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Abstract

This paper studies the design of FIR filter with low group delay, where the

desired phase response is not being approximated. It is formulated as a

constrained optimization problem, which is then solved globally. Numerical

experiments show that our design method can produce a filter with smaller

group delay than that obtained by the existing convex optimization method

used in conjunction with a minimum phase spectral factorization method

under the same design criteria. Furthermore, our formulation offers us the

flexibility for the trade-off between the group delay and the magnitude re-

sponse directly. It also allows the feasibility of imposing constraints on the

group delay.
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1. Introduction

For filters with the same filter lengths, it is well known that nonlinear

phase FIR filters can have smaller group delay and achieve better frequency

selectivity than linear phase FIR filters if they are designed properly. Thus,

nonlinear phase FIR filters have a wide range of applications in communica-

tions [1, 2]. A representative example is in telecommunications where long

delays are known to cause problems of echo and singing on voice lines [3].

There are many methods available in the literature for nonlinear phase

FIR filter design [1-13]. For the design of FIR filter with desired phase

response, it can be formulated either as a convex quadratic optimization

problem with convex quadratic constraints [4] or as a nonconvex optimization

problem [2], depending on whether or not the constraints on the group delay

are imposed directly. For the case without constraints being imposed on its

group delay, the formulated quadratic convex optimization problems in [4]

are easy to solve by existing software packages. However, if the constraints on

the group delay are imposed directly, the formulated optimization problem

in [2] is highly complicated and only local optimal solutions can be ensured.

To overcome this difficulty, the non-convex constraints on group delay are

relaxed to convex constraints such that the relaxed optimization problem

can be solved by the semi-definite programming (SDP) [5]. Although a good

solution can be obtained in some cases, there is no guarantee that it will do
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the same in general.

For the design of FIR filter without taking into consideration of its group

delay, it can be formulated as a semi-definite quadratic optimization problem

with linear constraints (see [6] and [7]). By solving this convex programming

problem, the autocorrelation of the designed filter is obtained. Then, a spec-

tral factorization procedure is applied to construct the original filter. If a

low group delay is required, then a minimum phase extraction method is ap-

plied. Traditionally, the design of such a filter is referred to as the minimum

phase FIR filter design. There are many methods, which are available for

the minimum phase filter design [3-8]. The methods in [8] and [9] are mainly

based on Herrmann’s design procedure [10] in which the frequency response

of odd-length equiripple linear-phase prototype filter is shifted up by one-

half of its stopband’s peak-to-peak ripple to acquire the second-order zeros

on the unit circle of the z-plane. In [3], a design procedure is proposed to

design minimum-phase filter based on root moments while keeping the same

magnitude response. However, it requires to start from a linear-phase filter.

In [11], a design procedure from a mixed-phase filter is proposed to fill the

drawback in [3]. All the aforementioned methods for the minimum phase fil-

ter design are required to have a given FIR filter. On this basis, its minimum

phase part are being extracted. The smallest group delay of the minimum

phase filter is obtained from the family of filters with the same magnitude

3



response. For a general constrained filter design, the smallest group delay

cannot be obtained through the design of a minimum phase filter.

In this paper, we study the design of a low group delay FIR filter with-

out imposing constraints on its phase response. Unlike the conventional

minimum phase FIR filter design [3-8], we formulate it as an optimization

problem directly and solve it globally. Numerical experiments show that our

design method can produce a filter with smaller group delay than those ob-

tained by the existing convex optimization method used in conjunction with

a minimum phase extraction method under the same design criteria. Our

formulation offers us the flexibility for the trade-off between the group delay

and the magnitude response. Furthermore, it allows the feasibility of impos-

ing constraints on the group delay. To achieve this task, we first derive a

new simple criterion for group delay. Based on this newly derived criterion,

the design of a low group delay nonlinear phase FIR filter is formulated as

a fourth order polynomial optimization problem with quadratic constraints.

