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Repeated eigenstructure assignment in the computation of
friends of output-nulling subspaces

Lorenzo Ntogramatzidis

Abstract— This paper is concerned with the parameterisation  toolboxes. In the MATLAB® GA toolboX, theef f est a. m
of basis matrices and the simultaneous computation of frietts  routine is used for computing the friends. Similarly, theBSC
of the output nulling subspaces”™, 7y and %* with the — manoq of [4] was incorporated into the computation of the
assignment of the corresponding inner and outer closed-lgo friends in the MATLAB® Linsvskit toolboxd: the at
free eigenstructure. Differently from the classical techiques r'en_ s '_n e I!’lw ! 09 0X%, e"’.‘ ea. m.
presented in the literature so far on this topic, which are routine is used for computing the friends, and is described
based on the standard pole assignment algorithms and are in [6].
therefore applicable only in the non-defective case, the ntieod All the methods currently available in the literature are
pyesentled in th.'f] pag.er can bel '?‘Ff.pl.'ed in the case of closeddp 5564 on decompositions that reduce the problem to one
elgenvalues with arbitrary multiplicity. where a feedback matrik is sought that assigns all the
. INTRODUCTION eigenvalues of a closed-loop matrix, say-BF, where the
_ pair (A, B) is reachable. Both the methods in the MATLARB
In the last forty years, geometric control has playedsihoxesGA and Linsyskit exploit the MATLAB® instruc-

a fundamental role in the understanding of the structurgl,, pl ace. mto this purpose, based on the algorithm of

properties c_n‘ linear and non-linear dynamica! systems ar*[g], which can only assign eigenvalues Af+ BF with a

in the solution of several control and estimation problemsy,injicity for each eigenvalue that must not exceed the
including disturbance decoupling, non-intéracting coltr rany of B, This limitation of the routinepl ace. mis thus
fault detection, model matching and optimal control to namg,parited by the MATLAB® instructions of the toolboxes

a few. The monographs [16], [2], [15], [3] provide surveysga ang Linsyskit, which can therefore compute the friend
of the extensive literature in this area. _ of the output-nulling subspace at hand only in the case of

The subspaces that underpin the classic geometric thegy,_qefective closed-loop.

of linear time-invariant (LTI) systems are the so-called A gitterent approach for the computation of a basis matrix
output-nulling and input-containing subspaces. The MO§t, 5 and ¥* was proposed by Moore and Laub in [8],

important output-nulling subspace is undoubtedly, which ;4 presented an algorithm for the computationzef and
represents the set of initial states for which a controlflamc 4« poced on the computation of the null-spaces of the

exists that maintains the output function identically atoze system Rosenbrock matrix pencil [12]. This procedure has
the second is#Z*, which represents the reachable subspagge advantage of computing a basis matrix f@¢ (and
within #*, and can be interpr_et_ed as the set of initial stategy*) and simultaneously delivering a corresponding friend
that are reachable from the origin of the state space by megasiha; assigns a certain inner closed-loop eigenstructure.
of a control function that maintains the output function atrhe drawback was the number of restrictive assumptions
zero. Finally, the subspackg represents the set of initial 4t \ere made in that paper. These assumptions have been
states for which a control can be fou_nd th_at maintains thﬁecently removed in [11] and [10]. Moreover, in these papers
output at zero by means of state trajectories that convergg ,qgitional generalisation of the procedure in [8] was
to the origin. This latter subspace has played a central rolgqn4sed to the end of delivering a friend that also assigns
in the solution of control problems with additional stalyili e free outer eigenstructure @8 (or ¥*). However, the
requirements. In the LTI case, these input functions cafqst important aspect of the method presented in [8], which
always be expressed as a static state feedback, by meaQ§ained unexploited until very recent times, is the faat th
of a feedback matrix C‘]‘esua”y referred to adreend of the ¢ friend of%* (or ¥*) that assigns the free inner and outer
output-nulling subspace. _ eigenstructure of the closed-loop with respectibis given

The computation of friends of output nulling subspaceg, narameterised form. This fundamental aspect invites the
that assign the inner and outer assignable spectrum of Hgmylation of optimisation problems aimed at exploitihe t
closed-loop has been considered by many authors and tesijaple freedom to deal with objectives such as minimum
texts [2] and [3] included publicly available MATLAB  4ain or improved robustness of the eigenstructure. Therpape

This work was supported in part by the Australian ResearchnCib [11] IS_ the TIrSt to propose a method for assigning friends tha
(grant FT120100604). exploits this freedom.
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1This property does not necessarily hold outside the doméifinite 3The Linear System Toolkit is available on request from thst fauthor
dimensional LTI systems over a field. of [3]; see http://vlab.ee.nus.edu.sgpmchen/.



