
©2009 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

Evaluating Software Inspection Cognition Levels Using
Bloom’s Taxonomy

David A. McMeekin, Brian R. von Konsky, Elizabeth Chang, David J.A. Cooper
Digital Ecosystems and Business Intelligence Institute,

Curtin University of Technology, Bentley Western Australia
{D.McMeekin, B.vonKonsky, E.Chang, David.Cooper}@curtin.edu.au

Abstract
This paper reports on results from a pilot study that used Bloom’s Taxonomy to observe

cognition levels during software inspections conducted by undergraduate computer science
and software engineering students. Cognition levels associated with three different code
inspection techniques were investigated. These were the Ad hoc, Abstraction Driven, and
Checklist-based reading strategies. Higher cognition levels were observed when using
inspection techniques that utilise a more structured reading process. This result highlights the
importance of introducing novice programmers to structured code reading strategies.
Findings suggest that teaching different software inspection techniques throughout software
courses, beginning with structured techniques, is an excellent way to build a student’s critical
software reading and analysis skills.

1. Introduction

Reading is an essential part of all educational disciplines. For example:

• writing students read the work of published novelists to understand and experience
different writing styles and techniques;

• philosophy student read classical works to analyse structured arguments and
propositions; and

• supervisors often suggest that Higher Degree by Research students read theses
examples to assist them in writing their own dissertations.

Software development has been one of the few creative disciplines in which developers are
generally not encouraged to read the works of their peers, or of more experienced developers
[9]. However, the increased availability of Open Source software provides publicly available
code that can be read and analysed by both students and developers [15].

Reading is fundamental to the production of high-quality software during both the
development and maintenance life cycle of a software product [2]. However code inspection
reading strategies are usually only taught in conjunction with verification and validation
subjects.

Moreover, the main purpose of software inspections is to detect code defects. The use of
inspections to raise design cognition and reading skills has not generally been acknowledged
as a secondary benefit of the inspection process. Studying the use of code inspections for this
purpose is the principal contribution of this study.

2. Background

Inspections present a structured method to examine code to identify defects [13].

22nd Conference on Software Engineering Education and Training

978-0-7695-3539-5/09 $25.00 © 2009 IEEE

DOI 10.1109/CSEET.2009.15

232

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 00:25 from IEEE Xplore. Restrictions apply.

There has been much written and researched in the application of inspections for
detecting defects [14]. There is very little research as to how software inspections
influence a developer’s understanding of the artefacts being inspected.

The remaining parts of this section describe: several different inspection techniques
used within this study, a summary of Bloom’s taxonomy and its application within this
study using the Context-Aware Schema [10].

2.1. Ad hoc reading

This technique is considered one of the simplest techniques used. The technique
provides the inspector with no guidance regarding how to proceed. However, it is very
effective. The inspector is expected to carry out a thorough systematic review based
upon their personal experience [11].

A strength of this method is that it gives the experienced developer freedom to read
the code as they like [4,11]. However, a weakness of this method is that a novice
developer often does not have the experience needed to successfully apply this method.

2.2. Abstraction Driven Reading

 The Abstraction Driven Reading (ADR) technique was described by Dunsmore et al.
[5,6], and created specifically for Object-Orientated (OO) code. The inspector reads
code systematically, writing an abstract natural language description about each method
and then each class. While reading the code, if the inspector encounters delocalised
code that is not found in the class, they trace the code execution out to those other
classes. As they read the code and write the abstracts, ADR inspectors also compile a
list of detected defects. It would be reasonable to expect that an inspector’s
understanding of the code is increased as they follow method calls leading them to code
not directly covered by the inspection.

A strength of this method is that the natural language specifications created can be
used for future inspections as well producing documentation for future reference. A
weakness in this method is that it is very time consuming and the inspector can spend
much time examining code outside the inspection’s scope.

2.3. Checklist Based Reading

The Checklist Based Reading (CBR) technique was formalised by Fagan [8] and is
the standard used in many software organizations throughout the world [11]. The
inspector has a list of questions to ask about the artefact being inspected. Answering
yes to a question indicates no defect, while answering no to a question indicates there
may be a defect and a closer examination is needed.

