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Abstract

We develop a framework for analyzing an executive’s own-company
stockholding and work effort preferences. The executive, character-
ized by risk aversion and work effectiveness parameters, invests his
personal wealth without constraint in the financial market, including
the stock of his own company whose value he can directly influence
with work effort. The executive’s utility-maximizing personal invest-
ment and work effort strategy is derived in closed form, and a utility
indifference rationale is applied to determine his required compensa-
tion. Being unconstrained by performance contracting, the executive’s
work effort strategy establishes a base case for theoretical or empirical
assessment of the benefits or otherwise of constraining executives with
performance contracting.
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1 Introduction

Stemming from the agency theory fundamentals of Ross (1973), Jensen and
Meckling (1976), Holmstrom (1979) and others, there has been much con-
cern for the ‘incentivization’ link from equity-based executive compensation
to corporate financial performance. The associated academic literature is
extensive.1 Counterpoint to past research, we consider the motivation for an
executive with unconstrained (unincentivized) compensation to voluntarily
performance-link his personal wealth. We develop a model framework that
identifies the joint own-company stockholding and work effort strategy of a
utility-maximizing executive. The executive’s compensation is assumed to
be incorporated into his up-front total personal wealth, which he invests var-
iously in a risk-free money market account, a diversified market portfolio,
or his own company’s stock. The executive is able to beneficially influence
the value of his company via work effort; he gains utility from the increased
value of his direct stockholding (within his overall personal portfolio), but
loses utility for his work effort. The executive is characterized by a risk aver-
sion parameter (γ), and two work effectiveness parameters (κ, representing
inverse work productivity, and α, representing disutility stress).

A feature of our framework is that the executive’s work effort, speci-
fied in terms of two control variables, non-systematic expected return and
volatility (µ and σ), can be restated in terms of a single control variable, the
non-systematic Sharpe ratio (λ = (µ − r)/σ, where r is the risk-free rate of
return). This reduces the dimensions of the problem and introduces a pa-
rameterization based on the well-known Sharpe ratio performance measure.
The executive’s optimal personal investment and work effort strategy is then
derived in closed form using stochastic control theory and the corresponding
Hamilton-Jacobi-Bellman equations. Other technical papers similarly con-
cerned with dynamic principal-agent models include Cadenillas, Cvitanic and
Zapatero (2004), Korn and Kraft (2008) and Ou-Yang (2003), for example.

Our closed-form results demonstrate that an executive with superior work
effectiveness (i.e. higher quality) will undertake more work effort for his com-
pany. But the extent to which any level of work effectiveness is put to use
via work effort depends prominently on the executive’s risk aversion; only if
he has sufficiently low risk aversion to take on a substantial own-company

1The summaries of Murphy (1999) and Core, Guay and Larcker (2003) are useful
references.
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stockholding will he have the incentive to apply substantial work effort. The
results also provide guidance for identifying the executive’s quality and risk
aversion from demonstrated work effort. Or given identification of executive
quality and risk aversion, the results indicate the own-company stockholding
and work effort of an executive unconstrained by performance contracting,
which establishes a base case for theoretical or empirical assessment of the
benefits or otherwise of constraining the executive with performance con-
tracting.

Freeing executives to self-incentivize may be a reasonable ‘path of least
resistance’ in the light of some recent and not so recent research. For exam-
ple, Dittmann and Maug (2007) were unable to rationalize observed execu-
tive compensation. Using a ‘standard’ principal-agent efficient contracting
model, their analysis indicated that executives should not, in general, be
compensated with options, and that it would commonly be optimal for ex-
ecutives to use private savings to purchase additional stock in their own
companies. Bettis, Bizjak and Lemmon (2001) found that high-ranking cor-
porate insiders use collars and swaps to cover a significant proportion of
their own-company stockholdings, allowing them to unwind the constraint of
equity-based compensation. Ross (2004) repudiated the folklore that giving
options to agents makes them more willing to take risks (also see Carpen-
ter (2000)). And Jensen and Murphy (1990) proposed that private political
forces in the managerial labor market constrain pay-performance sensitivity,
leading most CEOs to hold trivial fractions of their firms’ stock. However,
Hall and Liebman (1998) and Core and Larcker (2002), for example, found
support for a link from equity-based executive compensation to corporate
performance.

Whether subject to constrained or unconstrained (i.e. incentivized or un-
incentivized) compensation, an executive’s actualized performance incentive
will reflect a total personal wealth perspective. Ofek and Yermack (2000)
found that once managers reach a certain own-company ownership level,
they actively rebalance their personal portfolios when awarded equity com-
pensation. And Garvey and Milbourn (2003) found that market risk has
little effect on the use of stock-based pay for the average executive, sug-
gesting that executives can undo any undesired market exposure from their
incentive contracts by adjusting their personal portfolios. We thus maximize
our risk averse executive’s utility with respect to his total wealth investable
across his own company’s stock, a diversified market portfolio and a risk-free
money market account. Our approach has parallels with Jin (2002), but uses
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a continuous-time setting with arguably a more intuitively appealing speci-
fication of work effort and its disutility. Also see Cvitanic (2008) for a more
general continuous-time framework emphasizing incentive effects when the
executive can hedge equity-based compensation. A natural future extension
for our framework is to specify a constrained executive subject to an imposed
own-company stockholding representative of performance contracting, and to
contrast his work effort strategy with that of our unconstrained executive.

The paper is organized as follows. Section 2 introduces the notation and
terminology, and as a first result the optimality problem is reformulated and
simplified. In Section 3 the Hamilton-Jacobi-Bellman equations characteriz-
ing the utility maximization problem are derived, and a closed-form solution
is established. The results are illustrated in Section 4. Section 5 concludes.
Technical proofs are moved to the Appendix.

2 Notation and Set-up

The financial market is defined on a filtered probability space (Ω,F , P, (Ft)t≥0)
satisfying the usual hypothesis and large enough to support two independent
standard Brownian motions, W P = (W P

t )t≥0 and W = (Wt)t≥0, where t in-
dicates time. We consider a company executive that invests in the financial
market. Specifically, the investment opportunities available to our executive
are a risk-free money market account, a diversified market portfolio and his
own company’s stock. The risk-free money market account has the price
process B = (Bt)t≥0, with dynamics

dBt = r Bt dt , B0 = 1 , (1)

where r is the instantaneous risk-free rate of return, hence Bt = er t. The
price process of the market portfolio, P = (Pt)t≥0, follows the stochastic
differential equation (SDE)

dPt = Pt (µ
P dt+ σP dW P

t ) , P0 ∈ R
+ , (2)

where µP and σP are respectively the expected return and volatility of the
market portfolio. The company’s stock price process, Sµ,σ = (Sµ,σ

t )t≥0, is a
controlled diffusion with SDE

dSµ,σ
t = Sµ,σ

t

(
µt dt+ β

[
dPt

Pt

− rdt

]
+ σt dWt

)
, Sµ,σ

0 ∈ R
+ , (3)
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where β ∈ R is the company’s beta (i.e. the standardized covariance between
the company’s rate of return and that of the market portfolio, indicating sys-
tematic risk); µ is the company’s expected rate of return for non-systematic
risk (i.e. the expected return in excess of the beta-adjusted market portfo-
lio’s expected excess return); and σ is the company’s non-systematic volatil-
ity. Both µ and σ are controlled by the executive. The company’s stock
price process and the market portfolio are dependent with the instantaneous
correlation ρt = β σP /

√
σ2
t + (β σP )2.

The executive influences the company’s stock price dynamics by choice
of the control strategy (µ, σ), which is specified to be associated with work
effort. The control strategy can be conceptualized as deriving from the exec-
utive’s corporate investment or financing strategy. For example, identifying
and initiating positive net present value projects and optimal debt versus eq-
uity financing entails work effort that adds value and affects volatility. Value
is added if µ is greater than r, indicating excess return compensation for
non-systematic risk. To ensure sensible solutions we require µ ≥ r, which
effectively bars the executive from destroying company value (µ < r) and
potentially profiting by shorting the company’s stock.

