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Abstract In this paper, we consider a novel dynamic optimization problem for nonlinear multistage
systems with time-delays. Such systems evolve over multiple stages, with the dynamics in each stage
depending on both the current state of the system and the state at delayed times. The optimization
problem involves choosing the values of the time-delays, as well as the values of additional parameters
that influence the system dynamics, to minimize a given cost functional. We first show that the partial
derivatives of the system state with respect to the time-delays and system parameters can be computed by
solving a set of auxiliary dynamic systems in conjunction with the governing multistage system. On this
basis, a gradient-based optimization algorithm is proposed to determine the optimal values of the delays
and system parameters. Finally, two example problems, one of which involves parameter identification
for a realistic fed-batch fermentation process, are solved to demonstrate the algorithm’s effectiveness.

Keywords Multistage system · Time-delay system · Nonlinear optimization · Parameter identification

1 Introduction

A multistage system refers to a dynamic system that evolves over multiple stages or subsystems [1]. If
any of the stages in the multistage system involves time-delays, then the system is known as a delayed
multistage system. Both conventional and delayed multistage systems arise in many real-world applications
such as fermentation processes [2], population models [3], manufacturing systems [4] and image tubes [5].

An optimal parameter selection problem is a type of optimal control problem in which a finite set
of parameters need to be chosen optimally subject to a given dynamic system. Many common dynamic
optimization problems can be formulated as optimal parameter selection problems, such as parameter
identification problems [6–8] and controller parameter design problems [9,10]. There are many useful
theories and algorithms for solving optimal parameter selection problems for nonlinear systems with
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a single stage and no time-delays; see, for example, [11–13]. However, nonlinear multistage systems,
which have both discrete and continuous characteristics [14], are significantly more difficult to handle.
Some theoretical issues for a class of dynamic optimization problems involving multistage systems were
investigated in [15]. Nevertheless, an implementable algorithm is not described in [15]. An algorithm for
solving a class of multistage dynamic optimization problems without path constraints was introduced
in [16], and then extended in [17] to handle path constraints on the state variables. Recently, studies
of the multistage parameter identification problem for fermentation processes have appeared in [18,19].
Although the aforementioned results are certainly valid and interesting, they ignore the effect of time-
delays in the nonlinear multistage system.

Time-delays are frequently encountered in real-life systems. The existence of time-delays often causes
undesirable system transient response, or even instability [20]. The estimation of unknown time-delays
and possibly other unknown system parameters from a given set of experimental data is one of the key
problems in the study of time-delay systems [21]. For estimation problems involving linear systems with
a single input delay and no other unknown parameters, many computational methods, such as the exact
least squares algorithm [22], the steepest descent algorithm [23] and genetic algorithms [24], have been
developed. In contrast, estimation problems for nonlinear systems with multiple delays have yet to receive
significant attention in the literature. Motivated by examples from aerodynamics and biochemistry, such
problems were studied in [25]. More recently, a new algorithm for estimating unknown time-delays in
a nonlinear dynamic system was developed in [26]. This algorithm was extended in [27,28] to cater
for more general nonlinear systems with unknown system parameters in addition to unknown delays.
However, these parameter estimation algorithms are only designed for delay systems with a single stage.
The parameter estimation problem for delayed multistage systems has yet to be tackled in the literature.

In this paper, we consider a general nonlinear multistage system with time-delays and system param-
eters. Each stage in this system is described by a set of nonlinear delay-differential equations in which
the time-delays and system parameters are control variables. The dynamic optimization problem involves
choosing values for the time-delays and system parameters to minimize a given cost functional. This
cost functional depends on the state values at a finite number of characteristic time points [12]. As we
will show, this problem class incorporates the parameter estimation problem as a special case. Our main
contribution in this paper is the derivation of the partial derivatives of the system state with respect
to the time-delays and system parameters. This derivation is based on the corresponding approach for
single-stage systems pioneered in [26] and extended in [27]. After deriving the gradient of the state, the
gradient of the cost functional can be calculated accordingly. Combined with standard numerical opti-
mization techniques [29], such as sequential quadratic programming (SQP), a gradient-based optimization
algorithm is then developed to determine the optimal time-delays and system parameters. A major ad-
vantage of our new algorithm is that it is applicable to a much larger array of problems than the existing
algorithms in [26,27], which are restricted to parameter identification problems. Finally, two example
problems, including a real-world practical example involving fed-batch fermentation, are considered to
test the performance of our new algorithm.

