture patterns (as interpreted on their re-
spective core data) 

As shown in Fig.1, log signatures of different geological 
units from nearby wells, are correlated in order to establish 
the structural position of each geological horizon and its 
associated reservoir (porosity attributes) character. These 
structure and reservoir attributes are made interconnected 

through domain ontologies and also establish the fracture 
network among these wells. This network in well-log do-
main is further integrated with seismic markers and their 
network. 

C. Building Fracture Frequency and Lithology Domain 
Ontologies 

The relationship of fracture frequency with lithology and 
to bed thicknesses is an interesting property and attribute. 
Fracture intensity is directly related to the silica content of 
the rock and to the diagenetic grade. It is reported that the 
order of decreasing fracturability and increasing fracture 
spacing to be the first in chert, then porcelanite, mudstone 
and dolostone. Fracture density increases with increasing 
silica content of the rock and decreasing bed thicknesses. 
Upper calcareous-siliceous is fractured most and intervals 
with lower silica contents are not heavily fractured. Thinner 
siliceous beds have a higher fracture frequency than the 
mudstone and many fractures are confined to individual 
beds and are normal to bedding planes.  

Core Data at drilled wells

FMS

 
Fig. 2: Fracture patterns around drilled wells – heterogeneity and connec-

tivity of fractures and their orientations 
As demonstrated in Fig. 2, fracture orientations are con-

trolled by regional stress patterns. The most common sets 
are roughly parallel and perpendicular to the strike of the 
bedding. Fracture sets are classified according to their ori-
entation relative to the axis of anticline structure. Fractures 
are extensional, longitudinal or shear. Most extensional 
fractures are nearly vertical and oriented normal to the local 
axial trace of the structure or normal to bedding strike. 
These are common to all wells drilled.  Longitudinal frac-
tures have dips that are variable but are often normal to 
bedding and have strikes sub-parallel to the fold axis or 
bedding strike. Shear fractures cross other fractures at an 
angle. Dips are variable, ranging from 40 degrees to verti-
cal. Shear fractures in some wells indicates their occurrence 
as conjugate pairs with the development of one of the pair 
dominating over the other. 

The following tasks are put in the data schema frame-
work, as narrated in Figs. 3 and 4. Fracture data facts are 
being connected to the fracture data dimensions, by one-to-
many and also many-to-many relationships. There are al-
ready known relationships among these data facts and in-
stances of fracture data dimensions. Some of the relation-
ships, unknown may be conceptualized by ontology model-
ing, so that the type of fractures based on their size and be-
haviour (properties) are appropriately connected to the re-
spective conceptualized data instances of the rock proper-
ties and hydrocarbon drive mechanisms (Figs. 3 and 4). 
Conceptualized dimensions are evolved after data integra-
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tion process, using data instances of hydrocarbon pressure 
and production data dimensions. For building conceptual-
ized relationships, domain ontologies are integrated as de-
scribed in the following sections. 

Fracture Dimensions Continuous Open Fracture Facts

Depth ID

Fracture Type ID

Dip Magnitude ID

Dip Azimuth ID

Strike Azimuth ID

Borehole Coverage ID

Confidence Level ID

Average Aperture ID

Discontinuous Open Fracture Facts

Induced Fracture Facts

Borehole Breakout Facts

Horizon Bedding Dip Facts

Styloites Facts

Large Open Fracture Facts Partially Open Fracture Facts

L O Fracture Fact ID

Depth ID

Fracture Reservoir ID

Exploration ID

Period ID

Fracture Log ID

Basin ID

Well Log ID
P O Fracture Fact ID

Fracture Log ID

Period ID

Dip Azimuth ID

Fracture Dimensions

Horizon Bedding ID

Dip Magnitude ID

Borehole Coverage ID

Structure ID

C O Fracture Fact ID

D O Fracture Fact ID

Induced Fracture Fact ID

Borehole Breakout Fact ID

Borehole Coverage ID

Fracture Density Log ID

Strike Azimuth ID

Period ID

Depth ID

Depth ID

Depth ID

Depth ID

Styloites Fact ID

Average Aperture ID

Dip Magnitude IDConfidence Level ID

Borehole Coverage ID

Period ID

Period ID

Fracture Type ID

Fracture Facts

Fracture Facts

Fracture Density ID

Fracture Reservoir ID

Structure ID

 
Fig. 3: Star schema model for fracture systems design 
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Fig. 4: Conceptualized fracture relationships 

Not all the fracture sets are developed with the same fre-
quency (occurrence) in the same well. One fracture set is 
generally developed at a greater frequency than others by 
ratios of 2:1 to 25:1. Based on this, fracture sets are classi-
fied by their order of frequency for each well. First order 
fractures have the highest frequency, with 2nd, 3rd, and 4th 
order fractures having lesser frequencies. The type of first 
order fractures, varies from well to well and can be exten-
sional, longitudinal, or shear. Fracture distribution, though, 
is more dependent on lithology, but structural position has a 
role. Extensional fractures are common to all wells, 
whereas longitudinal and shear fractures are not. Shear frac-
tures orient variably from one well to other and probably do 
not provide significant source of directional permeability. 
Extensional fractures are consistent in their orientations and 
since they are common to all wells, probably contribute to 
the directional permeability in the field. 