The executive’s instantaneous disutility of work effort at time t is repre-
sented by the disutility rate c(t, Vt, µt, σt) for control strategy (µt, σt), where
Vt is the executive’s wealth. We assume that the disutility rate c : [0, T ] ×
R

+ × [r,∞)× R
+ → R

+
0 is a continuous and suitably differentiable function

where T is the executive’s time horizon.
The executive’s starting wealth inclusive of his compensation, V0 > 0, is

invested in the financial market. Ongoing continuous-time portfolio adjust-
ment is assumed to be free of short-selling constraints, and to be self-financing
(i.e. no funds are added to or withdrawn from the executive’s portfolio). The
portfolio is allocated with fraction πP = (πP

t )t≥0 invested in the market port-
folio, fraction πS = (πS

t )t≥0 in the company’s stock, and the remainder in
the risk-free account. For investment strategy π = (πP , πS), the executive’s
wealth process, V π = (V π

t )t≥0, is

dV π
t = V π

t

(
(1− πP

t − πS
t )

dBt

Bt

+ πP
t

dPt

Pt

+ πS
t

dSµ,σ
t

Sµ,σ
t

)
, V π

0 ∈ R
+ . (4)

The executive is assumed to maximize the expected terminal utility of
his wealth for time horizon T , subject to some utility function which will be
specified when deriving closed-form solutions.
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Assuming that the control of the company’s stock price behavior (µ, σ) is
determined exogenously, the executive’s optimal investment decision is then
described by

Φ̂(t, v) = sup
π∈Â(t,v)

E
t,v[U(V π

T )] , (t, v) ∈ [0, T ]× R
+, (5)

where Â(t, v) denotes the set of all admissible portfolio strategies π at time
t corresponding to portfolio value (i.e. wealth) v = Vt > 0, U is a utility
function, and E

t,v denotes the expectation conditional on t and v. See for ex-
ample Korn and Korn (2001). The exogenously given control (µ, σ) affecting
the dynamics of S in (3) is suppressed in our notation.

Definition 2.1 Let 0 ≤ t ≤ T , t fixed. Further let (µ, σ) take values in
[r,∞) × (0,∞). By A(t, v) we denote the set of all admissible strategies
(π, µ, σ) =

(
(πP , πS), µ, σ

)
corresponding to portfolio value v = Vt > 0 at

time t, which are {Fu ; t ≤ u ≤ T}-predictable processes, such that

(i) the company’s stock price process

dSµ,σ
u = Sµ,σ

u

(
µu du+ β

[
dPu

Pu

− rdu

]
+ σu dWu

)
, Sµ,σ

t ∈ R
+ ,

has a unique non-negative solution and satisfies

∫ T

t

(Sµ,σ
u )2

(
(βσP )2 + (σu)

2
)
du < ∞ P − a.s. ;

(ii) the wealth equation

dV π
u = V π

u

(
(1− πP

u − πS
u )

dBu

Bu

+ πP
u

dPu

Pu

+ πS
u

dSµ,σ
u

Sµ,σ
u

)
, V π

t ∈ R
+ ,

has a unique non-negative solution and satisfies

∫ T

t

(V π
u )

2
(
(πP

u + β πS
u )

2(σP )2 + (πS
uσu)

2
)
du < ∞ P − a.s. ,

where (µ, σ) affects V π via Sµ,σ;
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(iii) and the utility of wealth and the disutility of control satisfy

E

[
U(V π

T )
− +

∫ T

t

c(u, V π
u , µu, σu) du

]
< ∞ .

The optimal investment and control decision is then the solution of

Φ(t, v) = sup
(π,µ,σ)∈A(t,v)

E
t,v

[
U(V π

T )−

∫ T

t

c(u, V π
u , µu, σu) du

]
, (6)

where (t, v) ∈ [0, T ]× R
+.

2.1 Restating the Set-up

A decomposition result for the optimal investment and control problem in
(6) is derived. To do this we respecify the executive’s control strategy in
terms of a target non-systematic Sharpe ratio λ = (µ − r)/σ; this supposes
the executive makes investment or financing decisions with regard for their
expected return to risk trade-off. Now the original four-dimensional maxi-
mization problem can be solved in two steps. The first step entails minimiz-
ing the disutility rate for the target non-systematic Sharpe ratio to obtain
c⋆(t, v, λ). The proof of Lemma 2.1 demonstrates that this is achievable given
Assumption 2.1. For the second step, Theorem 2.3 shows that the optimal
investment and control problem given by (6) can be restated and solved as a
maximization problem over the three controls πP , πS and λ, with c replaced
by c⋆.

The non-systematic expected return to risk trade-off represented by λ
indicates the quality of the executive’s control decision, which is associated
with work effort and thereby disutility. Given λ, minimized disutility c⋆

is associated with the non-systematic volatility choice σ⋆ (see Lemma 2.1).
That is, for a given level of control strategy quality represented by λ, σ⋆

is the non-systematic volatility associated with the ‘easiest’ control strategy
from the executive’s perspective.

Assumption 2.1 gives the conditions required for existence and uniqueness
of c⋆ and σ⋆.

Assumption 2.1 The function c : [0, T ]×R
+×[r,∞)×R

+ → R
+
0 , (t, v, µ, σ)

7→ c(t, v, µ, σ) satisfies:
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(i) c is continuous in t and v, and twice continuously differentiable in µ
and σ;

(ii) fix (t, v, λ) ∈ [0, T ]× R
+ × R

+
0 , then

lim sup
σց0

λ
∂c

∂µ
(t, v, r + λσ, σ) +

∂c

∂σ
(t, v, r + λσ, σ) < 0 ,

and

sup
σ>0

λ
∂c

∂µ
(t, v, r + λσ, σ) +

∂c

∂σ
(t, v, r + λσ, σ) > 0 ;

(iii) it holds that

(µ− r)2
∂2c

∂µ2
+ 2σ (µ− r)

∂2c

∂µ ∂σ
+ σ2 ∂2c

∂σ2
> 0 ;

(iv) for all (t, v): infσ>0 c(t, v, r, σ) = 0.

In Assumption 2.1, (i) is a natural smoothness condition, (ii) and (iii)
respectively ensure uniqueness and existence of the disutility c⋆(t, v, λ) de-
pending on the non-systematic Sharpe ratio λ, and (iv) is a natural norming
condition that specifies a lower bound of zero disutility (i.e. zero work effort)
when expected excess return is zero (µ = r).

As an example, a disutility function that fulfills the conditions of As-
sumption 2.1 is

c(t, v, µ, σ) = κ

(
µ− r

σ

)α

+ ν (σ − σ0)
2 = κλα + ν (σ − σ0)

2 ,

where µ ≥ r, σ > 0, κ ≥ 0, ν > 0, α > 0; and σ0 > 0 is the company’s
base-level non-systematic risk. Here c is proportional to λ depending on
parameters κ and α (i.e. the executive’s work effort is proportional to the
quality of his control decision); and c increases with deviation of control
choice σ from σ0 depending on parameter ν (i.e. given λ, the executive’s
easiest control decision is to make investment or financing decisions that do
not disrupt the company’s base-level non-systematic volatility, which might
be conceptualized as a preference for maintaining the status quo of the com-
pany’s business model).

The following lemma establishes the first step of the decomposition result
and is proved in the Appendix.
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Lemma 2.1 Suppose Assumption 2.1 holds, then the minimization problem

min
{σ>0:µ=r+λσ}

c(t, v, µ, σ) , for (t, v, λ) ∈ [0, T ]× R
+ × R

+
0 , (7)

admits a unique solution σ⋆(t, v, λ).

Changing the parameters of the optimal investment and control problem
in (6) from πP , πS, and (µ, σ) to πP , πS, and λ, and replacing c by c⋆, requires
adapting Def. 2.1 to the new setting. Before we present the new framework,
observe that the company’s stock price with respect to λ (and σ⋆(λ)) has the
dynamics

dSλ
t = Sλ

t

(
[r + λtσ

⋆(t, V π
t , λt)] dt+ β

[
dPt

Pt

− rdt

]
+ σ⋆(t, V π

t , λt) dWt

)
,

Sλ
0 ∈ R

+ .

(8)

Further, we define the minimized disutility c⋆ corresponding to portfolio value
v > 0 at time t via

c⋆(t, v, λ) := c(t, v, r + λσ⋆(t, v, λ), σ⋆(t, v, λ)) = min
{σ>0:µ=r+λσ}

c(t, v, µ, σ) .

(9)

For the stock price process Sλ
t defined in (8) we have to impose a technical

condition similar to Def. 2.1 (i). The change of control from (µ, σ) to λ is
driven by the disutility function c, i.e. σ⋆(t, v, λ) is determined by the form
of c (see Lemma 2.1). The following assumption guarantees that the most
cost efficient strategies are admissible.