2 Problem formulation

Consider the following delayed multistage system with N stages and m time-delays:










ẋ(t) = f i(t, x(t), x̃(t), ζ), t ∈ (ti−1, ti), i = 1, 2, . . . , N, (1a)

x(ti+) = x(ti−), i = 0, 1, . . . , N, (1b)

x(t) = φ(t), t ≤ 0, (1c)

where x(t) := (x1(t), x2(t), . . . , xn(t))⊤ ∈ Rn is the state vector ; x̃(t) := (x(t−α1)
⊤, x(t−α2)

⊤, . . . , x(t−
αm)⊤)⊤ ∈ Rnm is the delayed state vector ; αj , j = 1, 2, . . . , m, are time-delays ; ζ := (ζ1, ζ2, . . . , ζv)

⊤ ∈
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Rv is a vector of system parameters ; ti, i = 1, 2, . . . , N, are given switching times ; x(ti+) is the state
immediately after the switching time ti; x(ti−) is the state immediately before the switching time ti; and
f i : R × Rn × Rnm × Rv → Rn and φ : R → Rn are given functions.

We assume that the switching times in (1a) and (1b) are pre-assigned so that

0 = t0 < t1 < · · · < tN = T, (2)

where T is the terminal time. Thus, the multistage system (1) begins in stage 1 at time t = 0, then
switches to stage 2 at time t = t1, and so on. We also assume that there are no state jumps at the
switching times; see condition (1b).

Now, define
D := {(α1, α2, . . . , αm)⊤ ∈ Rm : aj ≤ αj ≤ bj , j = 1, 2, . . . , m}, (3)

where aj and bj are given constants such that 0 ≤ aj < bj. Clearly, D is a compact and convex subset of
Rm. Any vector α ∈ D is called a feasible time-delay vector.

Furthermore, define

Z := {(ζ1, ζ2, . . . , ζv)
⊤ ∈ Rv : ck ≤ ζk ≤ dk, k = 1, 2, . . . , v}, (4)

where ck and dk are given constants such that ck < dk. Obviously, the set Z is a compact and convex
subset of Rv. Any vector ζ ∈ Z is called a feasible parameter vector. Accordingly, any pair (α, ζ) ∈ D×Z
is called a feasible delay-parameter pair.

Remark 1 Note that the time-delays and system parameters in (1a) could be different for each subsystem.
For example, stage 1 could only involve ζ1 and x(t−α1), stage 2 could only involve ζ2 and x(t−α2), and
so on.

We assume throughout this paper that the following conditions are satisfied.

Assumption 1. The functions f i, i = 1, 2, . . . , N , are continuously differentiable. Moreover, the function
φ is twice continuously differentiable.

Assumption 2. There exists a positive real number L1 > 0 such that for each i = 1, 2, . . . , N ,

|f i(t, x, x̃, ζ)| ≤ L1(1 + |x| + |x̃|), (t, x, x̃, ζ) ∈ [ti−1, ti] × Rn × Rnm ×Z,

where | · | denotes the Euclidean norm.

Assumptions 1 and 2 ensure that the multistage system (1) admits a unique solution corresponding to
each delay-parameter pair (α, ζ) ∈ D × Z [30]. We denote this solution by x(·|α, ζ). Our aim is to select
an optimal delay-parameter pair that minimizes the following cost functional:

J(α, ζ) = Φ(x(τ1|α, ζ), . . . , x(τd|α, ζ)), (5)

where Φ : Rdn → R is a given function and τl, l = 1, 2, . . . , d, are given characteristic time points satisfying
0 < τ1 < τ2 < · · · < τd < T .

Now, our problem can be formulated as the following optimal parameter selection problem.

Problem (P). Find (α, ζ) ∈ D × Z such that the cost functional (5) is minimized.

Problem (P) is a dynamic optimization problem in which the time-delays in the multistage system (1)
are decision variables to be optimized. Conventional methods for optimizing time-delay systems—see, for
example, [8,21,31,32]—are only applicable when the delays are fixed and known, not decision variables.
Therefore, such methods cannot be used to solve Problem (P). Although several promising techniques for
optimizing time-delays have recently been developed (see [26–28,33]), these techniques are based on the
assumption that the system dynamics do not change—an assumption that is clearly invalid for multistage
systems, which operate by cycling through a series of different subsystems. Moreover, the aforementioned
techniques are only applicable to time-delay estimation problems, which are a special case of Problem (P).
As a result, a new method must be developed to solve Problem (P).
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3 Solving Problem (P)

In essence, Problem (P) is a nonlinear programming problem with decision vectors α and ζ. It is well
known that gradient-based optimization methods are very effective at solving nonlinear programming
problems [29]. However, such methods require the gradient of the cost function (and the gradients of
the constraints, if applicable). But since the cost functional in Problem (P) is an implicit (rather than
explicit) function of the decision vectors α and ζ, it is not obvious how to determine its gradient. In this
section, we will develop a variational method (also called sensitivity method) to determine the gradient
of the cost functional in Problem (P). The key idea is to introduce a set of auxiliary systems and then
express the gradient of the cost functional in terms of the solution of these auxiliary systems. On this
basis, a numerical optimization method can be developed for solving Problem (P).