As shown in Fig. 5, an integrated framework ([4], [8], 
[9]) is designed for combining different domain ontologies 
not only from different fracture systems, but also from di-
verse datasets, such as log and seismic data. In the process 
of integration, it is important linking the fracture systems 
interpreted on the log data, and are appropriately calibrated 
on the seismic data. Calibrated fractures are correlated and 
propagated in the entire seismic data to establish the verti-
cal, horizontal and lateral fractures connectivity through 
conceptualizing and integrating ontology domains. Rela-
tional, hierarchical and networking data structuring meth-
odologies are followed and the one that describes the hier-

archical structuring of fractured data is shown in Fig. 6. 
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Fig. 5: Integrated Framework for Fracture Data Warehouse and Mining 
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Fig. 6: Hierarchical data structuring 

IV. DATA MINING OF FRACTURED RESERVOIR DATA 

A. Classifying multiple dimensions for rule mining 

Discovery of association mining rules ([1], [2], [3], [6]) 
is solely dependent on discovery of frequent occurrence of 
multidimensional data attributes.  Oil/Gas businesses are 
often interested in Yes or No response, such as reservoir 
engineers wanting to know whether a reservoir is produc-
tive or not; and explorers seeking to establish if the petro-
leum system is productive or not with existing secondary 
porosity fracture system. These are classification issues, in 
which data attributes and their instances with finite number 
of classes, are explicitly described. 

The classifying attributes may be related to many other 
attributes, which may have been conceptualized among 
other classifications. For example, structure and reservoir 
attributes among several horizons have similarity and scal-
able property instances. Among reservoir subsets, there 
may be fracture attributes, both relationally and hierarchi-
cally interconnected among multiple horizons. Classifying 
the intensity and frequency of fractures in different orienta-
tions is an interesting data mining issue. Each fracture is 
characterized by its physical properties such as surface area 
and shape, and each has specific fluid flow properties—of 
permeability, compressibility, and aperture. It integrates the 
information from a wide range of sources including 2D and 
3D seismic, maps, outcrops, reservoir geo-mechanics, well 
logs, well tests, and flow logs, as well as structural or depo-
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sitional conceptual models. Several data views are extracted 
from the fractured reservoir data warehouse. Several di-
mensions are chosen for mining the data views and inter-
preting them for significant fractured reservoirs from inte-
grated data warehouse model. Some such data views are 
deduced and interpreted in terms of multidimensional deci-
sion tree mining model, views from data cubes and cluster 
mining through bubble plot analysis among multiple di-
mensions and are given in the following sections. 

B. Design of multidimensional decision trees 

Which horizon has a greater number of fractures, indi-
cating the strength of porosity? The answer can assist in 
planning for borehole placement. A decision tree is a classi-
fication scheme which generates a tree type model and with 
a set of rules, representing the model of different classes 
from a given data set. Two disjoint subsets are made, which 
are ‘training set” and “test set”. The former is used for de-
livering the classifier while the latter is used to measure the 
classifier accuracy.  
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Fig. 7: Multidimensional decision tree structure. 

The accuracy of classifier is determined by the percent-
age of the test examples correctly classified. In our case, 
attributes are two different types - one is porosity, and the 
other is kerogen content. Attributes whose domain is nu-
merical are called numerical attributes and non-numerical 
attributes are called categorical. Fig. 7 shows a construct of 
decision tree mining model, in which various rules associ-
ated with porosity and kerogen instances and their cut-offs 
are described. Favourable data instances of porosity and 
kerogen content of rocks contribute to various fractures and 
their categorizations. Interpreters make use of this informa-
tion model, a decision making tool for ascertaining which 
type of rocks and kerogen content contribute to the hydro-
carbon accumulations with favourable porosities.  Major 
strengths of decision tree are, generating more logical and 
understandable mining rules, handling of both numerical 
and categorical attributes, and also providing clear clues of 
which fields are significant for prediction and classification.   