One of the restrictive assumptions of the method proposé8]. The invariant zeros oE are identified with the values
in [8], which remains in the generalisations presented iof A € C for which the rank o (A) is strictly smaller than
[10] and [11], is the fact that the closed-loop eigenvalues tits normal rank. More precisely, the invariant zeros are the
be assigned must be distinct. This paper addresses thés isswots of the non-zero polynomials on the principal diagonal
we generalise the method in [8] to also take into accoumtf the Smith form ofP:(A), see e.g. [1].
the case of repeated closed-loop eigenvalues, with ampitra Given an invariant zerd = ze C, the rank deficiency of
multiplicity. This task is accomplished by introducing axmne P;(A) at the valuel = zis the geometric multiplicity of the
parameterisation of the basis matrices #t, »* and 7y, invariant zeroz, and is equal to the number of elementary
which also provides a natural method for determining thdivisors (invariant polynomials) d® (A ) associated with the
associated friend which can place the assignable clos®zl-locomplex frequency\ = z. The degree of the product of the
eigenvalues to desired locations virtually without anyelementary divisors oP;(A) corresponding to the invariant
assumptions on the location or on the multiplicity of suclzero z is the algebraic multiplicity ofz, see [7]. More
eigenvalues. Future research will consider the exploitati explicitly, given the set of invariant zero% = {z,...,z}
of this parameterisation of the friends of*, #* and of (2), if
74 to address problems of determining the friends with
minimum Frobenius norm or improved robustness of the W(A) = (A —21) ™k (A —25)™k ... (A — 7)™k,
eigenstructure along the same lines of the non-defecti

e o
case of [11]. Ve {1,...,c}, are the elementary divisors d%(A) (or-

dered in such a way thatyc > mgc 1> ... > meo >
m¢1 for any k € {1,...,t}), the geometric multiplicity
of the invariant zeroz equals the cardinality of the set
{mj #0]j€{1,...,c}}, while the algebraic multiplicity of

z is equal toyy_; mix. Finally, the invariant zero structure
of = is given by {mj|i € {1,....t}, je{1,....,c}}. Thus,
the algebraic multiplicity of an invariant zero in not sneall
than its geometric multiplicity. The set of invariant zeads

is denoted withZ", and the set of minimum-phase invariant
zeros ofZ is denoted withZj.

Notation. Throughout this paper, the symbg] Stands for
the origin of the vector spadk9. The image and the kernel
of matrix A are denoted by imM\ and kerA, respectively.
The Moore-Penrose pseudo-inversefofs denoted byAT.
Given a linear majp\: 2" — % and a subspace” of %/,
the symbolA~—1.7 stands for the inverse image of with
respect to the linear map. If 7 C 27, the restriction of
the mapAto ¢ is denoted byA| 7. If 2°=% and 7 is
A-invariant, the eigenvalues éfrestricted to # are denoted :
by o(A| #). If #1 and _# areA—invariant{ubspaces and, GMven A €C, we use the symboN;(4) to denote a
71C 75, the mapping induced bf on the quotient space basis matrix for th(_a nuII-sp_ace d%(A), and Xve denote
"7,) 71 is denoted byA| 7/ _71. The symboke stands for by d(A) the dimension of this null-space._Ldt: _n—i— m—
the direct sum of subspaces, normraan.z()\). .Clearly d(A) =d, unlessA is an invariant