The solution of system (1) is usually viewed as a function of time, with α and ζ fixed vectors. We
denote this function by x(·|α, ζ). In this section, we will also consider the function x(t|·, ·) : D×Z → Rn,
in which t is fixed and α and ζ are the variables. Thus, x(t|·, ·) returns the state value at time t for the
given delay-parameter pair.

3.1 Gradient computation: Partial derivatives with respect to time-delays

We assume throughout this subsection that p ∈ {1, 2, . . . , m} and (α, ζ) ∈ D×Z are arbitrary but fixed.
For simplicity, we write x(t) instead of x(t|α, ζ), and xǫ(t) instead of x(t|α+ ǫep, ζ), where ep denotes the
pth unit basis vector in Rm.

Define
Ξ := [ap − αp, bp − αp].

Note that 0 ∈ Ξ and thus Ξ 6= ∅. Clearly,

ǫ ∈ Ξ ⇐⇒ α + ǫep ∈ D.

For each ǫ ∈ Ξ, define the following functions:

ϕǫ(t) := xǫ(t) − x(t), t ≤ T, (6)

θǫ,j(t) := xǫ(t − αj − ǫδpj) − x(t − αj), t ≤ T, j = 1, 2, . . . , m, (7)

where δpj denotes the Kronecker delta function. Furthermore, define

χǫ(t) :=

{

φ̇(t), if t ≤ 0,

f i(t, xǫ(t), x̃ǫ(t), ζ), if t ∈ (ti−1, ti] for some i ∈ {1, 2, . . . , N},
(8)

where
x̃ǫ(t) := (xǫ(t − α1 − ǫδp1)

⊤, . . . , xǫ(t − αm − ǫδpm)⊤)⊤.

In addition, let
θǫ(t) := ((θǫ,1(t))⊤, (θǫ,2(t))⊤, . . . , (θǫ,m(t))⊤)⊤ ∈ Rnm, t ≤ T.

Obviously,
θǫ,j(t) = ϕǫ(t − αj), t ≤ T, j 6= p, (9)

and
ϕǫ(t) = 0, t ≤ 0. (10)

Furthermore, for almost all t ∈ (−∞, T ],
ẋǫ(t) = χǫ(t). (11)

In the next three lemmas, we present some important properties of the functions defined in (6), (7) and
(8). The proofs of these lemmas, which rely on Assumptions 1 and 2, are similar to the proofs of the
corresponding lemmas in [26].



Optimal parameter selection for nonlinear multistage systems with time-delays 5

Lemma 1 There exists a positive real number L2 > 0 such that for all ǫ ∈ Ξ,

|xǫ(t)| ≤ L2, |χǫ(t)| ≤ L2, t ∈ [−b̄, T ], (12)

where b̄ := max
j∈{1,2,...,m}

{bj}.

Lemma 2 There exists a positive real number L3 > 0 such that for all ǫ ∈ Ξ,

|ϕǫ(t)| ≤ L3|ǫ|, max
j∈{1,2,...,m}

|θǫ,j(t)| ≤ L3|ǫ|, t ∈ [0, T ]. (13)

Lemma 3 For almost all t ∈ [0, T ],

lim
ǫ→0

θǫ,p(t) − ϕǫ(t − αp)

ǫ
= −χ0(t − αp). (14)

We now present our main result, which gives gradient formulae for the state with respect to the time-
delays. Note that in the following, we use ∂x̃j to denote partial differentiation with respect to x(t − αj).

Theorem 1 Let t ∈ (0, T ] be a fixed time point. Then x(t|·, ·) is differentiable with respect to αp on
D ×Z. Furthermore, for each (α, ζ) ∈ D × Z,

∂x(t|α, ζ)

∂αp

= Λp(t|α, ζ), p = 1, 2, . . . , m, (15)

where Λp(·) is the solution of the auxiliary multistage system

Λ̇p(s) =
∂f i(s, x(s), x̃(s), ζ)

∂x
Λp(s) +

m
∑

j=1

∂f i(s, x(s), x̃(s), ζ)

∂x̃j
Λp(s − αj)

−
∂f i(s, x(s), x̃(s), ζ)