A strength of this method is that it explicitly directs the inspector as they search for
defects. This is very useful for a novice developer because of its explicit directions.
Continuous and frequent application of this technique may assist the developer to gain
experience regarding pitfalls and the common cause of defects.

A weakness in the method is that the attention of inexperienced developers can be
directed away from defects not directly addressed by checklist questions.

2.4. Bloom’s Taxonomy

233

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 00:25 from IEEE Xplore. Restrictions apply.

Bloom’s Taxonomy of educational objectives was created in 1956 [3], and revised in
2001 [1], to categorise different cognition levels developed during learning. Six
different cognitive levels were identified ranging from high to low cognitive levels.
This taxonomy has been widely used throughout the world within different education
systems. The taxonomy consists of six cognitive categories briefly described below,
with an example of its usage in a software developer’s context:

Knowledge: “retrieving relevant knowledge from long-term memory.”[1] In
programming, this may be demonstrated by the recalling a specific control construct.

Comprehension: “Construct meaning from instructional messages, including oral,
written, and graphic communication.”[1] A programmer may summarise what task a
code fragment performs.

Application: “carry out or use a procedure in the given situation.”[1] A programmer
may demonstrate this is by making a change in the code.

Analysis: “break material into constituent parts.”[1] For example, a programmer
describing how a field or method operates and its role within the wider system is
analysis.

Synthesis: “re-organise elements into a new pattern or structure.”[1] Here a
programmer may create a new method adding new functionality to the code.

Evaluation: “make judgements based on criteria and standards.”[1] Programmers
demonstrate this by making an appraisal of the way in which a program solves a
problem.

2.5. Context aware schema

Kelly and Buckley [10] proposed a context aware schema using Bloom’s taxonomy
to categorise developers’ cognitive processes encountered while performing different
software maintenance tasks. Their schema accounted for only five of the six categories,
as their original proposal was in the software maintenance context. Consequently they
removed the synthesis/creation category.

The schema requires developers to “think-aloud” [7]. Think-aloud is where
participants verbalise their thoughts and actions while completing the task. In applying
this scheme for analysis, data is divided into sentences or utterances. These sentences or
utterances are categorised into one of Bloom’s levels based upon their content as well
as the two previous utterances. This allows for an utterance to be categorised in its
wider context.

Thompson et al. [16] proposed using Bloom’s taxonomy for programming
assessment within the university context. The concrete examples given in that paper
were very helpful when using Kelly and Buckley’s [10] context aware schema to
categorise “think-aloud” [7] data.

3. Methodology

An Ad hoc, ADR and CBR inspection were conducted on a single Java class belonging to
a larger software system. The inspected class consisted of 169 effective lines of code and
contained 13 seeded defects. In the context of this study: a defect was defined as “a deviation
from specification that would go on to cause failure (some undesired behaviour of either a

234

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 00:25 from IEEE Xplore. Restrictions apply.

trivial or catastrophic nature) if left uncorrected” [4]. For the inspection, participants were
required to “think-aloud.” This data was recorded via microphone.

The software artefacts used were created specifically for this study. The software system
was a text-based version of the Battleship Game. The Board class was inspected, and this was
responsible for ship placements, attacks, and determining if a ship had been hit or not and was
still floating or not.

Prior to participating in the study, students attended a two-hour lecture about software
inspections. The lecture included the historical basis of inspections, empirical research results,
as well as the examination of several different software inspection techniques.

Before starting the inspection, all participants were involved in a short training session to
familiarise themselves with the specific inspection technique they were to implement and
given exercises to practice the “think-aloud” protocol as shown in [7].

The study was advertised on campus. Students participated in their own time, were not
paid for participation, and were informed that participation would have no influence on their
marks in any subject within their degree program.

Participants were third year Software Engineering, Computer Science and Information
Technology students. The participants conducted either: a CBR inspection, an ADR
inspection, or Ad hoc inspection of a single Java class from within a larger software system.

Each participant was given the following artefacts: (1) A natural language specification,
(2) A class diagram of the system, (3) The Java code to be inspected, (4) Access to all other
Java code within the system, (5) A checklist (to those performing the CBR inspection), (6) A
defect-recording sheet. All artefacts were online except the defect-recording sheet, which was
paper based. Students were given 30 minutes to carry out the code inspection.

