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Abstract

The probability hypothesis density (PHD) filter is an attractive approach to tracking an unknown
and time-varying number of targets in the presence of data association uncertainty, clutter, noise, and
detection uncertainty. The PHD filter admits a closed form solution for a linear Gaussian multi-target
model. However, this model is not general enough to accommodate maneuvering targets that switch
between several models. In this paper, we generalize the notion of linear jump Markov systems to the
multiple target case to accommodate births, deaths and switching dynamics. We then derive a closed
form solution to the PHD recursion for the proposed linear Gaussian jump Markov multi-target model.
Based on this an efficient method for tracking multiple maneuvering targets that switch between a set
of linear Gaussian models is developed. An analytic implementation of the PHD filter using statistical
linear regression technique is also proposed for targets that switch between a set of nonlinear models.
We demonstrate through simulations that the proposed PHD filters are effective in tracking multiple
maneuvering targets.
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I. INTRODUCTION

While a non-maneuvering target motion can be described by a fixed model, a combination of motion

models that characterise different maneuvers may be needed to describe the motion of a maneuvering

target. Tracking a maneuvering target in clutter is a challenging problem and is the subject of numerous

works [1]–[4]. In the multi-target setting, the number of targets changes due to targets appearing,

disappearing, and it is not known which target generated which measurement. Tracking multiple

maneuvering targets involves jointly estimating the number of targets and their states at each time step in

the presence of noise, clutter, uncertainties in target maneuvers, data association and detection. As such,

this problem is extremely challenging in both theory and implementation.

The jump Markov system (JMS) or multiple models approach has proven to be an effective tool

for single maneuvering target tracking [2], [5]. In this approach, the target can switch between a set of

models in a Markovian fashion. The JMS approach can also be combined with traditional data association

techniques such as joint probabilistic data association (JPDA) [6]–[9] or multiple hypothesis tracking

(MHT) [10], [11] to track multiple maneuvering targets. However, these data association-based approaches

are computationally intensive in general and heuristic techniques are used to reduce the computational

load.

Mahler’s Probability Hypothesis Density (PHD) filter [12], [13] is a multi-target filter that circumvents

the combinatorial computations due to data association while accommodating detection uncertainty,

Poisson false alarms, target motion and time-varying number of targets. The generic sequential Monte

Carlo implementation of the PHD filter [14], [15] can, in principle, accommodate any Markovian target

dynamics including jump Markov systems. However, the drawbacks of the particle approach are the large

number of particles, and the unreliability of clustering techniques for extracting state estimates [15], [16].

These problems are alleviated in the Gaussian mixture PHD filter implementation, which is developed

from a closed form solution to the PHD recursion for linear Gaussian multi-target models [16], [17]. This

approach is efficient and is capable of handling certain types non-linear models [16] but is not general

enough to accommodate JMS models. At present there is no tractable analytical techniques for tracking

multiple targets with JMS dynamics.

In this paper, we generalize the notion of linear jump Markov systems to the multiple target case to

accommodate births, deaths and switching dynamics. We then derive a closed form solution to the PHD

recursion for this so-called linear Gaussian jump Markov multi-target model. This solution generalizes the

result in [16], [17] to a broader class of practical models. Based on this closed form solution, an efficient
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method is developed for tracking multiple maneuvering targets that switch between multiple models.

Our approach can handle problems that are deemed intractable using traditional tracking techniques.

Comparison with the classical IMMJPDA filter showed that the proposed approach is computationally

much more efficient while exhibiting similar tracking performance, despite the fact that the IMMJPDA

filter uses exact knowledge of the fixed number of targets. In addition, we extend our approach to

nonlinear jump Markov multi-target models by combining our closed form solution and the unscented

transform [18]. The proposed multi-target filters sidestep the data association problem and do not require

clustering for extracting state estimates. Simulation results are presented to demonstrate the capability of

the proposed method.

The paper is structured as follows: Section II presents some background on JMS for modelling a

maneuvering target and the PHD filter. In section III we describe the JMS multi-target model for the

PHD filter and give the main result of this paper, a closed-form solution to the PHD recursion for linear

JMS and demonstrate the capability of the proposed algorithm through simulations. In Section IV we

discuss the approximate solution to the PHD recursion for nonlinear JMS. This is followed by concluding

remarks in Section V.

II. PROBLEM FORMULATION

We review JMS and in particular the class of linear JMS for modeling maneuvering targets in Section

II-A. Using the random finite set (RFS) representations for multi-target states and sensor measurements,

our problem is posed as a Bayesian filtering problem in Section II-B. Section II-C describes the PHD

filter.

A. Jump Markov System (JMS)

A jump Markov system (JMS) can be described by a set of parameterised state space models whose

underlying parameters evolve with time according to a finite state Markov chain. Such a system finds a

range of applications in signal processing and provides a natural means to model a maneuvering target

whose behavior cannot be characterised at all times by a single model [3]–[5].

Let ξk ∈ Rn and zk ∈ Rm denote the kinematic state (e.g. target coordinates and velocity) and

observation, respectively, at time k. Suppose that rk ∈ M is the label of the model in effect at time k,

where M denotes the (discrete) set of all model labels (also called modes). Then, the state evolution and
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measurement are described by the transition density and measurement likelihood:

f̃k|k−1(ξk|ξk−1, rk), (1)

gk(zk|ξk, rk). (2)

In addition, the modes follow a discrete Markov chain with transition probability tk|k−1(rk|rk−1) and

the transition of the augmented state vector xk = [ξT
k , rk]T ∈ X = Rn ×M is governed by

fk|k−1(xk|xk−1) = f̃k|k−1(ξk|ξk−1, rk)tk|k−1(rk|rk−1). (3)

A linear Gaussian JMS (LGJMS) is a JMS with linear Gaussian models, i.e. conditioned on mode rk

the state transition density and observation likelihood are given by

f̃k|k−1(ξk|ξk−1, rk) = N (ξk;Fk−1(rk)ξk−1, Qk(rk)), (4)

gk(zk|ξk, rk) = N (zk; Hk(rk)ξk, Rk(rk)), (5)

where N (·; m,Q) denotes a Gaussian density with mean m and covariance Q, Fk−1(rk) and Hk(rk)

denote the transition and observation matrices of model rk. Qk(rk) and Rk(rk) denote covariance matrices

of the process noise and measurement noise.

Tracking a maneuvering target amounts to estimating the kinematic state ξk or augmented state xk at

time k, from the sequence of observations z1:k = (z1, ..., zk). The JMS (or multiple models) approach

has been shown to be highly effective for maneuvering target tracking [2], [5].

B. Random Finite Sets in Multi-target Tracking

In a multi-target scenario, suppose that xk,1, . . . , xk,N(k) ∈ X are the augmented states at time k,

where N(k) denotes the number of targets. At the next time step, some of these targets may die,

new targets may appear and the surviving targets evolve to their new states. At the sensor, M(k)

measurements zk,1, . . . , zk,M(k) ∈ Rm are received at time k, some of which are due to targets while

the rest are clutter. Note that only some of the existing targets are detected by the sensor, and that the

corresponding measurements are indistinguishable from clutter. Hence, the orders in which the states, and

the measurements are listed bear no significance. Jointly estimating the time-varying number of states and

the values of the states is a fundamentally difficult problem because in addition to the target maneuvers,

the number of targets and the number of measurements both vary randomly in time and it is not known

which target generated which measurement.
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Mahler’s finite set statistics (FISST) [12], [13], [19] approach provides an elegant Bayesian formulation

of the multi-target filtering problem by treating the finite sets of targets and observations, at time k, as

the multi-target state and multi-target observation, respectively [12]

Xk = {xk,1, . . . , xk,N(k)} ⊂ X , (6)

Zk = {zk,1, . . . , zk,M(k)} ⊂ Rm. (7)

To model uncertainty in multi-target states and observations, we appeal to the notion of a random finite

set (RFS). An RFS on a state space X is simply a random variable taking values in the finite subsets of X
[20]. The intensity of an RFS on X is a non-negative function v on X such that v(x) is the instantaneous

expected number of targets per unit volume at x. An RFS is Poisson if its cardinality distribution is

Poisson with mean N =
∫

v(x)dx and given a cardinality the elements of X are i.i.d. according to

v/N . We refer the reader to [15], [16] for overviews on FISST and [12], [13], [19] for comprehensive

treatments.