∂x̃p χ0(s − αp), s ∈ (ti−1, ti), i = 1, 2, . . . , N, (16)

with the intermediate conditions

Λp(ti+) = Λp(ti−), i = 0, 1, . . . , N, (17)

and the initial condition
Λp(s) = 0, s ≤ 0. (18)

Proof Let p ∈ {1, 2, . . . , m} and (α, ζ) ∈ D×Z be arbitrary but fixed. For each i = 1, 2, . . . , N and ǫ ∈ Ξ,
define the following functions:

f̄ i,ǫ(s, η) := f i(s, x(s) + ηϕǫ(s), x̃(s) + ηθǫ(s), ζ), (s, η) ∈ [ti−1, ti] × [0, 1], (19)

∆
i,ǫ
1

(s) :=

∫ 1

0

{

∂f̄ i,ǫ(s, η)

∂x
−

∂f̄ i,ǫ(s, 0)

∂x

}

ϕǫ(s)dη, s ∈ [ti−1, ti], (20)

and

∆
i,ǫ
2

(s) :=

m
∑

j=1

∫ 1

0

{

∂f̄ i,ǫ(s, η)

∂x̃j
−

∂f̄ i,ǫ(s, 0)

∂x̃j

}

θǫ,j(s)dη, s ∈ [ti−1, ti]. (21)

By Assumption 1 and Lemma 1, there exist constants M1 > 0 and M2 > 0 such that for all ǫ ∈ Ξ,

∣

∣

∣

∣

∂f̄ i,ǫ(s, 0)

∂x

∣

∣

∣

∣

≤ M1, s ∈ [ti−1, ti], i = 1, 2, . . . , N,
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and
∣

∣

∣

∣

∂f̄ i,ǫ(s, 0)

∂x̃j

∣

∣

∣

∣

≤ M2, s ∈ [ti−1, ti], i = 1, 2, . . . , N, j = 1, 2, . . . , m,

where | · | denotes the natural matrix norm on Rn×n. Moreover, by Lemma 2, the following limits exist
uniformly with respect to η ∈ [0, 1] and s ∈ [0, T ]:

lim
ǫ→0

{x(s) + ηϕǫ(s)} = x(s),

lim
ǫ→0

{x̃(s) + ηθǫ(s)} = x̃(s).

Thus, it follows from Assumption 1 that for each δ > 0, there exists a corresponding ǫ′ > 0 such that for
all ǫ ∈ Ξ satisfying |ǫ| < ǫ′,

∣

∣

∣

∣

∂f̄ i,ǫ(s, η)

∂x
−

∂f̄ i,ǫ(s, 0)

∂x

∣

∣

∣

∣

< δ, (s, η) ∈ [ti−1, ti] × [0, 1], i = 1, 2, . . . , N, (22)

and
∣

∣

∣

∣

∂f̄ i,ǫ(s, η)

∂x̃j
−

∂f̄ i,ǫ(s, 0)

∂x̃j

∣

∣

∣

∣

< δ, (s, η) ∈ [ti−1, ti] × [0, 1], i = 1, 2, . . . , N, j = 1, 2, . . . , m. (23)

Inequalities (22) and (23), together with Lemma 2, imply that for all ǫ ∈ Ξ with |ǫ| < ǫ′,

|∆i,ǫ
1

(s)| ≤ δL3|ǫ|, |∆i,ǫ
2

(s)| ≤ δmL3|ǫ|, i = 1, 2, . . . , N. (24)

Now, define another function ρ : Ξ \ {0} → R by

ρ(ǫ) :=

∫ T

0

∣

∣ǫ−1θǫ,p(s) − ǫ−1ϕǫ(s − αp) + χ0(s − αp)
∣

∣ds.

It follows from Lemmas 1 and 2 and (10) that for all ǫ ∈ Ξ \ {0},
∣

∣ǫ−1θǫ,p(s) − ǫ−1ϕǫ(s − αp) + χ0(s − αp)
∣

∣ ≤ 2L3 + L2, s ∈ [0, T ].