C. Dimension modeling and data cube 

The dimension provides much semantic information [7, 
10], especially about the hierarchical relationships between 
its elements. It is important to note that dimension model-
ing is a special technique for structuring data around frac-
ture systems. Dimension modeling structures the numeric 

measures and the dimensions. The dimension schema (Fig. 
3) represents the details of the dimension modeling; in 
which period is key dimension that enables analysis of his-
torical datasets. The dimension hierarchy helps viewing 
multidimensional fractured data in several data cube repre-
sentations. Data views will be finer to access, if fine-
grained structuring [10] is done, while designing the do-
main ontologies. 

A popular conceptual model that influences data ware-
house architecture is a multidimensional view of the data, 
as shown in Fig. 8. This model views data in the form of a 
data cube (more precisely, hypercube). It has multiple di-
mensions, each dimension again is subdivided. In this mul-
tidimensional model, there are sets of numerical measures 
that are the main theme or subject of the analysis. Each 
fracture type, such as open fracture, has different dimen-
sional attributes, such as dip, azimuth, and density. There is 
more than one numeric measure. Each numeric measure 
depends on a set of dimensions, which provide the context 
for the measure. All the dimensions together are assumed to 
uniquely determine the measure; the multidimensional data 
views a measure as a value placed in a cell in the multidi-
mensional space. Each dimension, is in turn, is described by 
set of attributes. The attributes of a dimension may be re-
lated via a hierarchy of relationships (Fig. 6) or by a lattice 
[10]. As an example, in Fig. 8, drawn from the “frac data 
cube” is during 1998, under depth category, open fracture 
system has 5% fracture density (porosity) with a specific 
count of 76 and during 2002, under structure category, frac-
ture density is 8% (porosity) with counting rate 100. 
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Fig. 8: Multidimensional frac data cube – data views for interpretation 

 

D. Multidimensional cluster mining 

Clustering discovers data patterns (Figs. 9-12) and distribu-
tions from large number of multidimensional attributes, or-
ganized in a warehouse environment. Identifying the dense 
and sparse regions of dataset are significant and the real 
goal of multidimensional clustering. Number of attributes is 
multidimensional, in large size datasets. Horizons having 
more and similar type of fracture patterns belong to a par-
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ticular cluster. Data instances that consist of large numeri-
cal data may be categorized into two groups in which parti-
tion and hierarchical types are popular. Most of the algo-
rithms existing today can handle multidimensional data, but 
they differ in their ability to handle different types of attrib-
utes, numerical, categorical, and accuracy of clustering. 

Measuring the distances or similarity metric among par-
titioned or hierarchical clusters is also a significant concept. 
Knowledge of which horizon has a greater number of frac-
tures occurring in particular groups or types of fracture pat-
terns, is helpful in planning for new borehole placement. 
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Fig. 9: Depth vs. Dip Magnitude Deg 
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Fig. 10: Depth vs. Dip Azimuth Deg 
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Fig. 11: Depth vs. Strike Azimuth Deg (borehole breakouts) 

V. RESULTS AND DISCUSSIONS 

Fractured reservoirs, especially carbonates, hold signifi-
cant oil and gas reserves, besides it is challenging to predict 
these reserves under complex and heterogeneous condi-

tions. Most carbonate reservoirs are naturally fractured and 
due to brittleness and size of fracture may vary from iso-
lated microscopic fissures to kilometres-wide. At geological 
times and places, these fractures create complex paths for 
fluid movement, which impact reservoir characterization 
and ultimately production performance and total recovery. 

Operating companies in the Middle East have been ex-
ploring and developing the fractured reservoirs [5], espe-
cially when they are associated with particular geological 
age attributes. Low porosity carbonates with high kerogen 
(geochemical property) contents of the horizons also act 
source rock attribute. Certain reservoirs are entirely de-
pendent on natural fractures for their productivities. Hydro-
carbon pore volumes in reservoirs cannot be produced 
commercially unless there is connectivity among natural 
fracture systems. In order to plan and select drillable ex-
ploratory and development targets, it is necessary to opti-
mally design the trajectories and completions and develop 
sustainable field development plans, improving the under-
standing of the natural fracture system. The scope of the 
current study is to assess the application of direc-
tional/horizontal drilling (in new wells or side track of ex-
isting wells) and hydraulic fracturing, develop better under-
standing of reservoir fracture/matrix architectures (fracture 
storativity, connectivity, replenishment, flow capacity, in-
tensity), and finally develop a fracture network model with 
predictive capabilities. 
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Fig. 12: Comparison of different domain fracture systems 