Assumption 2.2 For a given control (π, µ, σ) ∈ A(t, v), the value process
V π
t , λt = (µt − r)/σt and σ⋆(t, V π

t , λt) are determined in accordance with
Lemma 2.1. The process Sλ

t defined in (8) is assumed to satisfy

∫ T

t

(Sλ
u)

2
(
(βσP )2 + (σ⋆

u)
2
)
du < ∞ P − a.s. .
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Definition 2.2 Let 0 ≤ t ≤ T , t fixed, and let further λ take values in
[0,∞). Then we denote by A′(t, v) the set of admissible strategies (π, λ) =(
(πP , πS), λ

)
corresponding to portfolio value v = Vt > 0 at time t, which are

{Fu ; t ≤ u ≤ T}-predictable processes, such that

(i) the company’s stock price process

dSλ
u = Sλ

u

(
[r + λuσ

⋆
u] dt+ β

[
dPu

Pu

− rdu

]
+ σ⋆

u dWu

)
, Sλ

t ∈ R
+ ,

has a unique non-negative solution and satisfies

∫ T

t

(Sλ
u)

2
(
(βσP )2 + (σ⋆

u)
2
)
du < ∞ P − a.s. ;

(ii) the wealth equation

dV π
u = V π

u

(
(1− πP

u − πS
u )

dBu

Bu

+ πP
u

dPu

Pu

+ πS
u

dSλ
u

Sλ
u

)
, V π

t ∈ R
+ ,

has a unique non-negative solution and satisfies

∫ T

t

(V π
u )

2
(
(πP

u + β πS
u )

2(σP )2 + (πS
uσ

⋆
u)

2
)
du < ∞ P − a.s. ,

where λ affects V π via Sλ;

(iii) and the utility of wealth and the minimized disutility of control satisfy

E

[
U(V π

T )
− +

∫ T

t

c⋆(u, V π
u , λu) du

]
< ∞ .

Theorem 2.3 (Correspondence Result) Suppose (6) admits a solution
Φ, then this solution coincides with the value function of the optimal invest-
ment and control problem

Φ′(t, v) = sup
(π,λ)∈A′(t,v)

E
t,v

[
U (V π

T )−

∫ T

t

c⋆ (u, V π
u , λu) du

]
, (t, v) ∈ [0, T ]×R

+ ,

(10)
where A′(t, v) is given in Def. 2.2.
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Proof. Let

J(t, v; π, µ, σ) := E
t,v

[
U(V π

T )−

∫ T

t

c(u, V π
u , µ(u, V

π
u ), σ(u, V

π
u )) du

]

and

J ′(t, v; π, λ) := E
t,v

[
U(V π

T )−

∫ T

t

c⋆(u, V π
u , λ(u, V

π
u )) du

]
.

The assertion is proven if we show that

sup
(π,µ,σ)∈A(t,v)

J(t, v; π, µ, σ) = sup
(π,λ)∈A′(t,v)

J ′(t, v; π, λ) , (11)

i.e. the performance functionals J and J ′ admit the same value function
Φ(t, v).

First, we are given controls (π, µ, σ) ∈ A(t, v) (and the resulting non-
systematic Sharpe ratio λ = (µ − r)/σ), and show that there exist controls
(π̃, λ̃) ∈ Ã(t, v) such that J(t, v; π, µ, σ) ≤ J ′(t, v; π̃, λ̃). Note that replac-
ing the controls µ and σ by λ and replacing the disutility c by c⋆ leads to
two different systems of controlled SDEs describing the executive’s utility-
maximizing behavior. For controls (π̃P , π̃S, λ̃), we write the dynamics of the
resulting price processes as follows

dB̃t = B̃t r dt , dP̃t = P̃t

([
r + λPσP

]
dt+ σPdW P

t

)
,

dS̃t = S̃t

([
r + λ̃t σ

⋆(t, Ṽ π̃
t , λ̃t)

]
dt+ β

[
dP̃t

P̃t

− rdt

]
+ σ⋆(t, Ṽ π̃

t , λ̃t) dWt

)
,

dṼ π̃
t = Ṽ π̃

t

([
r + π̃P

t λP σP + π̃S
t

(
λ̃t σ

⋆(t, Ṽ π̃
t , λ̃t) + β(µP − r)

)]
dt

+π̃P
t σP dW P

t + π̃S
t βσ

PdW P
t + π̃S

t σ⋆(t, Ṽ π̃
t , λ̃t) dWt

)
.

The system (B̃, P̃ , S̃, Ṽ π̃) is specified on the same probability space as the
original system (B,P, S, V π). We now choose the controls

λ̃t := λt , π̃P
t := πP

t + πS
t β

(
1−

σ(t, V π
t )

σ⋆(t, Ṽ π̃
t , λ̃t)

)
, π̃S

t := πS
t

σ(t, V π
t )

σ⋆(t, Ṽ π̃
t , λ̃t)

.

This yields that the integrands of the stochastic integrals (or, coefficients of
the SDEs) defining dV π and dṼ π̃ coincide almost-surely for each t. Noting
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that there exist continuous versions of the resulting processes V π and Ṽ π̃, we
obtain uniformly on [0, T ]

Ṽ π̃ = V π , and λ̃ = λ , P − a.s. . (12)

We remark here that by definition we also have B̃ = B and P̃ = P . How-
ever, in general S̃ 6= S. Continuing the proof, by c⋆(t, v, λ) := c(t, v, r +
λσ⋆(t, v, λ), σ⋆(t, v, λ)) = min{σ>0:µ=r+λσ} c(t, v, µ, σ) and recalling that λ =
(µ− r)/σ we have:

J(t, v; π, µ, σ) ≤ E
t,v

[
U(V π

T )−

∫ T

t

c⋆(u, V π
u , λ) du

]

(12)
= E

t,v

[
U(Ṽ π̃

T )−

∫ T

t

c⋆
(
u, Ṽ π̃

u , λ̃u

)
du

]
= J ′

(
t, v; π̃, λ̃

)
.

To finish the first part of the proof, we have to ensure (π̃, λ̃) ∈ A′(t, v). This
can be done by recalling that (π, µ, σ) ∈ A(t, v) and checking conditions
(i),(ii) and (iii) of Def. 2.2. First note that (i) is satisfied due to Assump-
tion 2.2. To verify (ii) note that

Ṽ π̃
u = V π

u , P − a.s. ,

π̃P
u + β π̃S

u = πP
u + β πS

u , P − a.s. ,

π̃S
u σ⋆(u, Ṽ π̃

u , λ̃u) = πS
u σu , P − a.s. ,

for t ≤ u ≤ T , and recall Def. 2.1 (ii). To verify (iii), check that c⋆u(u, Ṽ
π̃, λ̃u) ≤

c(u, V π, µu, σu), for t ≤ u ≤ T , and then recall Def. 2.1 (iii) to obtain an in-
tegrable upper bound.

To conclude the proof we have to show that for a given control (π̃, λ̃) ∈
A′(t, v) there is a corresponding control (π, µ, σ) ∈ A(t, v) s.t. J ′(t, v; π̃, λ̃)
≤ J(t, v; π, µ, σ). To do so, set σu = σ⋆(u, Ṽ π̃

u , λ̃u), µu = r + λ̃u σu, and
π̃u = πu, for t ≤ u ≤ T , to obtain J ′(t, v; π̃, λ̃) = J(t, v; π, µ, σ). Finally,
(π, µ, σ) ∈ A(t, v) is verified directly by checking Def. 2.1 using (π̃, λ̃) ∈
A′(t, v) and Def. 2.2. 2

3 Optimal Strategies

In this section we use stochastic control techniques to derive closed-form
solutions to the investment and control decision problem in (10), for special
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choices of the utility and disutility functions. In particular we specify con-
stant relative risk aversion. For the relative risk aversion parameter γ > 0,
the utility function U is

U(v) =





v1−γ

1− γ
, for γ > 0 and γ 6= 1

log(v) , for γ = 1 ,

(13)

and the disutility of control (i.e. work effort) c⋆ is

c⋆(t, v, λ) = κ v1−γ λα

α
, γ > 0 , (14)

where κ > 0 and α > 2 are the executive’s work effectiveness parameters,
respectively termed ‘inverse work productivity’ and ‘disutility stress’. κ di-
rectly relates the executive’s work effort disutility to the quality of his control
decision as indicated by the non-systematic Sharpe ratio λ, and α indicates
how rapidly his work effort disutility will rise for the sake of an improved
λ. The requirement α > 2 is a consequence of our set-up that ensures the
executive’s disutility grows with work effort, i.e. λ, at a rate that offsets (at
some level of λ) the rate of his utility gain due to the flow-on from his work
effort to the value of his own-company stockholding; this becomes evident
with derivation of the solution to (10). A higher quality executive is able to
achieve a given λ with lower disutility, and is able to improve λ with lower
incremental disutility. That is, higher executive quality (i.e. higher work
effectiveness) is implied by lower values of κ and α.