Along the same vein as the single-target filtering problem, a multi-target transition density can be

constructed from the RFS model for the time evolution of the multi-target state, which incorporates

target motion, spontaneous births, spawnings (off existing targets) and deaths. Similarly, a multi-target

likelihood can be constructed from the RFS measurement model, which accounts for detection uncertainty

and clutter. The posterior distribution of the RFS of targets can be propagated in time by the multi-target

Bayes recursion [12], [13], [15]. However, this recursion involves multiple integrals on the space of finite

subsets of X . In addition, the multi-target densities are combinatorial in nature. Hence, the multi-target

Bayes filter is computationally intractable in general. Sequential Monte Carlo implementations can be

found in [14], [15], [21]–[23], although these methods are still computationally intensive, especially when

the number of targets is large.

C. The Probability Hypothesis Density Filter

An intelligent approximation to the multi-target Bayes filter, known as the Probability Hypothesis

Density (PHD) filter, and which avoids any data association computations, has been proposed in [12].

The PHD filter propagates the posterior intensity of the RFS of targets in time, based on the following

assumptions:

A. 1 Targets evolve in time and generate measurements independently of one another.

A. 2 The clutter RFS is Poisson and is independent of the measurements.
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A. 3 The predicted multi-target RFS is Poisson.

Assumptions A.1 and A.2 are quite common in many multi-target tracking algorithms [1], [24]. The

additional assumption A.3 is a reasonable approximation in applications where interactions between

targets are negligible [12].

The PHD propagation is a recursion consisting of a prediction step and a data update step. Let vk|k−1

and vk denote the predicted intensity and posterior intensity at time k, respectively. Then the PHD

prediction is given by

vk|k−1(x) =
∫ [

pS,k|k−1(x
′)fk|k−1(x|x′) + βk|k−1(x|x′)

]
vk−1(x′)dx′ + γk(x), (8)

where it is understood that an integral with respect to a discrete variable means a sum, and

fk|k−1(·|x′) = probability density of a target at time k, given that its previous state is x′,

pS,k|k−1(x′) = probability that a target still exists at time k given that its previous state is x′,

βk|k−1(·|x′) = intensity of the RFS of targets spawned at time k by a target with previous state x′,

γk(·) = intensity of the birth RFS at time k.

On arrival of a new multi-target measurement, the posterior intensity vk is computed from the predicted

intensity vk|k−1 via the PHD update:

vk(x) =

[
1− pD,k(x) + pD,k(x)

∑

z∈Zk

gk(z|x)
κk(z) +

∫
pD,k(x)gk(z|x)vk|k−1(x)dx

]
vk|k−1(x), (9)

where

Zk = multi-target measurement at time k,

gk(·|x) = single-target measurement likelihood at time k,

pD,k(x) = probability of detection given a state x at time k,

κk(·) = intensity of clutter RFS at time k.

The PHD recursion is generally intractable due to the ‘curse of dimensionality’ in numerical integration.

A generic sequential Monte Carlo (SMC) implementation was proposed in [14], [15] with relevant

convergence results (see also [25], [26] for more detailed asymptotic studies). This so-called particle-PHD

filter can accommodate targets with JMS dynamics, and has been used to track multiple maneuvering

targets in [27], [28]. However, the drawbacks of the particle approach are the large number of particles, and

the unreliability of clustering techniques for extracting state estimates [15], [16]. The recently proposed
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Gaussian mixture PHD filter [16], [17] does not suffer from these drawbacks but is not general enough to

handle JMS dynamics. In the following sections, we derive a closed form solution to the PHD recursion

for LGJMS dynamics and develop an efficient and reliable multi-target filter for tracking maneuvering

targets.

III. CLOSED FORM SOLUTION TO THE PHD RECURSION FOR LGJMS MULTI-TARGET MODEL

This section presents a closed-form PHD solution that can accommodate targets that switch between

linear Gaussian models. We describe the LGJMS multi-target model in III-A and derive the corresponding

closed form PHD recursion in III-B. In III-C, we derive a general closed form solution to the PHD

recursion in the hybrid state space X = Rn ×M. Illustrations of the proposed multi-target tracking

algorithm on simulated data are given in III-D.

For notational convenience, the symbol Θ is used to denote the ordered pair of mean and covariance

(m,P ) of a Gaussian distribution, i.e

N (x; Θ) = N (x; m,P ). (10)

Given a linear Gaussian model z = Hx + v, where v is Gaussian noise with mean d and covariance

matrix R, we use the notation Ω to denote the ordered triplet of model parameters (H,R, d), and

L(x, z; Ω) = N (z; Hx + d,R) (11)

to denote the probability density at z. This notation is suggestive of the mapping of x to z via the linear

model with parameter Ω. Note that N (x; m,P ) = L(m,x; (I, P, 0)) = L(x,m; (I, P, 0)).

A. Linear Gaussian Jump Markov System Multi-target Models

This subsection presents the linear Gaussian JMS (LGJMS) multi-target model, which accommodates

targets with switching linear dynamics. Campbell’s theorem [29] is used in the modelling of target births

and spawning.

In addition to assumptions A.1 - A.3, the LGJMS multi-target model comprises a LGJMS model for

individual targets, kinematic-independent survival and detection probabilities, and models for target births

and spawnings. Like the motion model, birth and spawning models are naturally described in terms of the

kinematic state. However, while the distribution of the augmented state can be taken as the product of the

mode distribution and the kinematic state distribution conditional on the mode, i.e. p(ξ, r) = p(r)p(ξ|r),
this line of reasoning does not extend to birth and spawning intensities. The intensity of the augmented
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state is not necessarily the product of the intensity of the mode and the intensity of the kinematic state

conditioned on the mode.

To specify birth and spawning models for the kinematic state and mode that yield valid birth and

spawning intensities in the augmented state, we appeal to a well-known result in point process theory,

namely Campbell’s theorem (for marked point processes) [29, pp. 106–108]. In particular, Campbell’s

theorem implies that the intensity of the point process on Rn×M formed by the Cartesian product of a

point process on the kinematic state space Rn, with intensity ṽ, and a point process on the mode space

M, is given by

v(ξ, r) = p(r|ξ)ṽ(ξ), (12)

where p(·|ξ) is the mode distribution given that a point of the product point process has kinematic state

ξ. Moreover, if the point process on Rn is Poisson, then the product point process on Rn ×M is also

Poisson [30].

1) Birth model 1: In the context of our multi-target birth model, the intensity of augmented state

births at time k is given by

γk(ξ, r) = πk(r|ξ)γ̃k(ξ),

where γ̃k is the intensity of kinematic state births at time k, and πk(·|ξ) is the probability distribution

of the modes for a given birth with kinematic state ξ at time k. In line with the standard LGJMS

assumption that the mode transition probability tk|k−1 is not a function of the kinematic states, the

LGJMS multi-target model also assumes that the mode distribution does not depend on the kinematic

state, i.e. πk(r|ξ) = πk(r). Moreover, it is also assumed that the intensity γ̃k of kinematic state births is

a Gaussian mixture

γ̃k(ξ)=
Jγ,k∑

i=1

w
(i)
γ,kN (ξ; Θ(i)

γ,k), (13)

where Jγ,k, w
(i)
γ,k, Θ(i)

γ,k = (m(i)
γ,k, Q

(i)
γ,k), i = 1, 2, . . . , Jγ,k are given model parameters. The mean m

(i)
γ,k

is a peak of the intensity γ̃k and has the highest local concentrations of expected number of births,

and represents, for example, airbases or airports where targets are most likely to appear. The covariance

matrix P
(i)
γ,k determines the spread of γ̃k in the vicinity of the peak m

(i)
γ,k. The weight w

(i)
γ,k gives the

expected number target births originating from m
(i)
γ,k.