Given a mapA: 2 — 2 and a subspac# of 27, we zero ofZ, in Wh'f:h casgd(/\) >d. o
denote by(A, %) the smallestA-invariant subspace o2’ For any matrixM with n+m rows, we definem{M}
containing%. The symboli stands for the imaginary unit, and E{M} by taking the uppen and lowerm rows of M,
i.e.,i=+/—1. The symbol@ denotes the complex conjugatereSpeCt'Vely'
of a € C. Given a matrixM, we denote by its i-th row
and by M its j-th column, respectively. The normal ran
of a rational matrixM(A) is defined as normramk(A) =

k Geometric background. Geometric objects extensively
used in this paper are defined here. A controlled invari-

maxrankM(A). ant subspace/” of the pair (A,B) is a subspace of?
AeC satisfying A¥ C ¥ +imB. An output-nulling subspace of

Il. PRELIMINARIES > =(A,B,C,D) is a controlled invariant subspacg of X

Consider an LTI syster& modelled by which satisfies{é} Y C (¥ ®0p)+im {g} or, equivalently,

for which two matrices= and Q exist such that[é] V =

. ) X)) =Ax(t) +Bu(t), x(0)=xo,
> { y(t) =Cx(t) +Du(t), @ [\é} =+ {g} Q, whereV is a basis matrix of/.

where, for allt >0, x(t)e 2" = R" is the statep(t) e % = These conditions are equivalent to the existence of a matrix
R™ is the control inputy(t) €% = RP is the output, and, F €R™*" such that(A+BF)7 C 7" C ker(C+DF). Any

B, C andD are appropriate dimensional constant real-valued/ch matrixF is referred to as driend of 7. The largest
matrices. Let the syster® described by (1) be identified Output-nulling subspace af is denoted with¥™*, and repre-

with the quadruplgA,B,C,D). We assume with no loss of Sents the set of all initial stateg of (1) for which a control

generality that all the columns 8] and all the rows of Y exists such that the corresponding outgus identically
D ero. Such input function can always be implemented as a

C F] are Itiqearly ir_}QerJtEnd.egt.tWe _d;fineéhe Rosenbroci&atic state feedback of the foro{t) = F x(t) whereF is
system matrix pencii in the indeterminatec . as a friend of ¥*. The so-called largesteachability output-
A-Al B } nulling subspace on ¥*, here denoted with the symbat™,

P(A) £ 2 . : . -
C D is the smallestA-+ BF)-invariant subspace of” containing



the subspace/*NBkerD, where F is a friend of 7.

set of all friends ofZ* such thato(A+BF |%*) = . is

Loosely speaking, this subspace represents the stategr¢hatparameterised as

reachable from the origin on a state trajectory for which the

output is zero, [15, Ch. 8], [9]. IF is a friend of ¥ *, itis also
a friend of Z*. The spectruno(A+BF | %*) is assignable,
whereas the spectrufi, £ o(A+BF | 7*/%*) is fixed,
and its elements are the invariant zeroszofSimilarly, if

we denote byZ, the reachable subspace from the origin

i.e., Zo= (A, imB) =im[B AB ... A""1B], the spectrum

o(A+BF|¥*+%0/7™*) is assignable, whereas the spec

trum Fout = 0(A+BF|.27/7* + %) is fixed. Finally, 7

is the largest output-nulling subspace for which theretsxis

a friend F such that(A+BF) 75" C 75 C ker(C+ DF)
and o(A+BF|[75) C Cg, whereCq denotes the left-half
complex plane. Thus, there holds in gene#al C 7§ C 7.

Ill. THE NON-DEFECTIVE CASE

Fe = Y X (7)

Theorem 3.1 contains a procedure for the construction of

a friendF of the subspacegz* that arbitrarily assigns all the
eigenvalues of the closed-loop restricted %3. However,
we also know that the spectrum induced by the rAapBF
bn the quotient spac&y + Z*/%* = %o/ %* is assignable
using a friend~. In [10] and [11], a procedure is outlined to

the end of generalising the statement of Theorem 3.1 to the

case in which the free outer eigenstructurefof BF with
respect toZ* is also assigned.

B. Computation of ¥* and 7"

We now recall another result in [10] which shows that it
is always possible to parameterise all the friends thagassi
the internal and external eigenstructure’¥of by means of

We now recall some results on the computation of basi formula

matrices for%*, 7 and #3* and the corresponding friends
that assign the free closed-loop eigenstructure under t

assumption that the closed-loop eigenvalues are distinct.