In (14), the scaling factor v1−γ relates the executive’s disutility of work
effort to his wealth (v) with a formulation based on the constant relative risk
aversion formulation of the utility function in (13). Given a low (high) value
of the relative risk aversion parameter, 0 < γ < 1 (γ > 1), the executive’s
work effort disutility increases (decreases) with his wealth at a decreasing
rate; and for γ = 1, work effort disutility is unrelated to wealth.

Remark 3.1 Our specification for the disutility of work effort is economi-
cally reasonable for the case 0 < γ < 1. For γ > 1, our specification produces
decreasing disutility of work effort for an increasing level of wealth, keeping
work effort constant. This is economically counter-intuitive. Nevertheless,
we solve our executive’s investment and control problem for all values of
γ > 0.
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A possible rationalization is to consider γ to be positively related to the
executive’s work ethic, such that a high work ethic executive has comparatively
low aversion to work effort at outset and will become further less averse to
work effort if past effort or chance brings success as indicated by increased
wealth. Whereas a low work ethic executive has comparatively high aversion
to work effort and will become further more averse to work effort if his wealth
increases.

For the remainder of the paper we assume that the optimal investment
and control problem (10) admits a value function Φ ∈ C1,2.

To guarantee that the candidates we will derive for the executive’s opti-
mal investment and control strategy (i.e. the choices for own-company stock-
holding, market portfolio holding and non-systematic Sharpe ratio) and value
function are indeed optimal, we have to consider a more restrictive class of
admissible strategies as follows.

Definition 3.1 Let 0 ≤ t ≤ T , t fixed, and let λ take values in [0,∞). Then
by A′

γ(t, v) we denote the set of admissible strategies (π, λ) ∈ A′(t, v), such
that

(i) for γ > 0 and γ 6= 1:
∫ T

t

(πP
u + β πS

u )
4(σP )4 +

(
πS
uσ

⋆
u

)4
du ≤ C1 < ∞, for some C1 ∈ R

+
0 ,

(15)
∫ T

t

∣∣πS
uσ

⋆
uλu

∣∣ du ≤ C2 < ∞ , for some C2 ∈ R
+
0 ; (16)

(ii) for γ = 1:

E

[∫ T

t

(πP
u + β πS

u )
2(σP )2 + (πS

uσ
⋆
u)

2 du

]
< ∞ . (17)

Restating the optimal investment and control problem:

Φ(t, v) = sup
(π,λ)∈A′

γ(t,v)

E
t,v

[
U(V π

T )−

∫ T

t

c⋆(u, V π
u , λu) du

]
, (18)

where (t, v) ∈ [0, T ]× R
+.

Remark 3.2 One directly sees that A′
γ(t, v) is a subset of A′(t, v). Therefore

the results previously derived for A′(t, v) remain valid for A′
γ(t, v).
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3.1 Hamilton-Jacobi-Bellman Equation

Having formulated the optimal investment and control decision problem with
respect to the parameter set (π, λ) as given by (18), we can write down
the corresponding Hamilton-Jacobi-Bellman equation (HJB); note that we
formulate this equation with respect to a general utility function U and a
general disutility function c⋆:

0 = sup
(π,λ)∈R2×[0,∞)

[
(L(π,λ) Φ)(t, v)− c⋆(t, v, λ)

]
, for (t, v) ∈ [0, T )× R

+,

U(v) = Φ(T, v) , for v ∈ R
+ ,

(19)

where the differential operator L(π,λ) is given by

(Lπ,λg)(t, v) =
∂g

∂t
(t, v) +

∂g

∂v
(t, v) v

(
r + πSλσ⋆(t, v, λ) + πSβ[µP − r]

+ πP [µP − r]
)
+

1

2

∂2g

∂v2
(t, v) v2

([
πSσ⋆(t, v, λ)

]2
+
[
(πP + πSβ)σP

]2)
.

(20)

Potential maximizers πP ⋆
, πS⋆

and λ⋆ of the HJB (19) can be calculated by
establishing the first order conditions:

πP ⋆

(t, v) = −
(µP − r)

v(σP )2
Φv(t, v)

Φvv(t, v)
− β πS⋆

(t, v) ,

πS⋆

(t, v) = −
λ⋆(t, v)

vσ⋆(t, v, λ⋆(t, v))

Φv(t, v)

Φvv(t, v)
,

(21)

where λ⋆ is the solution of the implicit equation

λ
Φ2

v(t, v)

Φvv(t, v)
+ c⋆λ(t, v, λ) = 0 for all (t, v) ∈ [0, T ]× R

+ , (22)

where we have already used (21) to simplify the equation.
From (21), the executive’s optimal wealth allocation to his own company’s

stock πS⋆
depends on his optimal control decision for the stock price dynamics

λ⋆. However, the executive’s overall preference for investment exposure to
systematic risk is independent of λ⋆. Therefore his optimal wealth allocation
to the market portfolio πP ⋆

incorporates a deduction for the systematic risk
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exposure entailed by πS⋆
; because of this, πP ⋆

also depends on λ⋆ via πS⋆

factored by the company’s beta β.
Substituting the maximizers (21) in the HJB (19) yields:

0 = Φt(t, v) + Φv(t, v) v r −
1

2
(λ⋆(t, v))2

Φ2
v(t, v)

Φvv(t, v)
−

1

2
(λP )

2 Φ2
v(t, v)

Φvv(t, v)

−c⋆(t, v, λ⋆(t, v)) , (23)

where λP :=
µP − r

σP
is the Sharpe ratio of the market portfolio.

In the following section we solve (23) with choices (13) and (14) for the utility
and disutility functions.

3.2 Closed-Form Solutions

Closed-form solutions are obtained for the optimal investment and control
problem in (18) using the utility and disutility functions (13) and (14), first
for the power-utility case (γ > 0 and γ 6= 1), and then for the log-utility case
(γ = 1).

Theorem 3.1 (The power-utility case: γ > 0 and γ 6= 1) The full solu-
tion of the maximization problem (18) can be summarized by the strategy

λ⋆(t, v) =

(
1

κ γ
f(t)

) 1
α−2

,

πP ⋆
(t, v) =

µP − r

γ (σP )2
− β πS⋆

(t, v) , πS⋆
(t, v) =

λ⋆(t, v)

γ σ⋆(t, v, λ⋆(t, v))
,

(24)

and value function

Φ(t, v) =
v1−γ

1− γ
f(t) , (25)

where

f(t) = e
(1−γ)

(
r+ 1

2

λ2P
γ

)
(T−t)

×


1−

(α− 2)
(

1
κ γ

) 2
α−2

α (2 γ r + λ2
P )

(
e

1−γ
α−2

(
2 r+

λ2P
γ

)
(T−t)

− 1

)


−α−2
2

.

(26)
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Proof. First observe that a function F of the form F (λ) = a λ2 − b λα,
λ ≥ 0, for given constants a, b > 0 and α > 2, has a unique maximizer λ⋆

and maximized value F (λ⋆) given by

λ⋆ =

(
2 a

α b

) 1
α−2

, and F (λ⋆) = (α− 2)α− α
α−2 2

2
α−2 a

α
α−2 b−

2
α−2 . (27)

Using this insight the first order condition for λ⋆ in (22) is now solved. Set

a =
1

2

Φ2
v

−Φvv

, and b =
κ

α
v1−γ ,

then (27) gives

λ⋆ =

(
1

κ v1−γ

Φ2
v

−Φvv

) 1
α−2

, F (λ⋆) =
α− 2

2α

(
κ v1−γ

)− 2
α−2

(
Φ2

v

−Φvv

) α
α−2

.

Now (23) reads

0 = Φt + Φv v r +
1

2

Φ2
v

−Φvv

(
µP − r

σP

)2

+
α− 2

2α

(
κ v1−γ

)− 2
α−2

(
Φ2

v

−Φvv

) α
α−2

.