Similarly, the intensity of augmented states spawned, at time k, from a target with augmented state

[ξ′, r′]T , at time k − 1, is given by

βk|k−1(ξ, r|ξ′, r′)= πk|k−1(r|ξ, ξ′, r′)β̃k|k−1(ξ|ξ′, r′),
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where β̃k|k−1(·|ξ′, r′) is the intensity of kinematic states spawned at time k from [ξ′, r′]T , and

πk|k−1(·|ξ, ξ′, r′) is the probability distribution of the mode for a given kinematic state ξ, spawned

at time k from [ξ′, r′]T . Consistent with standard LGJMS assumption, the LGJMS multi-target model

assumes that the mode distribution of a spawned target does not depend on its kinematic state nor its

parent’s kinematic state, i.e. πk|k−1(r|ξ, ξ′, r′) = πk|k−1(r|r′), and that the intensity β̃k|k−1(·|ξ′, r′) of

spawned kinematic states is a Gaussian mixture

β̃k|k−1(ξ|ξ′, r′)=
Jβ,k(r′)∑

j=1

w
(j)
β,k|k−1(r

′)L(ξ′, ξ; Ω(j)
β,k|k−1(r

′)), (14)

where Jβ,k|k−1(r′), w
(j)
β,k|k−1(r

′), Ω(j)
β,k|k−1(r

′) = (F (j)
β,k−1(r

′), Q(j)
β,k−1(r

′), d(j)
β,k−1(r

′)), j = 1, 2, . . .,

Jβ,k−1(r′) are given model parameters. A similar interpretation to γ̃k applies to the intensity β̃k|k−1,

except that the jth peak, F
(j)
β,k−1(r

′)ξ′ + d
(j)
β,k−1(r

′), is an affine function of ξ′. Usually, a spawned target

is modelled to be in the proximity of its parent.

2) Birth model 2: Alternatively, by interchanging the roles of the kinematic state space and mode

space in (8), consistent models for births and spawnings can also be derived1. In this case, the intensity

of augmented state births at time k is given by

γk(ξ, r) = γ̃(ξ|r)πk(r),

where πk is now the intensity of mode births and γ̃k(·|r) is now the distribution of the birth kinematic

state given mode r. Note that the intensity of mode births is not a function of kinematic state. It is

assumed, in the LGJMS multi-target model, that the distribution γ̃k(·|r) of kinematic state births is a

Gaussian mixture

γ̃k(ξ|r)=
Jγ,k(r)∑

i=1

w
(i)
γ,k(r)N (ξ; Θ(i)

γ,k(r)), (15)

where Jγ,k(r), w
(i)
γ,k(r), Θ(i)

γ,k(r) = (m(i)
γ,k(r), Q

(i)
γ,k(r)), i = 1, 2, . . . , Jγ,k(r) are given model parameters

that depend on the mode r. Similarly, the intensity of augmented states spawned, at time k, spawned

from [ξ′, r′]T is

βk|k−1(ξ, r|ξ′, r′)= β̃k|k−1(ξ|r, ξ′, r′)πk|k−1(r|ξ′, r′),

where πk|k−1(·|ξ′, r′) is now the intensity of mode spawnings and β̃k|k−1(·|r, ξ′, r′) is now the distribution

of spawned kinematic state given mode r. The LGJMS multi-target model assumes that the intensity of

1One technicality is that we need to restrict the kinematic state space to a compact subset of Rn. This technicality does not

pose any problem in practice since the targets occupy a bounded region of space.



9

spawned modes does not depend on the kinematic state of its parent, i.e. πk|k−1(r|ξ′, r′) = πk|k−1(r|r′),
and that the distribution β̃k|k−1(·|r, ξ′, r′) of the spawned kinematic state is a Gaussian mixture

β̃k|k−1(ξ|r, ξ′, r′)=
Jβ,k(r,r′)∑

j=1

w
(j)
β,k|k−1(r, r

′)L(ξ′, ξ; Ω(j)
β,k|k−1(r, r

′)), (16)

where Jβ,k|k−1(r, r′), w
(j)
β,k|k−1(r, r

′), Ω(j)
β,k|k−1(r, r

′) = (F (j)
β,k−1(r, r

′), Q(j)
β,k−1(r, r

′), d(j)
β,k−1(r, r

′)), j = 1,

2, . . ., Jβ,k|k−1(r, r′) are given model parameters that depend on the current mode r and the parent’s

previous mode r′.

From a modelling and application point of view, models 1 and 2 are different. However, from an

algorithmic or computational viewpoint, the first model can be treated as a special case of the second

model with the distribution of the birth kinematic state being independent of mode r, i.e., γ̃k(ξ|r) = γ̃k(ξ).

Summarizing, in addition to assumptions A.1 - A.3, the linear Gaussian JMS (LGJMS) multi-target

model, assumes:

A. 4 Each target follows a LGJMS model, i.e. the dynamic and measurement models for the augmented

state have the form:

fk|k−1(ξ, r|ξ′, r′) = L(ξ′, ξ; Ωf,k|k−1(r))tk|k−1(r|r′), (17)

gk(z|ξ, r) = L(ξ, z; Ωg,k(r)), (18)

where Ωf,k|k−1(r) = (Ff,k−1(r), Qf,k(r), 0) is the parameter of the linear target dynamics model

conditioned on mode r, Ωg,k(r) = (Hk(r), Rk(r), 0) is the parameters of the linear observation model

conditioned on mode r, and tk|k−1(r|r′) is the mode transition probability. In particular, conditional on

mode r, Ff,k−1(r) is the state transition matrix, Qf,k(r) is the process noise covariance matrix, Hk(r)

is the measurement matrix and Rk(r) is the measurement noise covariance matrix.

A. 5 The probabilities of target survival and target detection are independent of the kinematic state:

pS,k|k−1(ξ
′, r′) = pS,k|k−1(r

′) (19)

pD,k(ξ, r) = pD,k(r). (20)

Assumptions A.4 and A.5 follow from those commonly used in maneuvering target tracking algorithms

(see for example [1], [24], [31]),
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A. 6 The intensities of the birth and spawn RFSs can be expressed as Gaussian mixtures of the form:

γk(ξ, r) = πk(r)
Jγ,k(r)∑

i=1

w
(i)
γ,k(r)N (ξ; Θ(i)

γ,k(r)), (21)

βk|k−1(ξ, r|ξ′, r′) = πk|k−1(r|r′)
Jβ,k(r,r′)∑

j=1

w
(j)
β,k|k−1(r, r

′)L(ξ′, ξ; Ω(j)
β,k|k−1(r, r

′)), (22)

where Jγ,k(r), w
(i)
γ,k(r), Θ(i)

γ,k(r) = (m(i)
γ,k(r), Q

(i)
γ,k(r)), i = 1, 2, . . . , Jγ,k(r) are given parameters of

the (Gaussian mixture) density of the kinematic state of a new born target with mode r at time k, and

πk(·) is the intensity of mode births at time k. Similarly, Jβ,k(r, r′), w
(j)
β,k|k−1(r, r

′), Ω(j)
β,k|k−1(r, r

′) =

(F (j)
β,k−1(r, r

′), Q(j)
β,k−1(r, r

′), d(j)
β,k−1(r, r

′)), j = 1, 2, . . . , Jβ,k−1(r, r′) are given parameters of the

(Gaussian mixture) density of the kinematic state of a target with mode r, spawned at time k from

a target with augmented state [ξ′, r′]T at time k − 1, and πk|k−1(·|r′) is the intensity of modes spawned

at time k from a target with mode r′ at time k − 1.

The LGJMS multi-target model is more general than those in standard multi-target tracking algorithms.