This kind of empirical research is subject to internal and external validity threats. The first
encountered in this study was selection threat, where participant selection can be stacked to
produce “better” results. In limiting this effect, we made an open invitation to final year
students and those who responded participated.

The next internal threat was that of participant experience level. Considering this, only
final year students participated and demographic data about each participant was collected to
identify any discrepancies that may have arisen.

The external threat in this study is that of sample size. The think-aloud data collection
method has significant overheads in collecting, collating, transcribing and analysing. The
sample size was kept to 20 in order to validate that the research area may need to examined
more in more detail. However, Moore and McCabe [12] point out that even with small sample
sizes significant differences will still be identified.

4. Results

Participants were divided into three groups of five and each group used a different
inspection technique. The think-aloud data was transcribed, and broken into utterances. Each
utterance was categorised, using the Context-Aware Schema, into one of five of Bloom’s
levels. Table 1 lists an example utterance from each category. The Synthesis level was
omitted in this study, as this category requires creating something new, for example, a new
method or class. In this study participants performed an inspection and were not required to
add anything new to the code. Hence, the Synthesis category was omitted.

235

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 00:25 from IEEE Xplore. Restrictions apply.

A set of 130 utterances was categorised by two different researchers and a Cohen’s Kappa
calculation performed to check for inter-observer reliability. The Kappa value was 0.605,
which is considered an acceptable level. Consequently, a single researcher categorised the
remaining utterances.

A statistical analysis was conducted using SPSSv16. A Kuskal-Wallis test was performed
comparing each Bloom category with that same category for the three different inspection
techniques. The test returned p-values of 0.004 and 0.006 for Knowledge and Evaluation
respectively. This indicates a significant difference between the CBR technique and both Ad
hoc and the ADR technique in these 2 areas.

Figure 1, 2 and 3 show the percentage breakdown, into Bloom’s categories, of each
student’s utterances during the inspection, according to the inspection technique used.
Uncoded utterances, ones that could not be coded into a Bloom category because they were
unintelligible or unrelated to the task at hand, have been omitted.

Figure 1 shows students who implemented the Ad hoc inspection technique, on average
had the highest percentage of utterances in the Knowledge. This is the lowest cognitive level
in Bloom’s taxonomy. These same students also had the lowest percentage of utterances in
the Evaluation category, which is the highest cognitive level in Bloom’s taxonomy considered
in conjunction with this study.

Figure 2 shows those students who implemented the ADR inspection technique, on
average, made fewer Knowledge utterances when compared to the utterances of the Ad hoc
inspectors. These students also had a, on average, higher utterance count in Bloom’s
Evaluation level.

Figure 3 shows that students who carried out the CBR inspection had, on average, the
lowest utterance count in the Knowledge category and the highest utterance count in the
Evaluation category when compared with the students who used either the Ad hoc or ADR
inspection techniques.

Participants, who used the CBR and Ad hoc inspection methods, on average, detected 2
defects each. Participants, who used the ADR method, on average, detected 3.5 defects each.
In the ADR group, two participants, although final year students, had been working in
industry for almost 12 months, and both on mission critical type systems. Hence, their
experience level was much higher than other participants and they also detected more defects
increasing the average defect count for the ADR group.

5. Discussion

The Ad hoc technique is the least structured of the three techniques examined in this study.

Bloom’s level Utterance Example

Knowledge “while ship not placed”

Comprehension “here is a one to many relationship”

Application “here we must cater for a new direction”

Analysis “this is controlled externally”

Evaluation “the call here is wrong”

Table 1. Example of utterances.

236

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 00:25 from IEEE Xplore. Restrictions apply.

It provides no instructions or direction regarding how to carry out the inspection. In this
case, those students who conducted this style of inspection were simply given the task to find
defects. The method did not describe how they should go about it, but were simply instructed
to find the defects. With no additional guidance, students needed to rely on their own past
experiences to carry out the task. Based on an analysis of utterances, students using the Ad
hoc technique were observed to spend the majority of their time in the lowest cognitive level
of Bloom’s taxonomy, Knowledge.

Figure 1. Bloom’s categorization of Ad hoc utterances.