(28)
Using the separation ansatz Φ(t, v) = f(t) v1−γ

1−γ
results in

Φt = ḟ
v1−γ

1− γ
, Φv = f v−γ , Φvv = −γ f v−γ−1 , and f(T ) = 1 . (29)

Thus (28) becomes

0 =ḟ
v1−γ

1− γ
+ f v1−γ r +

1

2

f v1−γ

γ

(
µP − r

σP

)2

+
α− 2

2α

(
κ v1−γ

)− 2
α−2

(
f v1−γ

γ

) α
α−2

.

Dividing by v1−γ

1−γ
and recalling λP = (µP − r)/σP gives

ḟ = f

[
−(1− γ)

(
r +

1

2

λ2
P

γ

)]
+ f

α
α−2

[
−(1− γ)

κ

2

α− 2

α

(
1

κ γ

) α
α−2

]
.

(30)
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This is a Bernoulli ordinary differential equation (ODE) of the form ḟ =
a1 f + aν f

ν , with solution

f(t)1−ν = C eG(t) + (1− ν) eG(t)

∫ t

0

e−G(s) aν ds ,

where G(t) = (1 − ν)
∫ t

0
a1(s) ds and C is an arbitrary constant. In our

setting we have ν = α
α−2

and (1− ν) = −2
α−2

implying

a1 = −(1− γ)

(
r +

1

2

λ2
P

γ

)
, aν = −(1− γ)

κ

2

α− 2

α

(
1

κ γ

) α
α−2

.

The formal solution f(t)1−ν is explicitly calculated in three steps. First,
compute

G(t) = −
2 a1 t

α− 2
, and

∫ t

0

e−G(s) aν(s) ds =
α− 2

2

aν
a1

(
e

2 a1 t
α−2 − 1

)
,

then

f(t) = ea1 t
(
C −

aν
a1

(
e

2 a1 t
α−2 − 1

))−α−2
2

.

Finally, solve for C by using f(T ) = 1 so that

C = e
2 a1 T
α−2 +

aν
a1

(
e

2 a1 T
α−2 − 1

)
.

Note also that f(0) = C−α−2
2 . Now

f(t) = e−a1 (T−t)

(
1−

aν
a1

(
e−

2 a1
α−2

(T−t) − 1
))−α−2

2

.

Substituting for a1 and aν then yields the result for f(t). Using Φv

Φvv
= − v

γ
and

the first order conditions in (21) we obtain the claimed optimal strategy λ⋆,
πP ⋆

and πS⋆
. Finally note that our claimed optimal strategies are admissible,

i.e. (πS⋆
, πP ⋆

, λ⋆) ∈ A′
γ(t, v). A sufficient condition for admissibility is that

λ⋆, πP ⋆
σP , and πS⋆

σ⋆ be uniformly bounded (see Def. 3.1); because these
expressions are deterministic and continuous functions in u on [t, T ], they
are hence uniformly bounded. 2
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Theorem 3.2 (The log-utility case: γ = 1) The full solution of the max-
imization problem (18) can be summarized by the strategy

λ⋆(t, v) = κ− 1
α−2 ,

πP ⋆
(t, v) =

µP − r

(σP )2
− β πS⋆

(t, v) , πS⋆
(t, v) =

λ⋆(t, v)

σ⋆(t, v, λ⋆(t, v))
,

(31)

and value function

Φ(t, v) = log(v) +

[
r +

1

2

(
µP − r

σP

)2

+
α− 2

2α
κ− 2

α−2

]
(T − t) . (32)

Proof. As in the power-utility case, first the implicit first order condition
for λ⋆ in (22) is made explicit. This time set

a =
1

2

Φ2
v

−Φvv

, and b =
κ

α
,

then (27) gives

λ⋆ =

(
1

κ

Φ2
v

−Φvv

) 1
α−2

, and F (λ⋆) =
α− 2

2α
κ− 2

α−2

(
Φ2

v

−Φvv

) α
α−2

.

The partial differential equation (PDE) for log-utility now reads

0 = Φt + Φv v r +
1

2

Φ2
v

−Φvv

(
µP − r

σP

)2

+
α− 2

2α
κ− 2

α−2

(
Φ2

v

−Φvv

) α
α−2

. (33)

Using the ansatz Φ(t, v) = log(v) + ϕ(T − t) results in

Φt = −ϕ , Φv =
1

v
, Φvv = −

1

v2
, and Φ(T, v) = log(v) = U(v) .

Then (33) reduces to

ϕ = r +
1

2

(
µP − r

σP

)2

+
α− 2

2α
κ− 2

α−2 .

Finally, noting Φ2
v/Φvv = −1 and using the first order conditions in (21)

establishes the claimed optimal strategy. Using identical rationale as in the
proof of Theorem 3.1, we see that (πS⋆

, πP ⋆
, λ⋆) ∈ A′

1(t, v). Note that we
also obtain the form of the optimal strategy by formally setting γ = 1 in
Theorem 3.1. 2
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3.3 Verification Theorem

The solutions of the maximization problems given in Theorems 3.1 and 3.2 are
candidates for the optimal investment and control choices for the problem
in (18). In this section we verify that under sufficient assumptions these
solutions are indeed optimal.

Theorem 3.3 (Verification Result) Let κ > 0 and α > 2. Assume the
executive’s utility and disutility functions are given by (13) and (14). Then
the candidates given in (24) - (26) are the optimal investment and control
strategy (i.e. own-company stockholding, market portfolio holding and non-
systematic Sharpe ratio strategy) and value function of the optimal control
problem (18) for the case γ > 0 and γ 6= 1; and the candidates given in (31)
and (32) are the optimal investment and control strategy and value function
of the optimal control problem (18) for the case γ = 1.

The proof of Theorem 3.3 is given in the Appendix.

4 Discussion and Implications of Results

Theorems 3.1, 3.2 and 3.3 indicate our unconstrained executive’s maximized
utility and associated optimal behavior in terms of personal portfolio selec-
tion and choice of work effort, subject to the constant relative risk aversion
set-up. We now investigate the sensitivity of this optimal behavior to vari-
ation of the executive’s risk aversion and work effectiveness characteristics.
Additionally, we derive the fair compensation for the executive’s work ef-
fort using a utility indifference approach (following the vein of, for example,
Lambert, Larcker and Verrecchia (1991)).

The executive is characterized by the relative risk aversion coefficient
(γ > 0), and two work effectiveness parameters: work productivity (1/κ,
with κ > 0), and disutility stress (α > 2). To produce results that have
relativity to a base-level of work effort, as indicated by a base-level non-
systematic Sharpe ratio control decision λ0 > 0, the disutility c⋆ given by
(14) is reparameterized so that the utility/disutility set-up becomes

U(v) =





v1−γ

1− γ
, for γ > 0 and γ 6= 1

log(v) , for γ = 1
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and

c⋆(t, v, λ) =
κ

α
v1−γ

(
λ

λ0

)α

, for λ ≥ 0 , γ > 0.

In regard to the executive’s optimal personal investment decision π⋆, the
optimal own-company stockholding πS⋆

is a function of the optimal work
effort choice, and the associated optimal volatility σ⋆ (see Lemma 2.1) which
we do not explicitly specify. The optimal market portfolio allocation πP ⋆

con-
sidered in conjunction with the systematic risk exposure associated with πS⋆

coincides with the result from classical utility maximization in the constant
relative risk aversion setting, and is therefore of limited interest.

We now turn to the relationship between the executive’s optimal work
effort/control choice λ⋆, his characteristics 1/κ and α, and his utility in-
difference compensation, for log-utility and power-utility cases. It is worth
reiterating that κ (1/κ) directly (inversely) relates the executive’s work ef-
fort disutility to the quality of his control decision as indicated by the non-
systematic Sharpe ratio λ, and α indicates how rapidly his work effort disu-
tility will rise for the sake of an improved λ.

4.1 The Log-Utility Case

With assumption of log-utility (γ = 1), the executive’s optimal choice of

work effort for the new disutility parameterization is λ⋆ = λ
α

α−2

0 (1/κ)
1

α−2 (see
Theorem 3.2 for the optimal choice under the original parameterization). We
assume work productivity satisfies 1/κ > λ−2

0 to ensure optimal work effort is
not less than base-level, i.e. λ⋆ ≥ λ0 > 0. Consequently, for λ⋆ = λ⋆(1/κ, α),
the optimal work effort sensitivities to the work effectiveness parameters are

∂λ⋆

∂(1/κ)
=

κ

α− 2
λ⋆ > 0 ,

∂λ⋆

∂α
= −

ln
(

1/κ

λ−2
0

)

(α− 2)2
λ⋆ < 0, for α > 2 and 1/κ > λ−2

0 .