While most existing algorithms do not account for births or spawnings, the proposed multi-target model

incorporates both. Models for births and spawnings for a given mode r accommodate different intensities

of mode births and modes spawned respectively when births and spawnings are likely to vary between

different modes. Similarly, the proposed model incorporates models for target death (survival) and target

detection for a given mode r. Moreover, traditional multi-target filtering techniques are computationally

intractable for a model of such generality. We will see later that using a random finite set approach [12],

this model is amenable to computationally efficient multi-target filtering techniques.

B. Closed form PHD recursion for LGJMS multi-target model

To derive the closed form PHD recursion for the LGJMS multi-target model, we require Lemmas 1

and 2 in [16], [17], which are stated using the new notation as follows:

Lemma 1: If Ω = (H, R, d) and Θ = (m,P ), then
∫
L(x, z; Ω)N (x; Θ)dx = N (z; Π(Ω, Θ)) (23)

where

Π(Ω,Θ) = (Hm + d,R + HPHT )

Lemma 2: If Ω = (H, R, d) and Θ = (m,P ), then

L(x, z; Ω)N (x; Θ) = N (z; Π(Ω, Θ))N (x; Ψ(z, Ω, Θ)) (24)
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where

Ψ(z, Ω,Θ) = (m̃(z − d), P̃ ) (25)

m̃(z − d) = m + K(z − d−Hm) (26)

P̃ = (I −KH)P (27)

K = PHT (HPHT + R)−1 (28)

Proposition 1: For a LGJMS multi-target model, if the posterior intensity vk−1 at time k− 1 has the

form

vk−1(ξ′, r′) =
Jk−1(r′)∑

i=1

w
(i)
k−1(r

′)N (ξ′; Θ(i)
k−1(r

′)). (29)

Then the predicted intensity vk|k−1 is given by

vk|k−1(ξ, r) = γk(ξ, r) + vf,k|k−1(ξ, r) + vβ,k|k−1(ξ, r), (30)

where

vβ,k|k−1(ξ, r) =
∑

r′

Jk−1(r′)∑

i=1

Jβ,k|k−1(r,r′)∑

j=1

w
(i,j)
β,k|k−1(r, r

′)N (ξ; Θ(i,j)
β,k|k−1(r, r

′)), (31)

w
(i,j)
β,k|k−1(r, r

′) = πk|k−1(r|r′)w(j)
β,k|k−1(r, r

′)w(i)
k−1(r

′), (32)

Θ(i,j)
β,k|k−1(r, r

′) = Π(Ω(j)
β,k|k−1(r, r

′), Θ(i)
k−1(r

′)), (33)

vf,k|k−1(ξ, r) =
∑

r′

Jk−1(r′)∑

i=1

w
(i)
f,k|k−1(r, r

′)N (ξ; Θ(i)
f,k|k−1(r, r

′)), (34)

w
(i)
f,k|k−1(r, r

′) = pS,k|k−1(r
′)tk|k−1(r|r′)w(i)

k−1(r
′), (35)

Θ(i)
f,k|k−1(r, r

′) = Π(Ωf,k|k−1(r),Θ
(i)
k−1(r

′)). (36)

Proof: From (8), the predicted intensity consists of three terms γk (already given in the multi-

target model), vβ,k|k−1 and vf,k|k−1, due to births, spawnings and motion, respectively. For vβ,k|k−1,

substituting (22), (29) into
∫

βk|k−1(x|x′)vk−1(x′)dx′, exchanging the order of sums and integral, and

applying Lemma 1 to individual terms yields (31). For vf,k|k−1 we substitute (17) and (29) into
∫

fk|k−1(x|x′)vk−1(x′)dx′, exchange the order of sums and integral, and apply Lemma 1 to individual

terms to obtain (34).

Corollary 1: Under the premises of Proposition 1, the expected number of predicted targets is

N̂k|k−1 = N̂γ,k + N̂f,k|k−1 + N̂β,k|k−1, (37)
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where

N̂γ,k =
∑

r

Jγ,k(r)∑

i=1

πk(r)w
(i)
γ,k(r), (38)

N̂β,k|k−1 =
∑

r

∑

r′

Jk−1(r′)∑

i=1

Jβ,k|k−1(r,r′)∑

j=1

πk|k−1(r|r′)w(j)
β,k|k−1(r, r

′)w(i)
k−1(r

′), (39)

N̂f,k|k−1 =
∑

r

∑

r′

Jk−1(r′)∑

i=1

pS,k|k−1(r
′)tk|k−1(r|r′)w(i)

k−1(r
′), (40)

Proposition 2: For a LGJMS multi-target model, if the predicted intensity vk|k−1 has the form

vk|k−1(ξ, r) =
Jk|k−1(r)∑

i=1

w
(i)
k|k−1(r)N (ξ; Θ(i)

k|k−1(r)). (41)

Then the posterior intensity vk is given by

vk(ξ, r) = (1− pD,k(r))vk|k−1(ξ, r) +
∑

z∈Zk

vg,k(ξ, r; z), (42)

where

vg,k(ξ, r; z)=
Jk|k−1(r)∑

i=1

w
(i)
g,k(r; z)N (ξ; Θ(i)

g,k(r; z)), (43)

w
(i)
g,k(r; z)=

pD,k(r)w
(i)
k|k−1(r)q

(i)
g,k(r; z)

κk(z)+
∑
r

pD,k(r)
Jk|k−1(r)∑

i=1
w

(i)
k|k−1(r)q

(i)
g,k(r; z)

, (44)

q
(i)
g,k(r; z)= N (z; Π(Ωg,k(r), Θ

(i)
k|k−1(r))), (45)

Θ(i)
g,k(r; z)= Ψ(z,Ωg,k(r),Θ

(i)
k|k−1(r)). (46)

Proof: From (9), the updated intensity consists of three components. The first is the predicted

intensity vk|k−1 (given), the second is the product pD,kvk|k−1 denoted as vD,k, and the third is the

sum
∑

z∈Zk
vg,k(x; z), where

vg,k(x; z) =
gk(z|x)vD,k(x)

κk(z) +
∫

gk(z|x)vD,k(x)dx
. (47)

For vg,k, first substitute (18), (41) into the numerator of (47) and apply Lemma 2 to yield a sum of

weighted Gaussians. Second, applying Lemma 1 to the integral in the denominator of (47) gives the

(double) sum in the denominator of (44). Combining the results for the numerator and denominator of

(47) gives (43).
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Corollary 2: Under the premises of Proposition 2, the expected number of target is

N̂k =
∑

r

[1− pD,k(r)]
Jk|k−1(r)∑

i=1

w
(i)
k|k−1(r) +

∑

z∈Zk

∑
r

Jk|k−1(r)∑

i=1

w
(i)
g,k(r; z). (48)

Propositions 1 and 2 show how the intensities vk|k−1 and vk are analytically propagated in time

under linear Gaussian assumption on the JMS multi-target model. The recursions for the means and

covariances of vf,k|k−1 and vβ,k|k−1 are the Kalman prediction and the recursive computations of the

means and covariances of vD,k are the Kalman update. The PHD filter has a complexity of O(Jk−1|Zk|)
where Jk−1 is the number of Gaussian components representing vk−1 for a fixed model r′ at time k− 1

and |Zk| denotes the number measurements at time k.

These propositions also indicate that the number of components of the predicted and posterior intensity

increases with time, which can be a problem in implementation. However, this problem can be effectively

handled by applying some simple pruning procedures [16], [17].

Given the posterior intensity vk at time k

vk(ξ, r) =
Jk(r)∑

i=1

w
(i)
k (r)N (ξ; Θ(i)

k (r)), (49)

the peaks of the intensity are points of highest local concentration of the expected number of targets. In

order to extract the state of the targets from the posterior intensity at time k, an estimate of the number of

targets N̂k is needed. This number is simply
∑Jk(r)

i=1 w
(i)
k (r) rounded to the nearest integer. The estimate

of the multi-target state is the set of N̂k ordered pairs of means and modes (m(i)
k (r), r) with the largest

weights w
(i)
k (r), r ∈M, i = 1, . . . , Jk(r).