However, the solution of this problem is difficult to obtain, as solving the p-

norm FIR filter design problem is a challenge. The main contribution of this

paper is a novel and simple computational scheme to solve this difficult opti-

mization problem based on the canonical duality developed in [15]. Since the

objective function and the constraints for our formulated problem are either

quadratic or the composite of two quadratic functions, the solution of the for-
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mulated optimization problem may be non-unique, causing difficulty in its

convex reformulation [16]. To tackle this issue, we introduce a small linear

perturbation term to break its symmetry. Under the canonical duality theory

[15], the global solution of this linearly perturbed optimization problem is

obtained via solving a simple SDP problem. Since the perturbation term is

very small, the global solution of the perturbed problem can be viewed as an

approximate global solution of the original problem. To achieve better per-

formance, a gradient-based optimization method can be applied to refine the

current approximate global solution. Numerical experiments are presented

to compare the results obtained by our method and those obtained by exiting

methods. From the comparison, it is clearly observed that our method offers

flexibility on the trade-off between group delay and the magnitude response.

This feature is not shared by the existing methods. Furthermore, our method

gives rise to a smaller group delay than those obtained by existing methods

under the same design criteria.

2. Problem Formulation

Consider an FIR digital filter of order K with transfer function H(z)

given by

H(z) =
K∑

k=0

hkz
−k, (1)
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where hk, k = 0, 1, ..., K, are real filter coefficients. The frequency response

H(ω) can be expressed as

H(ω) = |H(ω)|ejφ(ω), (2)

where |H(ω)| denotes the magnitude of H(ω) , while φ(ω) is the phase re-

sponse which is related to the group delay τ(ω) as shown by

τ(ω) = −
dφ(ω)

dω
. (3)

Let |Hd(ω)| be the desired magnitude response given by

|Hd(ω)| =





1, if ω ∈ Bp,

0, if ω ∈ Bs,

(4)

where Bp is the passband and Bs is the stopband. Taking derivative on both

sides of equation (2), we obtain

dH(ω)

dω
= −jτ(ω)H(ω) +

d|H(ω)|

dω
ejφ(ω). (5)

In light of (1), we have

K∑

k=0

khke
−jkω = j

dH(ω)

dω
. (6)

By the Parseval equality, it gives

K∑

k=0

kh2
k =

1

2π

∫ π

−π

(j
dH(ω)

dω
)H∗(ω)dω

=
1

2π

∫ π

−π

τ(ω)|H(ω)|2dω + j
1

2π

∫ π

−π

d|H(ω)|

dω
|H(ω)|dω, (7)
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where H∗(ω) is the conjugate of H(ω). Since |H(ω)| is an even function, it

follows that
∫ π

−π

d|H(ω)|

dω
|H(ω)|dω = 0.

Thus,

K∑

k=0

kh2
k =

1

2π

∫ π

−π

τ(ω)|H(ω)|2dω ≈
1

2π

∫

Bp∪Bt

τ(ω)|H(ω)|2dω, (8)

where Bt is the transition band. In (8), it is shown that
∑

kh2
k is a good

measurement of the group delay in the passband and the transition band.

Our extensive numerical experiments show that minimization of
∑

kh2
k can

achieve a desired low group delay filter in the passband. This formula has

been used in [17] to design narrow band lowpass filters with low group delay.

Let h = [h0, h1, · · · , hK ]T and D = diag(0, 1, · · · , K). Now we pose the

design of a low group delay filter with the prescribed magnitude responses

given by (4) as the following optimization problem

min
h

P (h) = αhT Dh+ (1 − α)

∫

Bp

(
|H(ω)|2 − 1

)2
dω (9)

subject to |H(ω)|2 ≤ ε, ∀ω ∈ Bs, (10)

where α is a weighting factor and ε is a ripple specification in the stopband.

Let this problem be referred to as Problem (P). In the absence of the first

quadratic term in P (h), Problem (P) can be reformulated as a new quadratic

optimization problem with linear constraints expressed in terms of the auto-

correlation of the designed filter H(z) ([6], [7]). By solving this reformulated
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quadratic optimization problem with linear constraints together with spec-

tral factorization, the original filter coefficients are obtained. During the

computation process, only linear matrix inequality (LMI) and spectral fac-

torization are involved. Thus, the method proposed in [6] and [7] is effective.

However, due to the presence of the first quadratic term in (9), this method

is not applicable to Problem (P). In the following sections, we will develop

an efficient method to solve Problem (P).