That is, the executive’s optimal work effort choice is positively related to his
work productivity (∂λ⋆/∂(1/κ) > 0), and negatively related to his disutility
stress (∂λ⋆/∂α < 0). This result is illustrated by Figure 1, which graphs opti-
mal work effort versus work productivity and disutility stress, with λ0 = 0.10.
Furthermore Figure 1 indicates that, for moderate and large values of disu-
tility stress α, optimal work effort is mainly driven by work productivity 1/κ;
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and optimal work effort is most sensitive to low values of work productivity
close to the boundary value (1/κ ' λ−2

0 = 100).
The limiting cases for work productivity are

lim
1/κցλ−2

0

λ⋆(1/κ, α) = λ0 and lim
1/κր∞

λ⋆(1/κ, α) = +∞ , for all α > 2 ,

indicating that the limit for deteriorating work productivity is base-level work
effort λ0, and ever increasing work productivity yields ever increasing work
effort (to infinity).

Taking disutility stress to its limiting cases gives

lim
αց2

λ⋆(1/κ, α) = +∞ and lim
αր∞

λ⋆(1/κ, α) = λ0 , for all 1/κ > λ−2
0 ,

indicating that the executive will deliver ever increasing work effort as disutil-
ity stress diminishes, and the totally stressed executive will deliver base-level
work effort.

The value function specifying the executive’s maximized utility can be
written as the difference between the utility from his optimal personal invest-
ment decision and the disutility from his optimal work effort (see Theorem 3.2
for the value function under the original disutility parameterization):

Φ(0, v) = log(v) +

[
r +

1

2
(λP )2 +

1

2
(λ⋆)2

]
T

︸ ︷︷ ︸
=E0,v [U(V π⋆

T )]

−
1

α
(λ⋆)2 T

︸ ︷︷ ︸
=E0,v

∫ T
0 c⋆(t,V π⋆

t ,λ⋆(t,V π⋆
t )) dt

.

We assume that the executive’s fair compensation for the disutility of work
effort is paid up-front with cash or marketable (unconstrained) securities of
value ∆v. Applying a utility indifference argument, the fair level of compen-
sation satisfies

Φ(0, v +∆v) = Φ(0, v) + E
0,v

[∫ T

0

c⋆(t, V π⋆

t , λ⋆(t, V π⋆

t )) dt

]
, (34)

which gives

∆v = v

(
e

(λ⋆)2 T
α − 1

)
= v


e

λ20 T

α

(
1/κ

λ−2
0

) 2
α−2

− 1


 .
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For ∆v = ∆v(1/κ, α), the utility indifference compensation sensitivities to
the work effectiveness parameters are

∂∆v

∂(1/κ)
=

2κ

α− 2

(λ⋆)2T

α
(∆v + v) > 0 , for α > 2 and 1/κ > λ−2

0 ,

and

∂∆v

∂α
= −


 1

α
+

2 ln
(

1/κ

λ−2
0

)

(α− 2)2


 (λ⋆)2T

α
(∆v+v) < 0 , for α > 2 and 1/κ > λ−2

0 ,

indicating the sensible result that the executive’s utility indifference compen-
sation increases with work productivity and decreases with disutility stress.
This result is illustrated by Figure 2, which graphs the executive’s fair up-
front compensation, based on the utility indifference rationale, versus work
productivity and disutility stress, for the case where the executive’s initial
wealth is v = $5 million, time horizon is T = 10 years, and base-level work
effort is λ0 = 0.10.

The limiting cases for work productivity are

lim
1/κցλ−2

0

∆v(1/κ, α) = v

(
e

λ20 T

α − 1

)
, and lim

1/κր∞
∆v(1/κ, α) = +∞ ,

for all α > 2, and the limiting cases for disutility stress are

lim
αց2

∆v(1/κ, α) = +∞ , and lim
αր∞

∆v(1/κ, α) = 0 , for all 1/κ > λ−2
0 .

That is, with ever improving work effectiveness (1/κ ր ∞ or α ց 2), the
executive’s fair compensation is ever increasing (to infinity). And with ever
diminishing work effectiveness (1/κ ց λ−2

0 or α ր ∞), the executive’s work
effort decreases towards base-level (λ0), for which the commensurate fair
compensation is v(eλ

2
0 T/α − 1); however, for the case where the executive

becomes totally stressed (α ր ∞), the fair compensation limit is zero.

4.2 The Power-Utility Case

Now with assumption of power-utility, the executive’s optimal choice of work

effort is λ⋆(t) = λ
α

α−2

0 ((1/κ)/γ)
1

α−2 f(t)
1

α−2 (see Theorem 3.1 for the optimal
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choice under the original disutility parameterization). To ensure optimal
work effort is not less than base-level, we assume for the risk-free rate of
return (in f) r > −λ2

P/(2γ) (recalling that λP is the Sharpe ratio of the
market portfolio), and for work productivity

1/κ >




γ λ−2

0 , for 0 < γ < 1 ,

γ λ−2
0 f(0)−1 , for γ > 1 .

These conditions follow from the properties of the function f , which is the
solution of a Bernoulli ODE (see Theorem 3.1 and its proof for f and its
derivation under the original disutility parameterization). Also note that
f(0) reads

f(0) = e
(1−γ)

(
r+ 1

2

λ2P
γ

)
T

×


1−

(α− 2)
(

λα
0

κ γ

) 2
α−2

α (2 γ r + λ2
P )

(
e

1−γ
α−2

(
2 r+

λ2P
γ

)
T
− 1

)


−α−2
2

.

From (34), the executive’s utility indifference (fair) up-front compensation
∆v is

∆v = v

(
e

1
2γ

∫ T
0 λ⋆(t)2 dt

×


1−

(α− 2)
(

λα
0

κ γ

) 2
α−2

α (2 γ r + λ2
P )

(
e

1−γ
α−2

(
2 r+

λ2P
γ

)
T
− 1

)


(α−2)
2(1−γ)

− 1

)
.

Remark 4.1 The solution presented for ∆v is derived using the structural
properties of the executive’s optimal personal investment strategy π⋆. An out-
side investor with knowledge of the work effort exercised by the executive (i.e.
with knowledge of λ⋆) will choose a portfolio π̂⋆ identical to the executive’s

choice π⋆. Denote Φ̂(0, v) to be the maximized utility of the outside investor,
then it follows that

Φ̂(0, v) = Φ(0, v) + E
0,v

[∫ T

0

c⋆(t, V π⋆

t , λ⋆(t, V π⋆

t )) dt

]
.
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Furthermore

Φ̂(0, v) =
v1−γ

1− γ
e
(1−γ)

[(
r+ 1

2

λ2P
γ

)
T+ 1

2γ

∫ T
0 λ⋆(t)2 dt

]

.

Applying the utility indifference principle as given by (34), we can then solve

Φ̂(0, v) = Φ(0, v +∆v) to obtain ∆v.

In contrast to the log-utility case, the sensitivities of the executive’s op-
timal work effort λ⋆ and fair compensation ∆v with respect to variations in
his work effectiveness parameters cannot be shown with compact expressions.
Instead we limit ourselves to graphical representations of the relationships,
with additional consideration of the executive’s risk aversion parameter γ.

Figure 3 displays optimal work effort over time for varying risk aversion
(i.e. λ⋆ versus t and γ, for fixed values of 1/κ, α and λ0). The executive’s
disutility from work effort depends on his wealth v and risk aversion γ via
the scaling factor v1−γ, which is effectively a work aversion measure. For
a given level of wealth, an executive with low risk aversion (0 < γ < 1)
has higher work aversion than an executive with high risk aversion (γ >
1); furthermore, with increasing wealth, work aversion increases for a low
risk aversion executive but decreases for a high risk aversion executive. If
we suggest that a high risk aversion executive has high work ethic and a
low risk aversion executive has low work ethic, our set-up assumes that: a
high work ethic executive has comparatively low aversion to work effort and
will become further less averse to work effort if past effort or chance brings
success as indicated by increased wealth; and a low work ethic executive
has comparatively high aversion to work effort and will become further more
averse to work effort if his wealth increases. Nevertheless, a low risk aversion
(i.e. low work ethic) executive is more willing to take on the risk associated
with a larger own-company stockholding, and thus with more personal stake
in his own company he always applies more work effort than a high risk
aversion executive, ceteris paribus. These aspects are observable in Figure 3:
a low risk aversion executive with 0 < γ < 1 starts with a (comparatively)
high level of work effort, which is expected to reduce over time (given that
his wealth is expected to increase over time); whereas a high risk aversion
executive with γ > 1 starts with a far lower level of work effort, which is
expected to increase over time. Therefore observing the executive’s work
effort over time potentially reveals his risk aversion.
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Figures 4 and 5 fix the executive’s risk aversion at a relatively low level of
γ = 0.5 and show optimal work effort over time for varying work effectiveness
(i.e. respectively λ⋆ versus t and 1/κ, and λ⋆ versus t and α). The executive’s
work effort increases with work effectiveness (but decreases over time given
γ = 0.5). That is, work effort is positively related to work productivity 1/κ,
and negatively related to disutility stress α. The implication is that, for a
given level of risk aversion, work effort distinguishes the work effectiveness
(quality) of the executive.