Figure 2. Bloom’s categorization of ADR utterances.

Figure 3. Bloom’s categorization of CBR utterances.

Ad hoc inspectio

54%

79%

51%

53%

62%

24%

10%

12%

31%

17%

1%

1%

9%

13%

10%

5%

10%

11%

6%

23%

7%

12%

0% 20% 40% 60% 80% 100%

1

2

3

4

5
P

ar
tic

ip
an

t I
D

 #
 fo

r
ad

 h
oc

Total percentage of utteranc

Knowledge

Comprehension

Application

Analysis

Evaluation

ADR inspection

43%

52%

44%

49%

60%

28%

27%

27%

18%

12%

0%

1%

1%

5%

0%

10%

5%

11%

9%

5%

19%

16%

17%

19%

22%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1

2

3

4

5

P
ar

tic
ip

an
t I

D
 #

 fo
r

A
D

R

Total percentage of utterances

Knowledge

Comprehension

Application

Analysis

Evaluation

CBR inspection

37%

39%

21%

23%

26%

21%

27%

12%

22%

19%

12%

10%

15%

9%

12%

30%

24%

52%

46%

42%

0% 20% 40% 60% 80% 100%

1

2

3

4

5

P
ar

tic
ip

an
t I

D
 #

 fo
r

C
B

R

Percentage of total utteranc

Knowledge

Comprehensio

Application

Analysis

Evaluation

237

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 00:25 from IEEE Xplore. Restrictions apply.

The ADR technique provides only a little more structure when compared to the Ad hoc
technique. Students who conducted the ADR inspection needed to summarise and describe
what each code segment (method) did. The technique is still general, in that it doesn’t tell the
inspector how to perform the inspection. Similar to the Ad hoc approach, students using ADR
still have to work this out for themselves. ADR simply requires that method summaries be
produced, in addition to a list of defects. Summarising and describing what task the code
performs should fall into Bloom’s Comprehension category.

Intuitively, it might be expected that ADR would have significantly more utterances in the
Comprehension category when compared to other techniques. However, this was not seen to
be the case. As with the Ad hoc technique, the vast majority of utterances fall into the
Knowledge category. With very little structure given to the process, students operated mostly
at Bloom’s lowest cognition level, Knowledge. That is, for the majority of their time they
were functioning in the Knowledge level, recalling relevant knowledge, such as how a control
statement functions.

Examining the abstracts written, it may be that this method requires more time than Ad
hoc. There were a total of 15 methods requiring an abstract, with no student completing all
15. One student completed ten and the remaining less than this. If more time was given for
applying this method, then that may have changed the results.

The CBR technique is very structured; it describes what needs to be done and exactly how
it should be implemented. Unlike the Ad hoc and ADR techniques, which leave much up to
the inspector, the CBR method explicitly describes the process to be implemented. Yes/No
questions are asked and depending on the answer determines if there is a possible defect or
not. Results from this study show that inspectors using CBR were more likely to operate in
the Bloom’s Evaluation category, compared to inspectors utilising other less structured
reading methods.

Students who used the CBR method also had a significantly lower number of utterances in
the Knowledge category than those who carried out the ADR and Ad hoc inspections. A
possible explanation for this could be that students understood they need only ask and answer
the questions and their inspection is completed. Therefore they did not spend as much time in
the Knowledge category, gaining a general, overall understanding of the class inspected, but
rather completed the task at hand, answering the checklist questions to determine if a defect
existed or not.

Figures 1, 2 and 3, and the statistical analysis suggest that student inspectors operate at
higher cognitive levels when using more structured processes.

6. Recommendations

This study suggests, university level Computer Science and Software Engineering students
should be taught reading techniques and critical thinking as they examine the artefacts of their
discipline to develop higher cognition levels regarding the software they develop or maintain.
In this study, the artefacts were source code programs, but in other situations it may include
requirements documents, design documents or source code documentation.

The results reported in this study highlight the need to teach the usage of diverse
techniques to students. For less experienced students, the beginning years of their degrees,
should be introduced to techniques that have a well structured processes, with the aim of
assisting them in operating at higher cognitive levels. This includes using CBR early in
computer science and software engineering degree programs.