3. Solution Method

During the computational process, the one-dimensional integral that ap-

peared in (9) is evaluated by using Gaussian quadrature with M nodes, i.e.,

∫

Bp

(
|H(ω)|2 − 1

)2
dω =

M∑

m=1

νm

(
|H(ωp

m)|2 − 1
)2

=

M∑

m=1

νm

(
hT Ψ(ωp

m)h− 1
)2

,

(11)

where νm, m = 1, · · · , M , are weights, ωp
m, m = 1, · · · , M, are the Gaussian

quadrature points, Ψ(ω) = C(ω)CT (ω)+S(ω)ST (ω), C(ω) = [1, cos(ω), · · · , cos(Kω)]T

and S(ω) = [0, sin(ω), · · · , sin(Kω)]T . The functional inequality constraint

(10) is discretized into finite number of constraints given below:

|H(ωs
n)|

2 = hT Ψ(ωs
n)h ≤ ε, n = 1, · · · , N, (12)

where ωs
n ∈ Bs, n = 1, · · · , N , and N is the number of the discretization

points. Now Problem (P) is approximated by the following optimization
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problem.

min
h

P̃ (h) = αhT Dh+ (1 − α)
M∑

m=1

νm

(
hT Ψ(ωp

m)h− 1
)2

(13)

subject to hT Ψ(ωs
n)h ≤ ε, n = 1, · · · , N. (14)

Let this problem be referred to as Problem (PI). Since (13) and (14) are

all symmetric with respect to h, the solution of Problem (PI) may not be

unique which could lead to some difficulties in its convex reformulation. To

break the symmetry, we introduce a linear small perturbation to (13) as it

was suggested in [18]. Under this linear perturbation, (13) becomes

P̃g(h) = αhT Dh+ (1 − α)
M∑

m=1

νm

(
hT Ψ(ωp

m)h− 1
)2

− gTh, (15)

where g is a small perturbation vector. Replacing (13) by (15) in Problem

(PI), we obtain a perturbed optimization problem which is referred to as

Problem (PIg). If g is small enough, then the global solution of Problem

(PIg) can be viewed as an approximate global solution of Problem (PI).

Thus, it is of crucial importance if Problem (PIg) can be solved efficiently. In

the following, we introduce the canonical duality developed in [15] to solve

Problem (PIg).

The Lagrangian function for Problem (PIg) is defined as

L(h,λ) = αhT Dh+ (1 − α)

M∑

m=1

νm

(
hT Ψ(ωp

m)h− 1
)2

− gTh

+
N∑

n=1

λn

(
hT Ψ(ωs

n)h− ε
)
, (16)
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where λ ≥ 0. h∗ is called a KKT point of Problem (PIg) if there exists a λ∗

such that 



∇hL(h∗,λ∗) = 0,

λ∗

n

(
(h∗)T Ψ(ωs

n)h∗ − ε
)

= 0, n = 1, · · · , N,

λ∗ = [λ∗

1, · · · , λ∗

N ]T ≥ 0.

(17)

Let ξm = hT Ψ(ωp
m)h − 1, m = 1, · · · , M , and V (ξ) = ξT Bξ, where

ξ = [ξ1, · · · , ξM ]T and B = (1 − α)diag {ν1, · · · , νM}. Clearly, V (ξ) is

a strictly convex function. Thus, (16) can be rewritten as

L̄(h, ξ,λ) = αhT Dh+ V (ξ) +
N∑

n=1

λn

(
hT Ψ(ωs

n)h− ε
)
− gTh. (18)

Let ς = ∇V (ξ) = 2Bξ. The Fenchel conjugate of V (ξ) is defined [19] as

V ∗(ς) = ςTξ − V (ξ) =
1

4
ςT B−1ς

Replacing V (ξ) by ςTξ − V ∗(ς) in (18), the following total complementary

function [15] is obtained.

Ξ(h, ς,λ) =

M∑

m=1

ςm
(
hT Ψ(ωp

m)h− 1
)
−

1

4
ςT B−1ς+

N∑

n=1

λn

(
hT Ψ(ωs

n)h− ε
)
+αhT Dh−gTh.