C. General solution to the PHD recursion

Apart from the LG and LGJMS multi-target models, the PHD recursion also admits closed form

solutions under more general settings. In this section we derive a general analytic solution to the PHD

recursion in the hybrid state space X = Rn ×M. Readers who are interested in the simulation results

of the above developed PHD filter may proceed directly to Section III-D.
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Proposition 3: Given a multi-target transition model with

pS,k|k−1(ξ
′, r′) = w

(0)
S,k|k−1(r

′) +
JS,k|k−1(r′)∑

l=1

w
(l)
S,k|k−1(r

′)L(ξ′,m(l)
S,k|k−1(r

′); Ω(l)
S,k|k−1(r

′)), (50)

fk|k−1(ξ, r|ξ′, r′) =
Jf,k|k−1(r,r′)∑

j=1

w
(j)
f,k|k−1(r, r

′)L(ξ′, ξ; Ω(j)
f,k|k−1(r, r

′)), (51)

βk|k−1(ξ, r|ξ′, r′) =
Jβ,k|k−1(r,r′)∑

j=1

w
(j)
β,k|k−1(r, r

′)L(ξ′, ξ; Ω(j)
β,k|k−1(r, r

′)). (52)

If the posterior intensity vk−1 at time k − 1 has the form

vk−1(ξ′, r′) =
Jk−1(r′)∑

i=1

w
(i)
k−1(r

′)N (ξ′; Θ(i)
k−1(r

′)). (53)

Then the predicted intensity vk|k−1 is given by

vk|k−1(ξ, r) = γk(ξ, r) + vf,k|k−1(ξ, r) + vβ,k|k−1(ξ, r), (54)

where

vβ,k|k−1(ξ, r) =
∑

r′

Jk−1(r′)∑

i=1

Jβ,k|k−1(r,r′)∑

j=1

w
(i,j)
β,k|k−1(r, r

′)N (ξ; Θ(i,j)
β,k|k−1(r, r

′)), (55)

w
(i,j)
β,k|k−1(r, r

′) = w
(j)
β,k|k−1(r, r

′)w(i)
k−1(r

′), (56)

Θ(i,j)
β,k|k−1(r, r

′) = Π(Ω(j)
β,k|k−1(r, r

′),Θ(i)
k−1(r

′)), (57)

vf,k|k−1(ξ, r) =
∑

r′

Jk−1(r′)∑

i=1

JS,k|k−1(r′)∑

l=0

Jf,k|k−1(r,r′)∑

j=1

w
(i,j,l)
f,k|k−1(r, r

′)N (ξ; Θ(i,j,l)
f,k|k−1(r, r

′)), (58)

w
(i,j,l)
f,k|k−1(r, r

′) = w
(j)
f,k|k−1(r, r

′)w(l)
S,k|k−1(r

′)w(i)
k−1(r

′)q(i,l)
S,k|k−1(r

′), (59)

q
(i,l)
S,k|k−1(r

′) = N (m(l)
S,k|k−1(r

′); Π(Ω(l)
S,k|k−1(r

′), Θ(i)
k−1(r

′))), q
(i,0)
S,k|k−1(r

′) = 1, (60)

Θ(i,j,l)
f,k|k−1(r, r

′) = Π(Ω(j)
f,k|k−1(r, r

′), Θ(i,l)
S,k|k−1(r

′)), (61)

Θ(i,l)
S,k|k−1(r

′) = Ψ(m(l)
S,k|k−1(r

′),Ω(l)
S,k|k−1(r

′), Θ(i)
k−1(r

′)), Θ(i,0)
S,k|k−1(r

′) = Θ(i)
k−1(r

′). (62)

Proof: vβ,k|k−1 is obtained as before. For vf,k|k−1 we first substitute (50), (53) into pS,k|k−1(x′)vk−1(x′)

and applying Lemma 2 to yield a (double) sum of weighted Gaussians. We then substitute the resulting

Gaussian mixture and (51) into
∫

pS,k|k−1(x′)fk|k−1(x|x′)vk−1(x′)dx′, exchange the order of sums and

integral, and apply Lemma 1 to individual terms to obtain (58).
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Proposition 4: Given a multi-target measurement model with

pD,k(ξ, r) = w
(0)
D,k(r) +

JD,k(r)∑

l=1

w
(l)
D,k(r)L(ξ; m(l)

D,k(r), Ω
(l)
D,k(r

′)), (63)

gk(z|ξ, r) =
Jg,k(r)∑

j=1

w
(j)
g,k(r)M(ξ; z, Ω(j)

g,k(r)). (64)

If the predicted intensity vk|k−1 has the form

vk|k−1(ξ, r) =
Jk|k−1(r)∑

i=1

w
(i)
k|k−1(r)N (ξ; Θ(i)

k|k−1(r)). (65)

Then the posterior intensity vk is given by

vk(ξ, r) = vk|k−1(ξ, r)− vD,k(ξ, r) +
∑

z∈Zk

vg,k(ξ, r; z), (66)

where

vD,k(ξ, r) =
Jk|k−1(r)∑

i=1

JD,k(r)∑

l=0

w
(i,l)
D,k|k−1(r)N (ξ; Θ(i,l)

D,k|k−1(r)), (67)

w
(i,l)
D,k|k−1(r) = w

(l)
D,k(r)w

(i)
k|k−1(r)q

(i,l)
k|k−1(r), (68)

q
(i,l)
D,k|k−1(r) = N (m(l)

D,k(r); Π(Ω(l)
D,k(r), Θ

(i)
k|k−1(r))), q

(i,0)
D,k|k−1(r) = 1, (69)

Θ(i,l)
D,k|k−1(r) = Ψ(m(l)

D,k(r), Ω
(l)
D,k(r), Θ

(i)
k−1(r)), Θ(i,0)

k|k−1(r) = Θ(i)
k|k−1(r), (70)

vg,k(ξ, r; z)=
Jk|k−1(r)∑

i=1

JD,k(r)∑

l=0

Jg,k(r)∑

j=1

w
(i,j,l)
g,k (r; z)N (ξ; Θ(i,j,l)

g,k (r; z)), (71)

w
(i,j,l)
g,k (r; z)=

w
(i,l)
D,k|k−1(r)w

(j)
g,k(r)q

(i,j,l)
g,k (r; z)

κk(z)+
Jk|k−1(r)∑

i=1

JD,k(r)∑
l=0

Jg,k(r)∑
j=1

w
(i,l)
D,k|k−1(r)w

(j)
g,k(r)q

(i,j,l)
g,k (r; z)

, (72)

q
(i,j,l)
g,k (r; z)= N (z; Π(Ω(j)

g,k(r),Θ
(i,l)
D,k|k−1(r))), (73)

Θ(i,j,l)
g,k (r; z)= Ψ(z, Ω(j)

g,k(r), Θ
(i,l)
D,k|k−1(r)). (74)

Proof: For vD,k, substituting (63), (65) into pD,k(x)vk|k−1(x), and applying Lemma 2 to individual

terms yields (67). For vg,k, first substitute (67), (64) into the numerator of (47) and apply Lemma 2 to

yield a (triple) sum of weighted Gaussians. Second, applying Lemma 1 to the integral in the denominator

of (47) gives the (triple) sum in the denominator of (72). Combining the results for the numerator and

denominator of (47) gives (71).
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D. Simulation Results

In this subsection we present simulation results for two examples to demonstrate the performance

of the proposed PHD filter for LGJM models. For illustration purposes we consider a two-dimensional

scenario where aircraft appear in the surveillance region [−60, 60]×[−60, 60] km2. A single sensor located

at (0, 0) km provides position-only measurements to a controller. The interval between the samples is

T = 5 s and the true number of aircraft at each sampling instant is not known.

During a level flight the aircraft dynamics can be modelled by a non-maneuver model and a maneuver

model. Motion along a fixed heading at constant speed can be described by a non-maneuver model, for

example, a constant velocity model. A level turn can be described by a maneuver model, for example, a

co-ordinated turn model [2], [32]. The kinematic state of an aircraft is defined as

ξ =
[

px, ṗx, py, ṗy

]T
, (75)

where (px, py) denotes its Cartesian co-ordinates in the horizontal plane and (ṗx, ṗy) denotes its velocities.