A. Computation of %Z*

Given a set ofh self-conjugate complex number® =
{A1,...,An} containing exactlys complex conjugate pairs,
we say that? is s-conformably ordered if the first2values

Fo = Ye X 4

'i‘.%., where this time is square and invertible (for almost all
choices of the parameter matiy. For the sake of simplicity
of exposition, we assume that all the internal/externatmeig

values to be assigned, as well as all the invariant zeros and

uncontrollable modes of the pdiA,B) are real and distinct.
Theorem 3.2: Let r = dim#Z*, v = dim¥?* and q =
dim(¥* + %o). Let Ln = {A1,...,Ar} be real. LetZ =

of . are complex while the remaining are real, and for al{z,,...,z,} be the set of invariant zeros. Le¥u =

oddk < 2s we haveAy,; = Ak. For example, the set¥; =
{14+1,1-1,3,—4}, % = {10i,—10i,2+ 2i,2—2i,7} and

{Hv+1,...,lUg} be also real. Finally, let¥9 = oy =
{l4+1,---,¢n}. We assume thatz,, 2, Zout and ¢ are

%3 ={3,—1} are respectively 1-, 2- and 0-conformably or-distinct, and thatZ,N% =0, LnN¥ =0, LouNZ =0
dered. We now recall the main result in [10], which provideaind %,,:N¥ = 0. Define

a method to construct a basis feg#* and simultaneoudly a

friend F that assigns thdistinct eigenstructure of the closed-

loop restricted taz*.

Theorem 3.1: Let r =dim#%*. Let & = {A4,...,Ar} be
s-conformably ordered and distinct, and such tan 2 =
0. Let K £ diag{ky,...,k}, wherek € CY for eachi ¢
{1,...,2s}, and for all odd < 2s, we havek; = ki, 1, whereas
ki€ RY for i € {2s41,...,r}. Let M¢ be an(n4+m) xr
complex matrix given by

M £ [ Nz()\l) | Nz(/\z) | | Nz()\r) } K (3)
and let for allj € {1,...,r}
Re{M}} if j <2sis odd
mej =4 Im{M{} if j<2sis even (4)
My if j>2s
Finally, let
X & T{[me1 Mz ... Mkl (5)
Ye & m{[mq1 me2 ... M ]} (6)

For almost every choice of the parameter matkx=
diag{ky, ...,k }, the rank ofX, is equal tor. Moreover, for
all K such that rankx =r, there holdsz* = im Xy, and the

M¢ = [Ne(A1) ... Ne(Ar) [Ne(z41) - Ne(2v) | Se(Husa) -
Sz(ﬂq) | Sz(Zqul) Sz(Zn)]K

where S;(u) represents a basis matrix for k& ul, B],
and whereK = diag{K, ,Kz,K;,K; }, and
« K, =diag{k},...,k}}, with k* € RY, and whered =
dim(kerPs(A)) whenA is not an invariant zero;
o Kz = diag{k?,,,...,kZ}, with k* € R%, and d;
dim(kerP:(z)) whenze Z;
o Ky = diag{k}, ,....kg}, with k' € R™, since m
dim(kerS;(p)) whenpt is not in¥;
o K7 = diag{ngrl,...,kﬁ}, with kiZ € R™, and where
m; = dim(kerS:({)) when{ € out.
Finally, define

XK:TT{MK}GRnxn 8

For almost every choice &€, the matrixX is invertible, and
the set of all friends of¢/* such thato(A+BF | 2*) = %4,
o(A+BF|v*/%*) =% ando(A+BF | (%o+7V™*)/ V™) =
Zout IS parameterised iK as

Fo=Ye X, )

whereK is such thatXy is invertible. Moreover, for suck
the firstr columns ofX are a basis fo#z*, the firstv =r +t

and Yg = m{My} € R™"



columns ofX¢ are a basis for”* and the firstg are a basis  Theorem 4.1: Let.#, .# and & comprise an admissible

for v* + %. Jordan structure fogz*, and letK be a parameter matrix.
The computation of a basis matrix fog and the corre- For all oddi € {1,...,2s} and for each € {2s+1,...,v}

sponding friend is obtained from Theorem 3.2, by replacingnd j € {1,...,0}, build vector chains of length; \ as