(19)

Taking ∇hΞ(h, ς,λ) = 0, we have

2G(ς,λ)h = g,

where

G(ς,λ) = αD +
M∑

m=1

ςmΨ(ωp
m) +

N∑

n=1

λnΨ(ωs
n).
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If G(ς,λ) is invertible, then h = 1
2
G−1(ς,λ)g. Substituting this h into (19),

we obtain the canonical dual function

P d
Ig(ς,λ) = −

1

4
gT G−1(ς,λ)g −

1

4
ςT B−1ς −

M∑

m=1

ςm − ε
N∑

n=1

λn. (20)

The canonical dual problem (P d
Ig) is defined as follows:

max
ς,λ

{
P d

Ig(ς,λ)|λ ≥ 0
}

. (21)

The Lagrangian function L̃(ς,λ,σ) of Problem (P d
Ig) is defined as

L̃(ς,λ,σ) = P d
Ig(ς,λ) + σTλ, (22)

where σ ≥ 0. (ς∗,λ∗) is called a KKT point of Problem (P d
Ig) if there exists

a σ∗ such that




∇ς L̃(ς∗,λ∗,σ∗) = 0,∇λL̃(ς∗,λ∗,σ∗) = 0,

(σ∗)T
λ∗ = 0,

σ∗ = [σ∗

1, · · · , σ∗

N ]T ≥ 0,λ∗ = [λ∗

1, · · · , λ∗

N ]T ≥ 0.

(23)

For Problem (PIg) and Problem (P d
Ig), we have the following theorem.

Theorem 1 Suppose that (ς∗,λ∗) is a KKT point of Problem (P d
Ig). If

G(ς∗,λ∗) � 0, then h∗ = 1
2
G−1(ς∗,λ∗)g is the global minimizer of Prob-

lem (PIg). Furthermore, P̃g(h
∗) = P d

Ig(ς
∗,λ∗).

Proof. 1). We first show that h∗ is a feasible solution of Problem (PIg).

Furthermore, P̃g(h
∗) = P d

Ig(ς
∗,λ∗).
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Since (ς∗,λ∗) is a KKT point of Problem (P d
Ig), there exists a σ∗ such

that 



∇ς L̃(ς∗,λ∗,σ∗) = 0,∇λL̃(ς∗,λ∗,σ∗) = 0,

(σ∗)T
λ∗ = 0,

σ∗ ≥ 0,λ∗ ≥ 0.

(24)

By direct computation, we have

∇ςL̃(ς∗,λ∗,σ∗) = −
1

2
B−1ς∗−1M+




1
4
gT G−1(ς∗,λ∗)Ψ(ωp

1)G
−1(ς∗,λ∗)g

· · ·

1
4
gT G−1(ς∗,λ∗)Ψ(ωp

M)G−1(ς∗,λ∗)g




,

(25)

and

∇λL̃(ς∗,λ∗,σ∗) = −ε1N + σ∗ +




1
4
gT G−1(ς∗,λ∗)Ψ(ωs

1)G
−1(ς∗,λ∗)g

· · ·

1
4
gT G−1(ς∗,λ∗)Ψ(ωs

N)G−1(ς∗,λ∗)g




.

(26)

where 1M ∈ R
M = [1, 1, · · · , 1]T . Substituting h∗ = 1

2
G−1(ς∗,λ∗)g into (26)

and noting that ∇λL̃(ς∗,λ∗,σ∗) = 0 and σ∗ ≥ 0, we obtain

(h∗)T Ψ(ωs
n)(h

∗) − ε = −σ∗

n ≤ 0.

Thus, h∗ = 1
2
G−1(ς∗,λ∗)g is a feasible point of Problem (PIg). Furthermore,

λ∗

n((h∗)T Ψ(ωs
n)(h

∗) − ε) = −λ∗

nσ∗

n = 0. (27)
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Let ξ∗ = [(h∗)T Ψ(ωp
1)h

∗−1, · · · , (h∗)T Ψ(ωp
M)h∗−1]T . Then, it follows from

(25) and ∇ς L̃(ς∗,λ∗,σ∗) = 0 that

ς∗ = 2Bξ∗ = ∇V (ξ∗).

Thus, ς∗ and ξ∗ is a conjugate duality pair and the following equality holds

(ς∗)Tξ∗ = V (ξ∗) + V ∗(ς∗). (28)

Therefore,

P̃g(h
∗) = α(h∗)T Dh∗ + V (ξ∗) − gTh∗

= L̄(h∗, ξ∗,λ∗) (by (27))

= Ξ(h∗, ς∗,λ∗) (by (28)).

It is easy to verify that Ξ(h∗, ς∗,λ∗) = P d
Ig(ς

∗,λ∗) since h∗ = 1
2
G−1(ς∗,λ∗)g.