The speed of the aircraft is in the range Mach [0.9, 1.1].

At a turn rate of 0◦s−1 the co-ordinated turn model reduces to the constant velocity model and the

uniform motion of the aircraft can be modelled by the maneuver model. The aircraft motion models are

described as follows. Model r = 1 is a co-ordinated turn model with a turn rate of 0◦s−1 with linear

Gaussian dynamics (17) given by

Ωf,k|k−1(r = 1) =
(
Fk−1(r = 1), Qk(r = 1), 0

)
, (76)

with

Fk−1(r = 1) =




1 sin ωT
ω 0 −1−cos ωT

ω

0 cosωT 0 − sinωT

0 1−cos ωT
ω 1 sin ωT

ω

0 sinωT 0 cosωT




, Qk(r = 1) = σ2
v1




T 4

4
T 3

2 0 0
T 3

2 T 2 0 0

0 0 T 4

4
T 3

2

0 0 T 3

2 T 2




, (77)

where ω denotes turn rate. Perturbations in the lift and drag characteristics due to changes in the properties

of the atmosphere are modelled as zero-mean Gaussian white noise with a standard deviation, σv1 =

5ms−2.

Model r = 2 is a co-ordinated turn model with a counterclockwise turn rate of 3◦s−1 with standard

deviation of noise, σv2 = 20 ms−2 to reflect the different noise characteristics during a level turn. Model

r = 3 is also a co-ordinated turn model but with a clockwise turn rate of 3◦s−1. The switching between
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the motion models is given by Markovian transition probability matrix as

[tk|k−1(r|r′)] =




0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8


 . (78)

The probability of target survival may change from one application to another and between different

scenarios of an application. The reason is that in addition to some factors internal to the target, for

example, aircraft altitude, fault-tolerance of instrumentation, fuel consumption and length of flight, target

survival depends on certain external factors, for example, weather conditions. In general, the probability of

target survival in military applications is lower than that in civilian applications where it may additionally

depend on the maneuver an aircraft executes and the position of the aircraft relative to the location and

type of threat (e.g. radar, anti-aircraft artillery, etc.) in the enemy surveillance region. A realistic model of

the probability accounts for all of the above factors. In this paper, we do not cover modelling issues and

assume that a model of the probability is given. Furthermore, the probability of target survival may be

treated as a random variable and incorporated in the state vector to be estimated. However, for simplicity

we assume that the probability is known. pS,k|k−1 = 0.99 is assumed for modes r′ = 1, 2, 3. Similarly,

the probability of target detection may also vary depending on, for example, sensor characteristics, signal

interference, weather conditions in civilian applications and in addition, countermeasures in military

applications. A realistic model of the probability should consider these issues. Modelling issues are

beyond the scope of the paper. We assume that such a model is given. In the examples that follow

pD,k = 0.98 is assumed for modes r = 1, 2, 3.

Measurements follow the observation model (18) given by

Ωg,k =
(
Hk, Rk, 0

)
, (79)

with

Hk =


 1 0 0 0

0 0 1 0


 , Rk = σ2

ε I2, (80)

where In denotes a n×n identity matrix. The error in the sensor measurements is modelled as zero-mean

Gaussian white noise with a standard deviation, σε = 40m. Clutter is modeled as a Poisson RFS with

intensity

κk(z) = λcV U(z), (81)

where U(·) denotes a uniform density over the surveillance region, V = 1.44 × 104 km2 is the volume

of the surveillance region and λc = 3.47× 10−3 km−2 denotes the average number of clutter returns per
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unit volume.

The models for target births and spawnings are described next. Consider a scenario where the

surveillance region includes three airport locations at (40,−50) km, (−50, 40) km and (−10, 0) km.

The intensity of the Poisson RFS of spontaneous births is given by

γk(ξ, r) = 0.1πk(r)
[N (ξ; m(1)

γ , Pγ) +N (ξ; m(2)
γ , Pγ) +N (ξ; m(3)

γ , Pγ)
]
, (82)

with

m(1)
γ =

[
4× 104, 0, −5× 104, 0

]T
, (83)

m(2)
γ =

[
−5× 104, 0, 4× 104, 0

]T
, (84)

m(3)
γ =

[
−1× 104, 0, 0, 0

]T
, (85)

Pγ = diag
( [

106, 104, 106, 104
] )

, (86)

and the distribution of the models at birth is taken as

[πk(r)] =
[

0.8, 0.1, 0.1
]
. (87)

Also consider the case where payloads originating from an aircraft contribute to sensor measurements,

the intensity of the Poisson RFS of spawn births is given by

βk|k−1(ξ, r|ξ′, r′) = 0.05πk|k−1(r|r′)N (ξ; ξ′, Qβ), (88)

Qβ = diag
( [

104, 4× 102, 104, 4× 102
] )

, (89)

and the distribution of the models for a given aircraft state is taken as

[πk|k−1(r|r′)] =




0.8 0.1 0.1

0.8 0.1 0.1

0.8 0.1 0.1


 . (90)

For simplicity we assume the payload dynamics follow models r = 1, 2, 3.

1) Example 1: At time k = 1 an aircraft takes-off from (−41,−51) km and accelerates northwards.

At time k = 3 a second aircraft takes-off from (−51, 39) km and accelerates towards N80◦E. A third

aircraft takes-off from (−9, 1) km at time k = 11 and accelerates westwards. As the first aircraft initiates

a counterclockwise turn at k = 31 a payload separates from the aircraft and continues northwards. At

time k = 44 a payload separates from the second aircraft as it initiates a clockwise turn and continues

along S70◦E.
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Fig. 1 shows the true aircraft and payload trajectories in the horizontal plane. A 1-D view of these

trajectories along with the sensor measurements is shown in Fig. 2. Simulations show that the PHD filter

works well even when the simulated data is not generated from the same models used by the filter.

The position estimates of the PHD filter in Fig. 3 demonstrate that the filter provides accurate tracking

performance in clutter. Since at each sampling instant the number of targets is not known the filter

occasionally exhibits false estimates. However, as shown these estimates do not propagate with time.

The mean absolute error in the number of targets and the probability of track loss (see [16] for a

definition of these measures), estimated from 103 Monte Carlo runs, are shown in Fig. 4 for a position

error radius of 50 m.
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end of flight at k= 95   
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start of flight at k= 12;
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Payload 1                
separates from Aircraft 1
at k= 31;                
end of flight at k= 100   

Payload 2                
separates from Aircraft 2
at k= 44;                
end of flight at k= 88    

Fig. 1. Aircraft and payload trajectories. ‘◦’– locations of start of flight; ‘¤’– locations of end of flight (‘×’– location of

sensor).

2) Example 2: At time k = 1 three aircraft take-off simultaneously from the three airport locations.

Aircraft 1 flies at a bearing of N45◦W from (−41,−51) km, aircraft 2 flies eastwards from (−51, 39) km

and aircraft 3 flies at a bearing of S45◦E from (−9, 1) km. Assuming all three aircraft exist at each

sampling instant and no other targets appear in the surveillance region, the performance of the proposed

PHD filter can be compared with that of the well-known IMMJPDA filter which tracks a fixed and known

number of targets.

As indicated previously the PHD filter has a complexity of O(Jk−1|Zk|) where Jk−1 is the number of

Gaussian components representing vk−1 for a fixed model r′ at time k− 1 and |Zk| denotes the number

of measurements at time k. Computationally efficient implementation of data association in JPDA has

been the subject of much research. Exploiting parallel implementation, the column-recursive algorithm
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Fig. 2. Measurement data and true target positions.
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Fig. 3. Position estimates of the Gaussian mixture PHD filter.

CR-JPDA [33] has a complexity of O(N |Zk|2 2N ) for N targets.