The relationship between the executive’s optimal work effort and his risk
aversion and work effectiveness characteristics is reflected in his fair up-front
compensation. Figures 6 and 7 show fair compensation versus pairings of risk
aversion with each of work productivity and disutility stress (i.e. respectively
∆v versus γ and 1/κ, and ∆v versus α and γ). Any combination of decreasing
risk aversion, increasing work productivity, and decreasing disutility stress
leads to higher work effort and commensurately higher fair compensation.
The level of fair compensation is particularly prominently dependent on risk
aversion: fair compensation sensitivity to work productivity and disutility
stress is highest when risk aversion is low (γ ≈ 0.5 or lower, see Figures 6 and
7). This result stems from the fact that, regardless of whether the executive
has high work effectiveness or not, the company can only substantially benefit
from the executive’s quality if he has sufficiently low risk aversion to take on
a substantial own-company stockholding and thereby have incentive to apply
substantial work effort. Note that Figure 7 extends only to a minimum value
of disutility stress α = 5; not shown is that for lower disutility stress α ≈ 4
and below, fair compensation increases even more steeply.

5 Conclusion and Outlook

We establish a model framework that gives insight into an unconstrained
executive’s own-company stockholding and work effort preferences. The ex-
ecutive’s optimal work effort choice λ⋆ and fair compensation ∆v depend
sensibly on his characteristics, risk aversion γ, work productivity 1/κ, and
disutility stress α. The executive’s risk aversion is indicated by his work
effort over time; and for a given level of risk aversion, the executive’s work
effectiveness quality (where higher quality is associated with higher work pro-
ductivity and/or lower disutility stress) is distinguished by his work effort at a
point in time. For empirical purposes, work effort might be observed with an
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empirical non-systematic Sharpe ratio or some other company performance
measure.

We demonstrate that an executive with higher work effectiveness (quality)
undertakes more work effort, which is associated with higher fair (utility
indifference) compensation. Thus the executive is rewarded twice for his
quality. First he receives higher compensation as a direct reward; and second
he benefits from his work effort via his own-company stockholding, which can
be considered an indirect reward.

The extent to which the company benefits from the executive’s work effec-
tiveness depends prominently on his risk aversion. Only if he has sufficiently
low risk aversion to take on a substantial own-company stockholding will he
have the incentive to apply substantial work effort for the benefit of the com-
pany. Consequently the executive’s fair compensation is negatively related
to his risk aversion.

Given identification of executive risk aversion and quality, our framework
indicates the own-company stockholding and work effort of an unconstrained
executive. This establishes a base case for theoretical or empirical assessment
of the benefits or otherwise of constraining the executive with performance
contracting. A future extension for our framework is to specify a constrained
executive subject to an imposed own-company stockholding representative of
performance contracting, and to contrast his work effort strategy with that
of our unconstrained executive.

Appendix

Proof of Lemma 2.1. Fix (t, v, λ) ∈ [0, T ] × R
+ × R

+
0 and define the

function f by f(σ) = c(t, v, r + λσ, σ), for λ ≥ 0. We need to show for f
that a minimizing σ⋆ = σ⋆(t, v, λ) exists and is unique. Computing the first
and second derivatives gives

f ′(σ) = λ
∂c

∂µ
(t, v, r + λσ, σ) +

∂c

∂σ
(t, v, r + λσ, σ) ,

and

f ′′(σ) = λ2 ∂2c

∂µ2
(t, v, r+λσ, σ)+2λ

∂2c

∂σ∂µ
(t, v, r+λσ, σ)+

∂2c

∂σ2
(t, v, r+λσ, σ) .

By the differentiability assumption for c, f ′ is continuous and differentiable
and f ′′ is continuous. Using elementary calculus rationale, the minimization
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problem minσ>0 f(σ) admits a unique solution if f ′(σ⋆) = 0 has a solution
and f is strictly convex.

For f ′(σ⋆) = 0 to admit a solution that locally minimizes f , it is sufficient
that f ′ starts below zero, f ′(0+) < 0, and that f ′ takes on a positive value for
some σ > 0+. This is given by Assumption 2.1 (ii). Moreover the condition
f is strictly convex, f ′′ > 0, implies the solution is a unique global minimizer.
Assumption 2.1 (iii) gives the strict convexity of f . 2

Proof of Theorem 3.3. Define the performance functional of our optimal
investment and control decision by

J(t, v; π, λ) := E
t,v

[
U (V π

T )−

∫ T

t

c⋆(u, V π
u , λu) du

]
,

where (t, v) ∈ [0, T ] × R
+ and (π, λ) ∈ A′

γ(t, v). Recall the claimed optimal
value function Φ ∈ C1,2, for γ > 0, and apply Ito’s formula to obtain:

U (V π
T )−

∫ T

t

c⋆(u, V π
u , λu) du = Φ(T, V π

T )−

∫ T

t

κ (V π
u )

1−γ λα
u

α
du = Φ(t, v)

+

∫ T

t

(
Φt(u, V

π
u ) + Φv(u, V

π
u )V

π
u

[
r + πS

u λσ⋆
u + (πP

u + β πS
u )(µ

P − r)
]

+ 1/2Φvv(u, V
π
u ) (V

π
u )

2 [((πP + β πS
u )σ

P )2 + (πS
uσ

⋆
u)

2
]
− κ (V π

u )
1−γ λα

u

α

)
du

+

∫ T

t

Φv(u, V
π
u )V

π
u (π

P
u + β πS

u )σ
P dW P

u +

∫ T

t

Φv(u, V
π
u )V

π
u π

S
uσ

⋆
u dWu .

(35)

The remainder of the proof is divided into two parts. Part (a) establishes that
the value function Φ coincides with the performance functional J evaluated
at the claimed maximizers (π⋆, λ⋆), γ > 0. Part (b) shows the optimality of
the candidate (π⋆, λ⋆), i.e.: J(t, v; π, λ) ≤ Φ(t, v), for (π, λ) ∈ A′

γ(t, v).
Part (a): We establish that J(t, v; π⋆, λ⋆) = Φ(t, v). To do this we show

that in the right hand side (RHS) of (35) the drift vanishes by the HJB (19)
and that the local martingale component is a true martingale and hence
disappears in expectation. And finally, it is verified that indeed (π⋆, λ⋆) ∈
A′

γ(t, v).
By construction, Φ with control (π⋆, λ⋆) satisfies the HJB-PDE in (19),
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that is,

0 = Φt + Φv v (r + πS⋆ λ⋆ σ⋆ + (πP⋆ + β πS⋆)[µP − r])

+(1/2)Φvv v
2([πS⋆ σ⋆]2 + [(πP⋆ + β πS⋆) σP ]2)− c⋆ .

This eliminates the drift (Lebesgue integral) in (35) and we obtain

U
(
V π⋆

T

)
−

∫ T

t

c⋆(u, V π⋆

u , λ⋆
u) du = Φ(t, v)+

∫ T

t

Φv(u, V
π⋆

u )V π⋆

u (πP⋆
u + β πS⋆

u )σP dW P
u +

∫ T

t

Φv(u, V
π⋆

u )V π⋆

u πS⋆
u σ⋆

u dWu .

For J(t, v; π⋆, λ⋆) = Φ(t, v), it remains to prove that the local martingale
component disappears in expectation. A sufficient condition is the square-
integrability of the local martingale component

E

[∫ T

t

(
Φv(u, V

π⋆

u )V π⋆

u

)2 (
[πP ⋆

u + β πS⋆
u ]2(σP )2 + [πS⋆

u σ⋆
u]

2
)
du

]
< ∞ .