Thus, by Lemma 3 and Lebesgue’s Dominated Convergence Theorem [11], we conclude that

lim
ǫ→0

ρ(ǫ) = 0. (25)

Now, let δ > 0 be arbitrary but fixed. Then by (25), there exists a corresponding ǫ′′ > 0 such that ρ(ǫ) < δ

whenever 0 < |ǫ| < ǫ′′. Let ǫ ∈ Ξ be such that

0 < |ǫ| < min{ǫ′, ǫ′′}. (26)

By the chain rule, we obtain

∂f̄ i,ǫ(s, η)

∂η
=

∂f̄ i,ǫ(s, η)

∂x
ϕǫ(s) +

m
∑

j=1

∂f̄ i,ǫ(s, η)

∂x̃j
θǫ,j(s), s ∈ [ti−1, ti], i = 1, 2, . . . , N. (27)

Recall that t ∈ (0, T ] is a fixed time point. Then t ∈ (tς−1, tς ] for some fixed integer ς ∈ {1, 2, . . . , N}. By
the fundamental theorem of calculus,

ϕǫ(t) = xǫ(t) − x(t)

=

ς
∑

i=1

∫

min{t,ti}

ti−1

{

f̄ i,ǫ(s, 1) − f̄ i,ǫ(s, 0)
}

ds

=

ς
∑

i=1

∫ min{t,ti}

ti−1

(
∫ 1

0

∂f̄ i,ǫ(s, η)

∂η
dη

)

ds.
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Thus, by (27),

ϕǫ(t) =

ς
∑

i=1

∫

min{t,ti}

ti−1

(
∫

1

0

∂f̄ i,ǫ(s, η)

∂x
ϕǫ(s)dη +

m
∑

j=1

∫

1

0

∂f̄ i,ǫ(s, η)

∂x̃j
θǫ,j(s)dη

)

ds. (28)

Note that
∫

1

0

∂f̄ i,ǫ(s, η)

∂x
ϕǫ(s)dη = ∆

i,ǫ
1

(s) +
∂f̄ i,ǫ(s, 0)

∂x
ϕǫ(s), (29)

and
m

∑

j=1

∫ 1

0

∂f̄ i,ǫ(s, η)

∂x̃j
θǫ,j(s)dη = ∆

i,ǫ
2

(s) +

m
∑

j=1

∂f̄ i,ǫ(s, 0)

∂x̃j
θǫ,j(s). (30)

Combining (9) and (30) yields

m
∑

j=1

∫ 1

0

∂f̄ i,ǫ(s, η)

∂x̃j
θǫ,j(s)dη = ∆

i,ǫ
2

(s) +

m
∑

j=1

∂f̄ i,ǫ(s, 0)

∂x̃j
ϕǫ(s − αj)

+
∂f̄ i,ǫ(s, 0)

∂x̃p θǫ,p(s) −
∂f̄ i,ǫ(s, 0)

∂x̃p ϕǫ(s − αp). (31)

Next, integrating the auxiliary system (16) with the intermediate conditions (17) and the initial condition
(18) yields

Λp(t) =

ς
∑

i=1

∫ min{t,ti}

ti−1

{

∂f̄ i,ǫ(s, 0)

∂x
Λp(s) +

m
∑

j=1

∂f̄ i,ǫ(s, 0)

∂x̃j
Λp(s − αj) −

∂f̄ i,ǫ(s, 0)

∂x̃p χ0(s − αp)

}

ds. (32)

Multiplying (28) by ǫ−1, subtracting (32), simplifying using (29) and (31), and taking the norm of both
sides and then applying (24), we obtain

|ǫ−1ϕǫ(t) − Λp(t)| ≤(m + 1)δL3T + M2ρ(ǫ) +

∫ t

0

M1|ǫ
−1ϕǫ(s) − Λp(s)|ds

+

m
∑

j=1

∫ t

0

M2|ǫ
−1ϕǫ(s − αj) − Λp(s − αj)|ds. (33)

The last integral term on the right-hand side of (33) can be simplified using (10) and (18) as follows:

m
∑

j=1

∫ t

0

M2|ǫ
−1ϕǫ(s − αj) − Λp(s − αj)|ds =

m
∑

j=1

∫ t−αj

−αj

M2|ǫ
−1ϕǫ(s) − Λp(s)|ds

≤

∫ t

0

mM2|ǫ
−1ϕǫ(s) − Λp(s)|ds.

Hence, (33) becomes

|ǫ−1ϕǫ(t) − Λp(t)| ≤ (m + 1)δL3T + M2ρ(ǫ) +

∫ t

0

M3|ǫ
−1ϕǫ(s) − Λp(s)|ds,

where M3 := M1 + mM2.
Recall that ρ(ǫ) < δ whenever 0 < |ǫ| < ǫ′′. Thus, by (26),

|ǫ−1ϕǫ(t) − Λp(t)| ≤ (m + 1)δL3T + M2δ +

∫ t

0

M3|ǫ
−1ϕǫ(s) − Λp(s)|ds.
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By the Gronwall-Bellman Lemma [11], it follows that

|ǫ−1ϕǫ(t) − Λp(t)| ≤ (mδL3T + δL3T + M2δ) exp(M3T ), (34)

whenever 0 < |ǫ| < min{ǫ′, ǫ′′}. Since δ is arbitrary, this shows that ǫ−1ϕǫ(t) → Λp(t) as ǫ → 0, as
required.