Thus,

P̃g(h
∗) = Ξ(h∗, ς∗,λ∗) = P d

Ig(ς
∗,λ∗). (29)

2). Now we show that h∗ = 1
2
G−1(ς∗,λ∗)g is the global minimizer of

Problem (PIg). Since h∗ is a feasible solution, we only need to show that for

any h, we have

P̃g(h) ≥ P̃g(h
∗), ∀ h satisfying (14).
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In fact, for any h satisfying (14), we have

P̃g(h) ≥ αhT Dh+ (1 − α)
M∑

m=1

νm

(
hT Ψ(ωp

m)h− 1
)2

−gTh+

N∑

n=1

λ∗

n

(
hT Ψ(ωs

n)h− ε
)

(h satisfying (14))

≥

M∑

m=1

ς∗m
(
hT Ψ(ωp

m)h− 1
)
−

1

4
(ς∗)T B−1ς∗

+
N∑

n=1

λ∗

n

(
hT Ψ(ωs

n)h− ε
)

+ αhT Dh− gTh

(by the inequality V (ξ) + V (ς∗) ≥ (ς∗)Tξ)

= Ξ(h, ς∗,λ∗). (30)

Note that Ξ(h, ς,λ) is a quadratic function with respect to h and that

∇hΞ(h∗, ς∗,λ∗) = 2G(ς∗,λ∗)h∗ − g = 0.

By these together with (29) and (30), it yields

P̃g(h) − P̃g(h
∗) ≥ Ξ(h, ς∗,λ∗) − Ξ(h∗, ς∗,λ∗)

= (∇hΞ(h∗, ς∗,λ∗))T (h− h∗)

+
1

2
(h− h∗)T∇2

hhΞ(h∗, ς∗,λ∗)(h− h∗)

= (h− h∗)T G(ς∗,λ∗)(h− h∗)

≥ 0, ∀ h satisfying (14).

We complete the proof. �
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Theorem 1 shows that the global solution of Problem (PIg) may be ob-

tained through solving its canonical dual problem (P d
Ig). Since Problem (PIg)

is a small perturbation of Problem (PI), we can use a gradient-based opti-

mization technique to obtain an improved solution. After obtaining the solu-

tion of Problem (PI), we check whether this solution satisfies the functional

inequality constraint of Problem (P). If it does, this solution is further refined

by a gradient-based optimization method and the corresponding solution ob-

tained is viewed as an approximate solution of Problem (P). Otherwise, we

increase the discretization number and repeat the above process.

To proceed further, we need Schur complement lemma [20].

Lemma 2 Let

A =




B1 BT
2

B2 B3


 ,

where B1 and B3 are square matrices and B2 is a matrix with proper dimen-

sion. If B1 � 0, then A is positive semi-definite if and only if the matrix

B3 − B2B
−1
1 BT

2 is positive semi-definite.

To solve Problem (P d
Ig), we note that the matrix inverse is involved in the

objective function (20). By exploiting its structure, the main theorem of the

paper is obtained by combining Theorem 1 and Lemma 2 as follows.

Theorem 3 Let (t∗1, t
∗

2, ς
∗,λ∗) be the solution of the following semi-definite
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programming problem which is referred to as Problem (RSDP)

min
1

4
t1 +

1

4
t2 +

M∑

m=1

ςm + ε
N∑

n=1

λn (31)

subject to




G(ς,λ) g

gT t1


 � 0, (32)




B ς

ςT t2


 � 0, (33)

λ ≥ 0. (34)

If G(ς∗,λ∗) � 0, then h∗ = 1
2
G−1(ς∗,λ∗)g is the global minimizer of Problem

(PIg).

Proof. The validity of the results follows readily from Lemma 2 and

Theorem 1. We complete the proof. �

Problem (RSDP) is a linear SDP problem which can be easily solved

by existing SDP software packages, for example, SeDuMi, [21]. Theorem 3

shows that solving Problem (RSDP) produces a global minimizer of Problem

(P d
Ig) if G(ς∗,λ∗) � 0. However, if G(ς∗,λ∗) is singular, there is still no way

to dig out a global solution of Problem (PIg) from the solution of Problem

(RSDP). Fortunately, this case is rather rare for our problem. Now we are

in a position to present an algorithm for solving Problem (P) as follows.

Algorithm 1
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Step 1. Initialization K, M and N .