Fig. 5 shows the trajectories of the three aircraft. Fig. 6 (a) shows the mean absolute error in the

estimate of the number of aircraft by the PHD filter. Fig. 6 (b) shows the probability of track loss at

various clutter rates while a comparison of the averaged CPU time involved at each step for the two

filters is shown in Fig. 6 (c). Simulation results obtained from 103 Monte Carlo runs indicate that at any

given clutter rate the tracking performance of the PHD filter is similar to that of the IMMJPDA filter at

lower computational complexity.

Fig. 7 shows the tracking performance of the Gaussian mixture PHD filter versus the probability of
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Fig. 4. Mean absolute error of estimated number of targets and probability of track lost.

target detection pD,k in the range [0.7, 1.0] with a fixed clutter rate λc = 3.47× 10−3 km−2. Fig. 7 (a)

shows the mean absolute error in the estimate of the number of aircraft by the PHD filter. However,

a comparison with the performance of the IMMJPDA filter is more intuitive. This result is remarkable

because the PHD filter must resolve detection uncertainty in addition to the uncertainty in the number

of targets and therefore is expected to perform poorly with increasing uncertainty in the number of

targets due to increasing detection uncertainty. However, as shown in Figs. 7 (b) and (c) the tracking

performance of the Gaussian mixture PHD filter is very similar to that of the IMMJPDA filter at a much

lower computational cost.

IV. THE PHD FILTER FOR NONLINEAR GJM MULTI-TARGET MODELS

A JMS comprising of nonlinear models accommodates an even wider range of applications by providing

a greater generality for modelling systems that switch between various models. Extension of the PHD

filter for nonlinear models relaxes assumption A.4 and the state transition density and likelihood functions

take the form

fk|k−1(ξ, r|ξ′, r′) = N (
ξ, Fk−1(ξ′, r), Qk(r)

)
tk|k−1(r|r′), (91)

gk(z|ξ, r) = N (
z, Hk(ξ, r), Rk(r)

)
, (92)

where Fk−1(·, r) and Hk(·, r) denote nonlinear functions of model r. The contribution of the intensity

term due to the motion of the targets vf,k|k−1(ξ, r) to the predicted intensity at time k in (30) for a given
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Fig. 5. Aircraft and payload trajectories. ‘◦’– locations of start of flight; ‘¤’– locations of end of flight (‘×’– location of

sensor).

prior intensity vk−1 is given by

vf,k|k−1(ξ, r) =
∑

r′

pS,k|k−1(r)tk|k−1(r|r′)
∫
N (

ξ;Fk−1(ξ′, r), Qk(r)
)
vk−1(ξ′, r′)dξ′. (93)

Since Fk−1(·, r) is a nonlinear function, vf,k|k−1(ξ, r) does not admit a closed form. The predicted

intensity vk|k−1(ξ, r) at time k is a weighted sum of various functions of ξ, many of which are non-

Gaussian due to vf,k|k−1(ξ, r).

Similarly, the contribution of the intensity term due to the detected targets vg,k(ξ, r) to the posterior

intensity at time k in (42) for a given predicted intensity of Gaussian mixture form is given by

vg,k(ξ, r) =
pD,k(r)N

(
z;Hk(ξ, r)

)
vk|k−1(ξ, r)

κk(z) +
∑
r′

pD,k(r′)
∫ N (

z; Hk(ξ′, r′)
)
vk|k−1(ξ′, r′)dξ′

. (94)

Since Hk(·, r) is a nonlinear function, vg,k(ξ, r) does not admit a closed form and the posterior intensity

vk(ξ, r) at time k comprises of non-Gaussian components due to vg,k(ξ, r). At present there exists no

tractable analytic method for tracking multiple targets with nonlinear jump Markov dynamics. In this

section we present an analytic approximation of the PHD recursion.

In single target filtering, analytic approximations of the nonlinear Bayes filter include the extended

Kalman filter (EKF) and the unscented Kalman filter (UKF) [34]. The EKF approximates the posterior

density by a Gaussian, which is propagated in time by applying Kalman recursions to local linearizations

of the (nonlinear) mappings Fk−1(·, r) and Hk(·, r). The UKF also approximates the posterior density
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Fig. 6. Tracking performance and computational complexity versus clutter rate for pD,k = 0.98 and CPEP radius = 50 m.

by a Gaussian, but instead of using the linearized model, it computes the Gaussian approximation of the

posterior density at the next time step using the unscented transform.

The EKF and UKF approximations of the posterior density can be derived exactly using the linear

regression Kalman filter (LRKF) [35] which approximates the nonlinear process and measurement

functions using statistical linear regression through some regression points. The EKF is derived using

a single regression point only while the UKF is derived using p = 2(n + κ) regression points for an

n-dimensional kinematic state ξ where κ is a degree of freedom in the choice of the regression points

[34]. It has been shown that in most applications approximations using the unscented transform are more

accurate [18]. In the following part of this section we discuss linear approximations of Fk−1(·, r) and

Hk(·, r) using the UKF and demonstrate the performance of the PHD filter for nonlinear models through

a simulation example.

Consider the nonlinear function Fk−1(·, r) evaluated in p points
(Xk−1,i(r),Yk−1,i(r)

)
, i = 1, . . . , p
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Fig. 7. Tracking performance versus probability of detection for λc = 3.47× 10−3 km−2 and CPEP radius = 50 m.

around m̂k−1(r) where Yk−1,i(r) = Fk−1(Xk−1,i(r), r), i = 1, . . . , p such that

m̂k−1(r) =
1
p

p∑

i=1

Xk−1,i(r)

P̂k−1(r) =
1
p

p∑

i=1

(Xk−1,i(r)− m̂k−1(r)
)(Xk−1,i(r)− m̂k−1(r)

)T
.

(95)

A choice of regression points satisfying (95) is 2κ points Xk−1,0(r), n points Xk−1,i(r) and n points

Xk−1,n+i(r) with

Xk−1,0(r) = m̂k−1(r),

Xk−1,i(r) = m̂k−1(r) +
√

p

2
P̂k−1,i(r),

Xk−1,n+i(r) = m̂k−1(r)−
√

p

2
P̂k−1,i(r),

(96)

where P̂k−1,i(r) denotes the column vector such that P̂k−1(r) =
∑

i P̂k−1,i(r)P̂ T
k−1,i(r).

The statistical linear regression of Fk−1(·, r) around m̂k−1(r) is the function Ak−1(r)m + bk−1(r)
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derived from the minimization of the sum of the squared errors

(
Ak−1(r), bk−1(r)

)
= arg min

A(r),b(r)

1
p

p∑

i=1

‖ek|k−1,i(r)‖2, (97)

with ek|k−1,i(r) = Yk−1,i(r)−
(
Ak−1(r)Xk−1,i(r) + bk−1(r)

)
. The solution of (97) can be shown to be

Ak−1(r) = P T
k−1,xy(r)P̂

−1
k−1(r), (98)

bk−1(r) = ȳk−1(r)−Ak−1(r)m̂k−1(r), (99)

and the covariance of the error ek|k−1,i as

Pk−1,pe(r) =
1
p

p∑

i=1

‖ek|k−1,i(r)‖2 = Pk−1,yy(r)−Ak−1(r)P̂k−1(r)AT
k−1(r), (100)

where

ȳk−1(r) =
1
p

p∑

i=1

Yk−1,i(r),

Pk−1,yy(r) =
1
p

p∑

i=1

(Yk−1,i(r)− ȳk−1(r)
)(Yk−1,i(r)− ȳk−1(r)

)T
,

Pk−1,xy(r) =
1
p

p∑

i=1

(Xk−1,i(r)− m̂k−1(r)
)(Yk−1,i(r)− ȳk−1(r)

)T
.

(101)

Admitting the following approximation in (91)

N (
ξ; Fk−1(ξ′, r), Qk(r)

) ≈ N (
ξ,Ak−1(r)ξ′ + bk−1(r), Pk−1,pe(r) + Qk(r)

)
, (102)

Lemma 1 can be applied in (93) to obtain vf,k|k−1 expressed in Gaussian mixture form.