3.2 Gradient computation: Partial derivatives with respect to system parameters

In this subsection, the gradients of x(·|α, ζ) with respect to the system parameters are investigated. Let
q ∈ {1, 2, . . . , v} and (α, ζ) ∈ D × Z be arbitrary but fixed. Also, for notational simplicity, we write x(t)
instead of x(t|α, ζ), and xǫ(t) instead of x(t|α, ζ + ǫeq), where eq denotes the qth unit basis vector in Rv.

Define

Θ := [cq − ζq, dq − ζq].

Then, 0 ∈ Θ and

ǫ ∈ Θ ⇐⇒ ζ + ǫeq ∈ Θ.

Furthermore, for each ǫ ∈ Θ, define

ϕǫ(t) := xǫ(t) − x(t), t ≤ T,

and

θǫ,j(t) := xǫ(t − αj) − x(t − αj), t ≤ T, j = 1, 2, . . . , m.

Let

θǫ(t) := ((θǫ,1(t))⊤, (θǫ,2(t))⊤, . . . , (θǫ,m(t))⊤)⊤ ∈ Rnm, t ≤ T. (35)

Clearly,

θǫ,j(t) = ϕǫ(t − αj), t ≤ T, j = 1, 2, . . . , m, (36)

ϕǫ(t) = 0, t ≤ 0. (37)

The following lemmas are similar to Lemmas 1 and 2 in Subsection 3.1.

Lemma 4 There exists a positive real number L4 > 0 such that for all ǫ ∈ Θ,

|xǫ(t)| ≤ L4, t ∈ [−b̄, T ]. (38)

Lemma 5 There exists a positive real number L5 > 0 such that for all ǫ ∈ Θ,

|ϕǫ(t)| ≤ L5|ǫ|, max
j∈{1,2,...,m}

|θǫ,j(t)| ≤ L5|ǫ|, t ∈ [0, T ]. (39)

The partial derivatives of the system state with respect to the system parameters are given in the
following theorem.

Theorem 2 Let t ∈ (0, T ] be a fixed time point. Then x(t|·, ·) is differentiable with respect to ζq on D×Z.
Moreover, for each (α, ζ) ∈ D × Z,

∂x(t|α, ζ)

∂ζq

= Γq(t|α, ζ), q = 1, 2, . . . , v, (40)
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where Γq(·) is the solution of the following auxiliary multistage system

Γ̇q(s) =
∂f i(s, x(s), x̃(s), ζ)

∂x
Γq(s) +

m
∑

j=1

∂f i(s, x(s), x̃(s), ζ)

∂x̃j
Γq(s − αj)

+
∂f i(s, x(s), x̃(s), ζ)

∂ζq

, s ∈ (ti−1, ti), i = 1, 2, . . . , N, (41)

with the intermediate conditions

Γq(ti+) = Γq(ti−), i = 0, 1, . . . , N, (42)

and the initial condition
Γq(s) = 0, s ≤ 0. (43)

Proof Let q ∈ {1, 2, . . . , v} and (α, ζ) ∈ D×Z be arbitrary but fixed. For each i = 1, 2, . . . , N and ǫ ∈ Θ,
define the following functions:

f̄ i,ǫ(s, η) := f i(s, x(s) + ηϕǫ(s), x̃(s) + ηθǫ(s), ζ + ηǫeq), (s, η) ∈ [ti−1, ti] × [0, 1], (44)

∆
i,ǫ
1

(s) :=

∫

1

0

{

∂f̄ i,ǫ(s, η)

∂x
−

∂f̄ i,ǫ(s, 0)

∂x

}

ϕǫ(s)dη, s ∈ [ti−1, ti], (45)

∆
i,ǫ
2

(s) :=

m
∑

j=1

∫ 1

0

{

∂f̄ i,ǫ(s, η)

∂x̃j
−

∂f̄ i,ǫ(s, 0)

∂x̃j

}

θǫ,j(s)dη, s ∈ [ti−1, ti], (46)

and

∆
i,ǫ
3

(s) :=

∫

1

0

ǫ

{

∂f̄ i,ǫ(s, η)

∂ζq

−
∂f̄ i,ǫ(s, 0)

∂ζq

}

dη, s ∈ [ti−1, ti]. (47)

By Assumption 1 and Lemma 4, there exist constants M4 > 0 and M5 > 0 such that
∣

∣

∣

∣

∂f̄ i,ǫ(s, 0)

∂x

∣

∣

∣

∣

≤ M4, s ∈ [ti−1, ti], i = 1, 2, . . . , N,

and
∣

∣

∣

∣

∂f̄ i,ǫ(s, 0)

∂x̃j

∣

∣

∣

∣

≤ M5, s ∈ [ti−1, ti], i = 1, 2, . . . , N, j = 1, 2, . . . , m,

where | · | denotes the natural matrix norm on Rn×n. In addition, by Lemma 5, the following limits exist
uniformly with respect to η ∈ [0, 1] and s ∈ [0, T ]:

lim
ǫ→0

{x(s) + ηϕǫ(s)} = x(s),

lim
ǫ→0

{x̃(s) + ηθǫ(s)} = x̃(s).