Step 2. Randomly produce the small perturbation vector g.

Step 3. Solve Problem (RSDP) and output solution (t∗1, t
∗

2, ς
∗,λ∗). If G(ς∗,λ∗) �

0, let h∗

ig = 1
2
G−1(ς∗,λ∗)g, go to Step 4. Otherwise, go to Step 2.

Step 4. Using h∗

ig as an initial condition, solve Problem (P) with the func-

tional inequality constraint (10) replaced by the approximate discritized

constraints (14) by a gradient-based optimization method. Check whether

the functional inequality constraint (10) is satisfied in a dense set of Bs.

If it is, stop and output the solution h∗. Otherwise, increase N and goto

Step 2.

4. Numerical Experiments

Let the desired magnitude response be given by

|Hd(ω)| =





1, if ω ∈ [0, 0.12π],

0, if ω ∈ [0.24π, π]

and α is chosen from [10−8, 10−4].

During our simulation, we set K = 32, M = 50, N = 200 and ε =

−35dB. Algorithm 1 is used to solve the optimization problem (13) and (14)

with different values of α. The small perturbation vector is generated by

10−5randn(K + 1, 1). The weights νm and the Gaussian quadrature points
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ωp
m, m = 1, · · · , M , can be found from [22]. Problem (RSDP) is solved

by SeDuMi [21] together with YALMIP [23] and the nonlinear constrained

optimization is solved by “fmincon” in the Optimization Toolbox within the

Matlab environment.

For comparison, we use the existing convex optimization methods used in

[7, 24] in conjunction with a minimum phase spectral factorization method

[25] to design a low group delay filter under the same criteria. More specifi-

cally, taking α = 0 in (13), replacing |H(ω)|2 by R(ω) = r0+
∑K

k=1 2rkcos(kω) =

rTψ(ω) (where r = [r0, · · · , rK]T and ψ(ω) = [1, 2 cos(ω), · · · , 2 cos((Kω))])

and imposing a linear matrix inequality [24] to ensure the invertibility from

r to h, a quadratic optimization problem with a linear matrix inequality

and linear constraints in terms of r and an auxiliary matrix variable Pc is

obtained as follows:

min
r,Pc

M∑

m=1

νm

(
rTψ(ωp

m) − 1
)2

subject to rTψ(ωs
n) ≤ ε, n = 1, · · · , N.


Pc − AT

c PcAc CT
c − AT

c PcBc

Cc − BT
c PcAc Dc + DT

c − BT
c PcBc


 � 0, (35)

where Ac, Bc, Cc, Dc are given in (7) in [24]. After finding the solution of

the optimization problem defined by (35), the minimum phase spectral fac-

torization method introduced in [25] is used to extract h from r. Let the

solution obtained be denoted as h∗

c. The computational complexity to obtain
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h∗

α and h∗

c are similar as both Problem (RSDP) and Problem (35) involve

a linear matrix inequality. However, Problem (35) contains more decision

variables. Furthermore, after the solution of Problem (35) is obtained, a

minimum phase spectral factorization is required to be used to extract h∗

c

from the solution r∗.

We first set α1 = 10−6 and use Algorithm 1 to solve Problem (PI). Let

the solution obtained be denoted as h∗

α1
. During the solution process, the

function “fmincon” just takes two iterations to stop. In fact, the performance

of the solution obtained by solving Problem (RSDP) has no visible difference

from that refined by “fmincon”. Thus, the gradient-based optimization re-

finement seems not necessary from our computational experience. Nonethe-

less, it is included in Algorithm 1, as it may be needed in other problems.

The results corresponding to h∗

α1
and h∗

c are depicted in Fig. 1. From

Fig. 1 (b), we see that there is no visible difference between the magnitude

response of h∗

α1
and that of h∗

c in the passband. Fig. 1 (c) shows that both

h∗

α1
and h∗

c are with the same stopband ripples. However, it is observed in

Fig. 1 (d) that h∗

α1
achieves a much smaller group delay than h∗

c. Fig. 1 (e)

shows that all zeros of h∗

α1
are within the unit circle. Thus, the filter h∗

α1

designed by our method is automatically a minimum phase filter without

having to performing a minimum phase extraction step. This is not shared

by any existing method. From this example, it is clear that our method can
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achieve a much smaller group delay while keeping the same design criteria.