238

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 00:25 from IEEE Xplore. Restrictions apply.

The CBR reading technique would form the base line reading methodology. It takes the
inexperienced developer, with little or no programming background, giving them the
experience of others, through the use of a checklist developed over time by experienced
developers. Building upon this foundation, as the students become more experienced, further
into their degree, less structured reading techniques, those that draw from their past
knowledge and experiences as developers, would be introduced. Ideally this would start in the
first year of a degree. The introduction of the CBR technique would give the student basics to
think through when they start to examine their own code and that of others. As the degree
progresses the more complicated reading techniques, relying on experience would be
introduced allowing students to draw on their past knowledge and experiences.

7. Conclusions and future work

This paper builds the case for the need teach reading techniques, as an essential aspect of
learning, throughout Computer Science and Software Engineering degrees. Without the skills
of critical reading, thinking and analysis Computer Science and Software Engineering
graduates lack a skill that they will be required to have from day one of their careers in
industry. The continued research and application of reading techniques within Computer
Science and Software Engineering is needed to better understand the ways in which these
skills can be incorporated throughout whole degrees and not just as a simple lecture in one
unit.

8. References
[1] Anderson, L.W., Krathwohl, D.R., Airasian, P.W., Cruikshank, K.A., Mayer, R.E., Pintrich, P.R., Raths, J. and
Wittrock, M.C., A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of
Educational Objectives, Longman, New York, 2001.
[2] V.R Basili, Evolving and packaging reading technologies, Journal of Systems Software, 1997, 38(1), pp. 3-12.
[3] Bloom, B., Taxonomy of Educational Objectives Cognitive Domain, David McKay Company, Inc., 1956.
[4] A. Dunsmore, Investigating effective inspection of object-oriented code, PhD thesis, Strathclyde University,
U.K., 2002.
[5] A. Dunsmore, M. Roper, and M. Wood, Systematic object-oriented inspection - an empirical study, ICSE '01:
Proceedings of the 23rd International Conference on Software Engineering, 2001, pp. 135-44.
[6] A. Dunsmore, M. Roper, and M. Wood, The development and evaluation of three diverse techniques for
object-orientated code inspection, IEEE Transactions on Software Engineering, 2003, 29(8), pp. 677-86.
[7] Ericsson, K.A. and Simon, H.A., Protocol Analysis, The MIT Press, 1993.
[8] M.E. Fagan, Design and code inspections to reduce errors in program development, IBM Systems Journal,
1976, 15(3), pp. 182-211.
[9] R.P. Gabriel, and R. Goldman, The erotic life of code, ACM Conference on Object-Oriented Programming,
Systems and Languages, 2000. Available at: http://www.dreamsongs.com/MobSoftware.html, (Sep. 2008)
[10] T. Kelly, and J. Buckley, A context-aware analysis scheme for Bloom's Taxonomy, ICPC’06, Proceedings of
14th IEEE International Conference on Program Comprehension, 2006, pp. 275-284.
[11] O. Laitenberger, and J. DeBaud, An encompassing life cycle centric survey of software inspection, Journal of
Systems and Software, 2000, 50(1), pp. 5-31.
[12] Moore, D.S., and McCabe G.P., Introduction to the Practice of Statistics, 4th ed., W.H. Freeman, 2002.
[13] F. Shull, I. Rus, and V. Basili, Improving software inspections by using reading techniques, ICSE '01:
Proceedings of the 23rd International Conference on Software Engineering, 2001, pp. 726-7.
[14] D.I.K. Sjoberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasanovic, N. Liborg, and A.C. Rekdal, A
Survey of Controlled Experiments in Software Engineering, Software Engineering, IEEE Transactions on
Software Engineering, 2005, 31(9), pp. 733-53.
[15] Spinellis, D., Code Reading: The Open Source Perspective, Addison-Wesley Professional, 2003.
[16] E. Thompson, A. Luxton-Reilly, J.L. Whalley, M. Hu, and P. Robbins, Bloom’s Taxonomy for CS
Assessment 2008, Proceedings of the 10th Austrtalasian Computing Education Conference, 2008, pp. 155-61.

239

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 00:25 from IEEE Xplore. Restrictions apply.