Z with Zy, i.e., by only taking into account the minimum-

phase invariant zeros. sj1 = Ne(A)KY (15)

IV. REPEATED EIGENVALUES AND INVARIANT ZEROS Sz = Me(A)THS ja} +Ne(A) K (16)

In this section we develop a parametric formula for all : 5
friends of #*, such that the corresponding eigenstructure Sip; = Mz(/\i)ﬁ{s,j’pi,jfl}‘i‘Nz()\i)Ki”JJ!'J 17)
can have eigenvalues with any desired multiplicity, and ]
any admissible Jordan form. We formulate the problem gerom these column vectors and for such values of the index
follows. We let.# = {A1,...,A,} be s-conformably ordered !» construct matrices
and, for the sake of simplicity, distinct from the system Si=[sialsial. IS ip ] (18)
invariant zeros. Let this desired eigenvalues have adsocia G =SS 20 Sy

algebraic multiplicities.#Z = {my,...,m,} satisfyingm; + ¢ dimension(n+m) x pij, and § = [S1/S2|...|Sg] of

--4+my =r; if Aj 1= Aj, then clearlym 1 =m. We aim to dimension(n-+m) x m;, and finally
obtain a real gain matrif and a set of real vectob$ such

that S=[SS...|S)] (19)

A+BF X -
{ CLDF } X= { 0 ]/\, (10) X« = Re{TT{S}} (20)
: : . : Yo = Re{n{S}}. (21)
where imX = %* andA is a real Jordan matrix in canonical
form For almost every parameter matKx there holds rank¢ =r.
A =diag{I(A1),...,I(Av)}, (11) For all K such that rankKx =r, there holdsZ* = imX«.

Finally, the set of all friends ofZ* such that the Jordan

where eachJ(Aj) represents a real Jordan matrix for they  re of A+ BF restricted ta%* is described by?,.#
eigenvalue); of orderm;, and may be composed of up gp and 7 is parameterised i as

real mini-blocks, i.e.,
_ T
I(N) = diag{h(A), .., 35 (A)}. (12) Fe =YX

We useZ 2 {pi;:1<i<v,1<j<g} to denote or- whereK is such.that ranky =r. .

ders of each Jordan mini-block(;), and assume without Proof: For eachi € {1,...,v}, |eF Ki be an input parameter
loss of generality that for each they are in descending Matrix as in (13), and for eache {1,...,gi}, let §; be
orderpis > piz > > pig. If £, # and # satisfy the constructed as in (18). We may partiti®); as

(22)

conditions of the Rosenbrock Theorgifi?2], then we say y y Y
that &, .# and &2 define anadmissible Jordan structure S = Bl N2 e T : (23)
for #*. Given such a structure, we define parameter ’ V‘/i,j,l V‘/i,j,z V‘/i,j-,pi,j

matrix K = diag{K, ...,Ky }, where, for eache {1,...,2s},

Ki € C9*M for all oddi < 2s, we haveK; = K;.1; and for

ie{2s+1,...,v}, Kie RI*M  Further, eachK; matrix is A—Al B ij L 0
el -6

where the column vectors satisfy

partitioned as

C D
Ki = [Ki1|Ki2|. .. |Kig], (13)
where eaclK; j is of dimensiond x p; j. Lastly we let [ A—Al B } { Vil } _ [ Viji-1 } l=2,...,pij
t C Dl wi A
M (A7) = { A_C/\iln g } [ O,I,in } (14) Define matrices
The following theorem is the main result of this paper. It Vij = [\/i’j!1|\/i’j’2|m|\/i’j’pi‘j]’

generalises the procedure of Theorem 3.1 to the end of

I
computing the desireB in the case of repeated eigenvalues. Wi = ["‘/i-,J',1|Wil.,J,2| g

-,J',Pi,j]’

!/ !/ !/ !/ U / ! !