 
Spectral amplitude and velocity anisotropy from 3D 

seismic datasets with known drilled well information are 
used in assessing the fracture reservoirs. Fracture image 
logs and  core data are integrated with interpreted fracture 
systems from 3D seismic data cubes. Borehole breakouts 
are also considered in terms of their measured depths and 
orientations. Logs and 3D seismic data suggest wide-spread 
fracture porosity and permeability distributions in the study 
areas. Production rates are dependent on the quality and 
distribution of fractures and their densities, which also sig-
nificantly provide decline rates (because of reduced poros-
ities and permeability of interpreted lithologies). Depth sur-
faces, gridded with faulted structures are attributable to in-
terpret the compressional and extensional structure dimen-
sions of the fracture reservoir systems. Reactivation attrib-
utes interpreted based on the geological age, are integrated 
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with structure attributes, which ultimately made through 
ontology connectivity to fracture reservoir systems. For ex-
ample, Late Jurassic, Late Cretaceous and Tertiary aged 
structures and reservoirs are well connected through ontol-
ogy based data warehousing and data mining approaches. 

A. Fracture Analysis 

Fractures identified on borehole wells are classified as 
natural and induced fractures. Natural fractures cut across 
the entire borehole, are traced as sine waves on borehole 
images. These fractures appear as darker than the surround-
ing rocks and contain drilling mud. Drilling induced frac-
tures appear as dark (low amplitude) thin vertical lines and 
180 degrees apart on images and as echelon chatter frac-
tures at places. These fractures are produced during drilling.  

Low amplitude fractures: these appear as dark sine 
waves on the image since they absorb more acoustic energy 
than the surrounding rock matrix. When the filling material 
is drilling mud, these fractures are open, but fractures 
sealed with clay can have the same signatures if the acous-
tic contrast between clay/formation is sufficient. Small size 
bubble clusters are noticed.  

High amplitude fractures: these appear as bright sine 
waves since they absorb less acoustic energy than the sur-
rounding rocks. In this case, the filling material is necessar-
ily a material which is tighter than the matrix, usually 
quartz and or carbonate cements. Depending upon their 
density, sealed fractures can act as strong permeable barri-
ers in the direction perpendicular to their strike.  So based 
on the filling material, fractures appear to represent separate 
bubble clusters and their sizes. 

VI. CONCLUSIONS AND RECOMMENDATIONS 

1. Domain ontology is a solution organizing different frac-
ture systems. Warehouse modeling integrates domain 
ontologies.  

2. Exploration data are heterogeneous and multidimen-
sional. These are compatible for building data ware-
house models.  

3. Data mining such as designing rule mining, decision 
trees and cluster model are significant in representing 
data views in interpretable form. 

4. Data views of dip and strike azimuths indicate abrupt 
change in bedding dip attitude, either magnitude or 
azimuth, across the fault plane; fault identification & 
characterization 

5. Sudden change in borehole drift or deviation azimuth 
6. Faults visualized along strike and dip attributes, espe-

cially at their intersections, since fractures often occur, 
where EW and NS faults juxtaposed with each other. 
Occurrence of fractures around the fault intersection 

7. Abrupt changes in bubble size response across the fea-
ture interpreted as a fault. 

8. Abrupt change in size of bubble, density and their orien-
tation indicate change in formation pressure in case, 
the fault is sealing 

9. High dips; change in the fault direction 
10. The amplitude of the acoustic pulse documented by 

logs, decreases in front of open fractures filled (as in 
the case larger bubble sizes) with oil-base mud, thus 

open fractures appear as darker linear features on the 
amplitude images due to lower acoustic amplitude. 
However, in some cases such filled fractures can be 
seen on the acoustic amplitude images when there is 
enough amplitude contrast between the rock matrix 
and the fracture filling material. 

11. On the borehole images, fractures tend to occur as linear 
features that generally have a dip steeper than the 
structural dip. The criteria to differentiate between 
open and closed fractures are different for oil-base 
mud imaging tools than the water-base mud imaging 
tools. Fracture aperture defines how wide the open 
part/section of an open fracture is. It is measured per-
pendicular to the fracture plane along its open part.  

12. Faulting is observed in the bubble plots, represented as 
separation of bubble clusters. 

13. Structural dip is low in most wells mostly following 
structural contours at all well locations. Wells with 
higher structural dip can easily be identified from 
bubble plots via their magnitudes and spacing. 

VII. FUTURE SCOPE OF STUDY 

Design of an integrated workflow is in progress with 
seismic and borehole data that enable an understanding of 
the fracture properties, especially their densities and orien-
tations. Fluid distributions affected by these fracture types 
and properties have definite role to play in ascertaining the 
hydrocarbon holding capacity (porosity) in fractured reser-
voirs. This will facilitate the well planning and subsequent 
production management.   
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