Hence, Assumption 1 implies that for each δ > 0, there exists an ǫ′ > 0 such that for all ǫ satisfying
|ǫ| < ǫ′,

∣

∣

∣

∣

∂f̄ i,ǫ(s, η)

∂x
−

∂f̄ i,ǫ(s, 0)

∂x

∣

∣

∣

∣

< δ, (s, η) ∈ [ti−1, ti] × [0, 1], i = 1, 2, . . . , N,

∣

∣

∣

∣

∂f̄ i,ǫ(s, η)

∂x̃j
−

∂f̄ i,ǫ(s, 0)

∂x̃j

∣

∣

∣

∣

< δ, (s, η) ∈ [ti−1, ti] × [0, 1], i = 1, 2, . . . , N, j = 1, 2, . . . , m,



10 Chongyang Liu et al.

and
∣

∣

∣

∣

∂f̄ i,ǫ(s, η)

∂ζq

−
∂f̄ i,ǫ(s, 0)

∂ζq

∣

∣

∣

∣

< δ, (s, η) ∈ [ti−1, ti] × [0, 1], i = 1, 2, . . . , N.

Thus, it follows from Lemma 5 that

|∆i,ǫ
1

(s)| ≤ L5δ|ǫ|, |∆i,ǫ
2

(s)| ≤ mL5δ|ǫ|, |∆i,ǫ
3

(s)| ≤ δ|ǫ|, i = 1, 2, . . . , N. (48)

Now, let δ > 0 be arbitrary but fixed and choose ǫ ∈ Θ such that 0 < |ǫ| < ǫ′. Then by the chain rule,

∂f̄ i,ǫ(s, η)

∂η
=

∂f̄ i,ǫ(s, η)

∂x
ϕǫ(s) +

m
∑

j=1

∂f̄ i,ǫ(s, η)

∂x̃j
θǫ,j(s) + ǫ

∂f̄ i,ǫ(s, η)

∂ζq

,

s ∈ [ti−1, ti], i = 1, 2, . . . , N. (49)

Recall that t ∈ (0, T ] is a fixed time point. Then t ∈ (tς−1, tς ] for some fixed integer ς ∈ {1, 2, . . . , N}. By
the fundamental theorem of calculus,

ϕǫ(t) = xǫ(t) − x(t)

=

ς
∑

i=1

∫ min{t,ti}

ti−1

{

f̄ i,ǫ(s, 1) − f̄ i,ǫ(s, 0)
}

ds

=

ς
∑

i=1

∫ min{t,ti}

ti−1

(
∫ 1

0

f̄ i,ǫ(s, η)

∂η
dη

)

ds.

Thus, by (49),

ϕǫ(t) =

ς
∑

i=1

∫ min{t,ti}

ti−1

(
∫ 1

0

∂f̄ i,ǫ(s, η)

∂x
ϕǫ(s)dη

)

ds

+
ς

∑

i=1

∫

min{t,ti}

ti−1

( m
∑

j=1

∫

1

0

∂f̄ i,ǫ(s, η)

∂x̃j
θǫ,j(s)dη

)

ds

+

ς
∑

i=1

∫

min{t,ti}

ti−1

(
∫

1

0

ǫ
∂f̄ i,ǫ(s, η)

∂ζq

dη

)

ds. (50)

Note that
∫

1

0

∂f̄ i,ǫ(s, η)

∂x
ϕǫ(s)dη = ∆

i,ǫ
1

(s) +
∂f̄ i,ǫ(s, 0)

∂x
ϕǫ(s), (51)

m
∑

j=1

∫

1

0

∂f̄ i,ǫ(s, η)

∂x̃j
θǫ,j(s)dη = ∆

i,ǫ
2

(s) +
m

∑

j=1

∂f̄ i,ǫ(s, 0)

∂x̃j
θǫ,j(s), (52)

and
∫

1

0

ǫ
∂f̄ i,ǫ(s, η)