“In the case where the pdiA, B) of real matricesA € R™" andB € R™™M and also/i = [Vi,1|Vi,2| T |Vi.,_gi] andV\/, = [\Ni,1|vvi-,2|_" : |\N|9|]
is reachable, the eigenvalues Af+-BF, along with their multiplicities, Note that for all odd < 2s, K; =K, 1 implies thatXj = X, 1,
are fre_ely assignable V\_/ith a sujtable real matfixe R”‘X”‘, provided gnd hence_/f —V/ andV_V( — W' .. Also let
such eigenvalues are mirrored with respect to the real &dsvever, the ! i+1 ! i+1
Jordan structure associated with such eigenvalues is tiotlgriree. The
constraints on the Jordan structures that can be obtaintitk inlosed-loop U = }
matrix are described in the celebrated Rosenbrock Theorem. ! 2

Im  —ilm
Im  ilm

(24)



Then for each odd < 2s, we have[V/ V/;]Ui = Vi Vi;1] of orderp ;. Let us partitionX andY conformably with the
and W W' ,]Ui = W W1]. Then,S, X« and Y¢ in (19) corresponding Jordan mini-blocks that they multiply,,i.e.

may be written as [ A B [ X121 X2 oo Xug, ]
S= (VI Vs ... Vis|Vasi1 Vasya oo Vi, C DIl Yz o Vog,
X = [V1 V2 ... Vas|Vasia Vasia ... W] _ | X1dh(A) Xaad(A1) o Xug, Jg, (Av) }
0 0 0 '
YK = [Wl V\/2 \/\/25|VV25+1 VVZ&FZ WV]

. . Consider the generic term of this product
Notice that, following the same argument of [11, Theorem

3.1], for almost all choices oK satisfying the conditions A B } [ Xij } _ [ Xij ]J'()\i) (29)
of the statement the rank ofc equals the dimension of | C D ][ Y o TP
Z#*. For such aK, define Fx as in (22); we then have whereJj(A;) is the generig-th Jordan mini-block relative to

RV /:YVI for all/ i < {1,...,v}, and using (24) we obtain the ejgenvaluey. For the sake of simplicity, assume that its
Fe M V4] = W W 4] for oddi € {1,...,2s}. Hence (24- order p; ; is denoted byt. First consider the case in which

24) can be written fof € {2s+1,...,v} as Ai is real. PartitioningX = [Vij1 Vij2 ... Viji] andY, =
4 Wij1 Wij2 ... Wijt], (29) can be written as
[ é+§|;+< }Vi/: [\g }J(/\i) (25) [Wij1 Wij2 ij.t]
+Dh { Avij1+BWj1 AVijo+Bwjo ... Aviji+Bwjt }
while for oddi € {1,...,2s} Cvij1+Dwij1 Cvij2+Dw 2 ... Cvijt+Dwijs
1A Vij1FAIVii2 .. Vijt—1+Ai Vit
A+ BF VARVIRR N = {val VAL, RE I (30)
[C—l—DFﬁ][Vi/ 1 }—[ 0I I61 }d'ag{‘](/\i)v‘]()\iﬂ)}- 0 0 0
(26) Vij1 A-Ailn B & . .
Let A be given by (11). We then have Therefore,[whj%/}le ker{ c D] implies that there exists
KL such that[w'f'f } = N;(Aj) K. Moreover, from (30) we
A+BRc ]y [ %A @n il = J
C+DF =l o g find that there exist&?; such that

whereA is in the real Jordan canonical form described by Vij2 | _ My (X)) Tt Visja +Nz(/\i)Ki2j-
&, H and 2. Wij1 ’

Repeating this procedure for ak € {1,...,t}, we find

?he parametersKﬁj,...,Kit‘j which satisfy (15)-(17). This
procedure can be carried out for all real Jordan mini-blocks
Consider now the case of a real mini-block associated with a
complex conjugate eigenvalue = g; +iw. For the sake of
argument assume that the Jordan mini-block has size 4 (so
thatA; andA; have double multiplicity). Thus, (30) becomes