Using the explicit form of the candidates in (24), for γ > 0 and γ 6= 1, and
in (31), for γ = 1, gives

(
Φv(u, V

π⋆

u )V π⋆

u

)2 (
[πP ⋆

u + β πS⋆
u ]2(σP )2 + [πS⋆

u σ⋆
u]

2
)

=

(
V π⋆

u

)2(1−γ)
f(u)2

γ2

[
(µP − r)2

(σP )2
+

(
1

κγ
f(u)

) 2
α−2

]
,

where we set f = 1, for γ = 1. The RHS is
(
V π⋆

u

)2(1−γ)
times a deterministic

and continuous function on the compact set [t, T ]. The deterministic part
is uniformly bounded. Therefore, it is sufficient to focus on the stochastic
component: V π⋆

satisfies

dV π⋆

u = V π⋆

u

[
r du+

λ2
P

γ
du+

(λ⋆(u, V π⋆

u ))2

γ
du +

λP

γ
dW P

u +
λ⋆(u, V π⋆

u )

γ
dWu

]
.

Recalling that λ⋆(u, v) is a continuous function in u and does not depend on
v, we see that V π⋆

u follows a log-normal distribution with parameters being
uniformly bounded, for all u ∈ [t, T ]. Since all moments of a log-normally
distributed random variable exist, it follows that the local martingale is a
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square-integrable martingale. This establishes J(t, v; π⋆, λ⋆) = Φ(t, v). Fi-
nally, (π⋆, λ⋆) ∈ A′

γ(t, v) follows from the fact that πP⋆, πS⋆ σ⋆, and λ⋆ are
uniformly bounded on [t, T ], each γ > 0.

Part (b): Now we show the optimality, i.e. J(t, v; π, λ) ≤ Φ(t, v), for
(π, λ) ∈ A′

γ(t, v). As in (a), this is also based on the analysis of (35). The
HJB (19) is applied to show that the drift component is bounded from above
by zero. Then it is shown that the conditions in Def. 3.1 are sufficient for the
local martingale component on the RHS of (35) to vanish in expectation.

By the HJB (19), Φ with arbitrary (π, λ) ∈ R× R× R
+
0 satisfies

0 ≥ Φt + Φv v (r + πS λσ⋆ + (πP + β πS)[µP − r])

+(1/2)Φvv v
2([πS σ⋆]2 + [(πP + β πS) σP ]2)− c⋆ ,

for (u, v) ∈ [t, T ] × R
+. This provides the point-wise upper bound zero for

the drift in (35) and we obtain

U (V π
T )−

∫ T

t

c⋆(u, V π
u , λu) du ≤ Φ(t, v)+

∫ T

t

Φv(u, V
π
u )V

π
u (π

P
u + β πS

u )σ
P dW P

u +

∫ T

t

Φv(u, V
π
u )V

π
u π

S
uσ

⋆(u, V π
u , λu) dWu

︸ ︷︷ ︸
=:Mt

T

.

(36)

We discuss two separate cases: (b1): 0 < γ < 1 and γ > 1, and (b2): γ = 1.
Part (b1): 0 < γ < 1 and γ > 1. Recall Φv(t, v) = f(t) v−γ and calculate

the quadratic variation of M t

〈M t〉T =

∫ T

t

(V π
u )

2(1−γ)f 2(u)
(
[πu + β πS

u ]
2(σP )2 + [σ⋆

uπ
S
u ]

2
)
du

≤
1

2
sup

0≤u≤T
f(u)2

[∫ T

t

(V π
u )

4(1−γ) du+

∫ T

t

(
[πu + β πS

u ]
2(σP )2 + [σ⋆

uπ
S
u ]

2
)2

du

]
,

(37)

where the second line is a straightforward upper bound. We show that M t is
a martingale by deriving the integrability of the quadratic variation 〈M t〉T .
First we use once more that f is a continuous function on the compact set
[0, T ] and is uniformly bounded, and thus sup0≤u≤T f(u)2 is finite. We are
left to deal with the two expressions in the brackets of (37). The second
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expression is bounded in expectation by assumption, see (15) in Def. 3.1. In
what follows we establish that the first expression is finite by showing that
E

t,v[(V π
u )

ξ] < ∞ uniformly, with ξ = 4(1−γ), where ξ > 0 for 0 < γ < 1 and
ξ < 0 for γ > 1.

The solution of the wealth equation (4) starting at t with initial wealth
v is

V π
u = v er(u−t)+

∫ u
t (πP

s +β πS
s )λ

P σP+πS
s λsσ⋆

s ds eL
t
u−

1
2〈Lt〉

u ,

where Lt
u =

∫ u

t
(πP

s + β πS
s )σ

PdW P
s +

∫ u

t
πS
s σ

⋆
sdWs and 〈Lt〉u =

∫ u

t
(πP

s +
β πS

s )
2(σP )2 + (πS

s σ
⋆
s)

2ds. Then

(V π
u )

ξ = vξ eξ L
t
u−

1
2
ξ2 〈Lt〉

u × eξ[
1
2
(ξ−1) 〈Lt〉

u
+r(u−t)+

∫ u
t (πP

s +β πS
s )λ

P σP+πS
s λsσ⋆

s ds] .

The second factor is uniformly bounded by a constant, see Def. 3.1, (15)
and (16), and recalling that ξ > 0 for 0 < γ < 1 and ξ < 0 for γ > 1. It

remains to prove that the first factor Zt
u = eξ L

t
u−

1
2
ξ2 〈Lt〉

u , t ≤ u ≤ T , is
integrable. However, Zt is a strictly positive local martingale since it is the
stochastic exponential of the local martingale ξ Lt. The Novikov condition

holds by (15), i.e. Et,v(e
1
2
ξ2〈Lt〉

T ) < ∞, and hence Zt is a true martingale and
E

t,v(Zt
u) = 1, t ≤ u ≤ T . The local martingale M t is therefore a martingale

vanishing in expectation in (36), and taking the conditional expectation of
(36) gives the desired result

J(t, v; π, λ) = E
t,v

[
U(V π

T )−

∫ T

t

c⋆(u, V π
u , λu) du

]
≤ Φ(t, v) , (π, λ) ∈ A′

γ(t, v).

Part (b2): γ = 1. From Φv(t, v) = v−1 we obtain

M t
s =

∫ s

t

(πP
u + β πS

u ) σ
P dW P

u +

∫ s

t

πS
u σ⋆(u, V π

u , λu) dWu , for t ≤ s ≤ T .

Def. 3.1 (ii) ensures the square-integrability. The local martingale M t is
therefore a martingale vanishing in expectation in (36), and J(t, v; π, λ) ≤
Φ(t, v), for (π, λ) ∈ A′

1(t, v). 2
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Figure 1: The log-utility executive’s optimal work effort/control choice, in
terms of optimal non-systematic Sharpe ratio λ⋆, versus his work effectiveness
parameters, work productivity 1/κ and disutility stress α; given base-level
work effort λ0 = 0.10.
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Figure 2: The log-utility executive’s fair up-front compensation ∆v, based
on utility indifference, versus his work effectiveness parameters, work pro-
ductivity 1/κ and disutility stress α; given initial wealth v = $5 million, time
horizon T = 10 years, and base-level work effort λ0 = 0.10.
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Figure 3: The power-utility executive’s optimal work effort/control choice, in
terms of optimal non-systematic Sharpe ratio λ⋆, versus time t, for varying
risk-aversion γ; given work productivity 1/κ = 2000, disutility stress α = 5,
and base-level work effort λ0 = 0.10.
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Figure 4: The power-utility executive’s optimal work effort/control choice, in
terms of optimal non-systematic Sharpe ratio λ⋆, versus time t, for varying
work productivity 1/κ; given risk aversion γ = 0.5, disutility stress α = 5,
and base-level work effort λ0 = 0.10.
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Figure 5: The power-utility executive’s optimal work effort/control choice, in
terms of optimal non-systematic Sharpe ratio λ⋆, versus time t, for varying
disutility stress α; given risk aversion γ = 0.5, work productivity 1/κ = 2000,
and base-level work effort λ0 = 0.10.
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Figure 6: The power-utility executive’s fair up-front compensation ∆v, based
on utility indifference, versus his work productivity 1/κ and risk aversion γ;
given disutility stress α = 5, initial wealth v = $5 million, time horizon
T = 10 years, and base-level work effort λ0 = 0.10.
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Figure 7: The power-utility executive’s fair up-front compensation ∆v, based
on utility indifference, versus his risk aversion γ and disutility stress α; given
work productivity 1/κ = 2000, initial wealth v = $5 million, time horizon
T = 10 years, and base-level work effort λ0 = 0.10.
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