To investigate the impact of the parameter α, we increase α from α1 to

α2 = 10−5. Let the solution obtained by our method be denoted as h∗

α2
. The

results corresponding to h∗

α2
and h∗

c are depicted in Fig. 2. Fig. 2 shows that

the group delay of h∗

α2
becomes much smaller at the cost of some increase in

its magnitude response in the passband and stopband.

Now we decrease α from α1 to α3 = 10−7. Let the solution obtained by

our method be denoted as h∗

α3
. The results corresponding to h∗

α3
and h∗

c are

depicted in Fig. 3. Fig. 3 shows that both the magnitude response and the

group delay of h∗

α3
are close to h∗

c. In theory, h∗

c can be obtained from h∗

α

by setting α → 0. All the coefficients of h∗

α1
, h∗

α2
, h∗

α3
and h∗

c are presented

in Table 1.

Clearly, the parameter α plays an important role during our design pro-

cess. In fact, the role of α is two-fold. On one hand, it is used to control

the trade-off between the group delay and the magnitude response. The

larger the α is, the smaller the group delay is achieved. Since the term

∑M

m=1 νm

(
hT Ψ(ωp

m)h− 1
)2

is much smaller than the term hT Dh, we usu-

ally take the value of α starting from 10−4. If the resulting magnitude re-

sponse does not meet our desired specification, we decrease the value of α

by α = α/10 or to a smaller one. On the other hand, α plays the role of

regularization during the process of solving Problem (RSDP). If the value of
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α is too small (for example, smaller than 10−8), Problem (RSDP) may not

admit a solution such that G(ς∗,λ∗) � 0. At the first glance, the adjustment

of α appears to increase the complexity of solving the problem. In fact, due

to the presence of α, we have more freedom to control the trade-off between

the magnitude response and the group delay. Furthermore, a proper choice

of α can lead to a smaller group delay while keeping all the design criteria

the same (see Fig. 1).

5. Conclusion

In this paper, the design of a low group delay FIR filter is studied. Unlike

the conventional minimum phase method, we formulate it as a non-convex

optimization problem directly. Our main contribution is that a novel numer-

ical scheme is developed to solve this formulated non-convex optimization

problem globally. Numerical experiments show that our design method can

produce a filter with smaller group delay than those obtained by the exist-

ing convex optimization method used in conjunction with a minimum phase

extraction method under the same design criteria.
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Table 1: The coefficients of h∗

α1
, h∗

α2
, h∗

α3
, and h∗

c

h
∗

α1
h
∗

α2
h
∗

α3
h
∗

c

0.0285116206006799 0.0387740383889875 0.0262107023409039 0.0252472337305588
0.0509866524174902 0.0614443952270321 0.0486333750106783 0.0473450207730468
0.0856088083718892 0.0978828806389367 0.0822097183380445 0.0810379492029237
0.123034390901257 0.134719509319526 0.119931194418926 0.118315645903861
0.156084821647626 0.164035324986959 0.153337081728234 0.152127711650623
0.17639025618915 0.178537316915211 0.175252349657358 0.174612661066523

0.178278138164555 0.173044184628575 0.178831620770272 0.179080069523033
0.158868245465607 0.146945417351412 0.16138455335902 0.162414973421189
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Figure 1: Magnitude responses and group delays of h∗

α1
and h∗

c
: (a) The magnitude

response (in dB), (b) Zoom-in of the magnitude response in the passband (in dB), (c)

Zoom-in of the magnitude response in the stopband (in dB), (d) The group delay in the

passband, (e) Zeros of FIR filters of h∗

α1
and h∗

c
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Figure 2: Magnitude responses and group delays of h∗

α2
and h∗

c
: (a) The magnitude

response (in dB), (b) Zoom-in of the magnitude response in the passband (in dB), (c)

Zoom-in of the magnitude response in the stopband (in dB), (d) The group delay in the

passband, (e) Zeros of FIR filters of h∗

α2
and h∗

c
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Figure 3: Magnitude responses and group delays of h∗

α3
and h∗

c
: (a) The magnitude

response (in dB), (b) Zoom-in of the magnitude response in the passband (in dB), (c)

Zoom-in of the magnitude response in the stopband (in dB), (d) The group delay in the

passband, (e) Zeros of FIR filters of h∗

α3
and h∗

c
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