We now show that this parameterisation is exhaustiv
Given .# and a friendF of #* such that(A+BF)%* C
#Z* C ker(C+DF) with o(A+BF |%*) = £, we need to
show that there exist€ such that, buildingx andY as in
(20-21), there hold& = Y XQ First, notice that the set of
friends F of #* such thato(A+BF |%*) = .Z is param-
eterised as the solutions of the linear equatioR = —Q,
whereQ satisfies the linear equati @ R= [EL/\Jr [g} Q {A B} [ Vi,j,lﬂw,j,z Vi,j,3+‘:LVi,j,4 ]
with a certainA such thata(A) =.# and whereR is a C D] Wjatiwjz Wijs+iwja
basis matrix of%Z*. Let F be any of such friends ofz*. 7 { Vijat+ivij2 Vijat+ivija } { g+ia 1 ]
The associated matriR is such thato(A) = . satisfies B 0 0 0 o+tiw |’

[éigilR— [0} A\. Consider a change of coordinafegshat  and the arguments above can be utilised after a re-labelling

brings/ into the Jordan real canonical form. Let the block®f the vectors. |
be ordered in such a way that tseomplex conjugate pairs  Remark 4.1: For everyi € {1,...,v}, there holdg; < d.
of eigenvalues are first. We can write Indeed, ifg; > d (consider the case of real eigenvalues for the
A+ BF R . same of si_mplic_ity), therS:_[slﬁ_l’l 31’2’1,...,51,9[,1], where
[ C+DF }RT = [ 0 }TT AT, (28) eachs j1 is a linear combination of the basis vectors of
As kerP:(A;i), whose dimension id. This means that rank <

r, and therefore?, .# and &2 are not an admissible Jordan
structure. Thusd also represents the largest multiplicity of
each eigenvalue for which the corresponding Jordan sirictu

A B X | | X |, can be made up by mini-blocks of unit size.
[ CD ] [ Y } o [ 0 }dlag{‘]l()‘l)"""]gl(/\l)’ Example 4.1: Consider a quadrupléA,B,C,D) where

Jl()\Z)a"'v‘ng()‘Z)v---a‘]l()‘V)v"'v‘]gv()\V)}v 0 0O 10
i) -[ig

and in (28) the matrix\; can have Jordan mini-blocks of
any order. In other words, (28) can be written as

whereAq, ..., A, are the eigenvalues &+ BF restricted to 0 30 2 0
Z*, gi is the number of Jordan mini-blocks corresponding to 0 00 0 3
the eigenvalug; and the generic Jordan mini-blodk(A) is C=[0 0 0], D=[0 4].



The only invariant zero of this system is= 0. It is easy
to verify that #* is spanned by the first two canonical
basis vectors ofR3. Hence,r = dim%* = 2. Suppose we
desire to assign the closed-loop eigenvai2 with dou-
ble multiplicity, i.e., Z = {-2} and.# = {2}. Since the
null-space ofP(—2) is one-dimensional and spanned by
[540| —10 g7, we need a single chain, i.e., we must12]
have & = {2}. Sinceg; = 1, in this caseK = K; =Ky ; is

[20]

(11]

d x p;,j = 1 x 2. For example, let us tak€ = [1 0]. Thus, 3]
SCL,l,l: [5 4 0| -10 qT and
(14]
S112 = Ms(=2)T{s111} +Ne(—2) K,
G E ol | .
| o o if|al+] o [o=:1
I A ) R T B v 2
141 141
0 0 O 0 0

andYy = {’;0 ?l%ﬂ which give

5 2747
It follows that Xx = [4 50
00
F« :YKX,:r = [% 3 O] Since the rank oK is equal to 2,
matrix F¢ is a soolutio% ofF« Xk = Yk, and the Jordan form of

the closed-loop matriA+BF is indeed diaé [702 712 ,0

25
6

o

V. CONCLUDING REMARKS

In this paper we have presented a generalisation of a result
in [8] for the computation of a parameterisation of the fden
of #* that assign the free inner and outer eigenstructure of
the closed loop with no restrictions on the multiplicity of
the eigenvalues to be assigned. The next step will be the
exploitation of the parameterisation to the end of obtajnin
objectives such as minimum gain, improved robustness of the
eigenstructure and improved departure from normalityp@lo
the same lines of [11] for the case of distinct eigenvalues.
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