Similarly, Hk(·, r) can be evaluated in p points
(Xk|k−1,j(r),Zk,j(r)

)
, j = 1, . . . , p around m̂k|k−1(r)

where Zk,j(r) = Hk(Xk|k−1,j(r), r), j = 1, . . . , p. The statistical linear regression of Hk(·, r) around

m̂k|k−1(r) is the function Ck(r)m + dk(r) derived as

(
Ck(r), dk(r)

)
= arg min

C(r),d(r)

1
p

p∑

j=1

‖ek,j(r)‖2, (103)

with ek,j(r) = Zk,j(r)−
(
Ck(r)Xk|k−1,j(r) + dk(r)

)
. The solution of (103) can be shown to be

Ck(r) = P T
k,xz(r)M̂

−1
k|k−1(r), (104)

dk(r) = z̄k(r)− Ck(r)m̂k|k−1(r), (105)

and

Pk,me(r) =
1
p

p∑

j=1

‖ek,j(r)‖2 = Pk−1,zz(r)− Ck(r)M̂k|k−1(r)C
T
k (r), (106)
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where

z̄k(r) =
1
p

p∑

j=1

Zk,j(r),

Pk,zz(r) =
1
p

p∑

j=1

(Zk,j(r)− z̄k(r)
)(Zk,j(r)− z̄k(r)

)T
,

Pk,xz(r) =
1
p

p∑

j=1

(Xk|k−1,j(r)− m̂k|k−1(r)
)(Zk,j(r)− z̄k(r)

)T
.

(107)

Admitting the following approximation in (92)

N (
z; Hk(ξ, r), Rk(r)

) ≈ N (
z, Ck(r)ξ + dk(r), Pk,me(r) + Rk(r)

)
, (108)

Lemma 1 and 2 can be applied in (94) to obtain vg,k in Gaussian mixture form.

Note that for nonlinear jump Markov spontaneous birth and spawn models each non-Gaussian con-

stituent function of the mixture models can be approximated by a Gaussian using the linear approximation

method described above. The expressions for the PHD recursion are notationally cumbersome and

therefore omitted.

A. Simulation Results

In this subsection we demonstrate the performance of the proposed PHD filter for nonlinear Gaussian

jump Markov models. Assuming the turn rate is not a known constant the maneuver model becomes a

nonlinear one. Augmenting the state vector to estimate the turn rate, the kinematic state of the aircraft

is defined as

ξ =
[

px, ṗx, py, ṗy, ω
]T

(109)

The motion models are as follows. Model r = 1 is a co-ordinated turn model with a known turn rate

of 0◦s−1 and standard deviation of process noise, σv1 = 5m s−2. Model r = 2 is a co-ordinated turn

model with an unknown turn rate given by

Fk−1(ω, r= 2)=




1 sin ωT
ω 0 −1−cos ωT

ω 0

0 cosωT 0 − sinωT 0

0 1−cos ωT
ω 1 sin ωT

ω 0

0 sinωT 0 cosωT 0

0 0 0 0 1




, Qk(r= 2)= σ2
v2




T 4

4
T 3

2 0 0 0
T 3

2 T 2 0 0 0

0 0 T 4

4
T 3

2 0

0 0 T 3

2 T 2 0

0 0 0 0 T 2




(110)
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and a process noise standard deviation of 10 ms−2 and 0.5◦s−2 for the linear and turn portions

respectively. The Markovian transition probability matrix is taken as

[tk|k−1(r|r′)] =


 0.8 0.2

0.2 0.8


 (111)

Aircraft are observed by a sensor providing bearing and range measurements in the region [−π, π] rad×
[0, 60] km. The measurements are given by

z =


 arctan(py/px)√

p2
x + p2

y


 + εk (112)

where εk ∼ N (·; 0, Rk) with Rk = diag([σ2
θ , σ

2
r ]), σθ = (π/180) rad s−1 and σr = 10m. The average

number of clutter returns per unit volume is λc = 1.326× 10−1 (rad km)−1.

The models for the births and spawnings are described as follows. The surveillance region includes

three airport locations at (40,−50) km, (−50, 40) km and (−10,−10) km. The intensity of the Poisson

RFS of spontaneous births is given by

γk(ξ, r) = 0.1πk(r)
[N (ξ; m(1)

γ , Pγ) +N (ξ; m(2)
γ , Pγ) +N (ξ; m(3)

γ , Pγ)
]
, (113)

with

m(1)
γ =

[
4× 104, 0, −5× 104, 0, 0

]T
, (114)

m(2)
γ =

[
−5× 104, 0, 4× 104, 0, 0

]T
, (115)

m(3)
γ =

[
−1× 104, 0, −1× 104, 0, 0

]T
, (116)

Pγ = diag
( [

106, 104, 106, 104, 10−8
] )

, (117)

and the distribution of the models at birth is taken as

[πk(r)] =
[

0.8, 0.2
]
. (118)

The intensity of the Poisson RFS of spawn births is given by

βk|k−1(ξ, r|ξ′, r′) = 0.05πk|k−1(r|r′)N (ξ; ξ′, Qβ), (119)

Qβ = diag
( [

104, 4× 102, 104, 4× 102, 10−8
] )

, (120)
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and the distribution of the models for a given aircraft state is taken as

[πk|k−1(r|r′)] =


 0.8 0.2

0.8 0.2


 . (121)

The settings for all other parameters are identical to those in section III-D.

At time k = 1 an aircraft takes-off from (−41,−51) km and accelerates northwards. At time k = 31

the aircraft executes a clockwise turn through 45◦ at 1◦s−1. 30 s later the aircraft executes a 2◦s−1

counterclockwise turn. The aircraft then executes a 1◦s−1 clockwise turn at time k = 70. At time

k = 3 a second aircraft takes-off from (−51, 39) km and accelerates at a bearing of N80◦E. The aircraft

executes two clockwise turns at 1◦s−1 and 2◦s−1 and flies at a heading of S60◦W for 55 s before

executing a 90◦ counterclockwise turn at 2◦s−1. A third aircraft takes-off from (−9,−11) km at time

k = 12 and accelerates along the initial heading of S80◦W . At time k = 35 the aircraft performs a

180◦ counterclockwise maneuver at 1◦s−1 followed by a sequence of clockwise and counterclockwise

maneuvers at 2◦s−1. Two payloads separate from Aircraft 1 and Aircraft 2 at time k = 31 and k = 56

respectively and continue until k = 100.

Fig. 8 shows the true trajectories in the horizontal plane. As shown in Fig. 9 the proposed PHD filter

provides reasonably accurate position estimates at most times. Fig. 10 shows the mean absolute error in

the number of targets and the probability of track loss for a position error radius of 50m estimated from

103 Monte Carlo runs.
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Fig. 8. Aircraft and payload trajectories. ‘◦’– locations of start of flight; ‘¤’– locations of end of flight (‘×’– location of

sensor).
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Fig. 9. Position estimates of the Gaussian mixture PHD filter.
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Fig. 10. Mean absolute error of estimated number of targets and probability of track lost.

V. CONCLUSIONS

A multi-target model that accommodates births, deaths and switching linear Gaussian dynamics has

been proposed. For this so-called linear Gaussian jump Markov system (LGJMS) multi-target model, a

closed form solution to the PHD recursion has been derived. Based on this solution, an efficient algorithm

that can track an unknown, time-varying number of maneuvering targets in clutter has been developed.

Extension of this algorithm to track maneuvering targets with non-linear jump Markov dynamics has

also been proposed. The proposed approach is applicable to a general class of models expedient for a

range of practical applications in multi-target tracking that are deemed intractable using conventional
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techniques. Simulations have demonstrated the effectiveness of the proposed multi-target filters for

tracking an unknown and time-varying number of maneuvering targets in clutter and detection uncertainty.

In comparison with the well-known IMMJPDA filter, the proposed approach exhibits an unprecedented

combination of good tracking performance and high computational efficiency.
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