∂ζq

dη = ∆
i,ǫ
3

(s) + ǫ
∂f̄ i,ǫ(s, 0)

∂ζq

. (53)

Substituting (51)-(53) into (50) gives

ϕǫ(t) =

ς
∑

i=1

∫

min{t,ti}

ti−1

(

∆
i,ǫ
1

(s) +
∂f̄ i,ǫ(s, 0)

∂x
ϕǫ(s)

)

ds

+

ς
∑

i=1

∫ min{t,ti}

ti−1

(

∆
i,ǫ
2

(s) +

m
∑

j=1

∂f̄ i,ǫ(s, 0)

∂x̃j
θǫ,j(s)

)

ds

+

ς
∑

i=1

∫ min{t,ti}

ti−1

(

∆
i,ǫ
3

(s) + ǫ
∂f̄ i,ǫ(s, 0)

∂ζq

)

ds. (54)
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Next, integrating the auxiliary system (41) with the intermediate conditions (42) and the initial condition
(43) gives

Γq(t) =

ς
∑

i=1

∫ min{t,ti}

ti−1

(

∂f̄ i,ǫ(s, 0)

∂x
Γq(s) +

m
∑

j=1

∂f̄ i,ǫ(s, 0)

∂x̃j
Γq(s − αj) +

∂f̄ i,ǫ(s, 0)

∂ζq

)

ds. (55)

Multiplying (54) by ǫ−1, subtracting (55), simplifying using (36), taking the norm of both sides and
finally applying (48) yields

|ǫ−1ϕǫ(t) − Γq(t)| ≤ (mL5 + L5 + 1)δT + M4

∫ t

0

|ǫ−1ϕǫ(s) − Γq(s)|ds

+
m

∑

j=1

∫ t

0

M5|ǫ
−1ϕǫ(s − αj) − Γq(s − αj)|ds. (56)

The last integral term on the right-hand side of (56) can be simplified using (37) and (43) as follows:

m
∑

j=1

∫ t

0

M5|ǫ
−1ϕǫ(s − αj) − Γq(s − αj)|ds =

m
∑

j=1

∫ t−αj

−αj

M5|ǫ
−1ϕǫ(s) − Γq(s)|ds

≤

∫ t

0

mM5|ǫ
−1ϕǫ(s) − Γq(s)|ds.

Thus, (56) becomes

|ǫ−1ϕǫ(t) − Γq(t)| ≤ (mL5 + L5 + 1)δT + M6

∫ t

0

|ǫ−1ϕǫ(s) − Γq(s)|ds,

where M6 := M4 + mM5. By the Gronwall-Bellman Lemma [11], it follows that

|ǫ−1ϕǫ(t) − Γq(t)| ≤ (mL5Tδ + L5Tδ + Tδ) exp(M6T ),

which holds whenever 0 < |ǫ| < ǫ′. Since δ is arbitrarily chosen, we conclude that ǫ−1ϕǫ(t) → Γq(t) as
ǫ → 0.

3.3 A computational procedure

Based on Theorems 1 and 2, the partial derivatives of the cost functional in Problem (P) can be expressed
as follows:

∂J(α, ζ)

∂αp

=
d

∑

l=1

∂Φ(x(τ1|α, ζ), . . . , x(τd|α, ζ))

∂x(τl)
Λp(τl|α, ζ), p = 1, 2, . . . , m, (57)

∂J(α, ζ)

∂ζq

=

d
∑

l=1

∂Φ(x(τ1|α, ζ), . . . , x(τd|α, ζ))

∂x(τl)
Γq(τl|α, ζ), q = 1, 2, . . . , v. (58)

As a result, the cost function J(α, ζ) and the gradients (57) and (58) corresponding to a feasible delay-
parameter pair (α, ζ) ∈ D × Z can be computed using the following computational procedure.

Step 1. Obtain x(·|α, ζ), Λp(·|α, ζ), p = 1, 2, . . . , m, and Γq(·|α, ζ), q = 1, 2, . . . , v, by solving the ex-
panded multistage system consisting of the original system (1) and the auxiliary systems (16)-(18)
and (41)-(43).
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Step 2. Use x(τl|α, ζ), l = 1, 2, . . . , d, to compute the cost function J(α, ζ) by equation (5).

Step 3. Use Λp(τl|α, ζ) and Γq(τl|α, ζ) to compute
∂J(α, ζ)

∂αp
, p = 1, 2, . . . , m, and

∂J(α, ζ)
∂ζq

, q = 1, 2, . . . , v,

by (57) and (58).

This computational procedure can be readily incorporated into a standard gradient-based optimization
method, such as the sequential quadratic programming (SQP) method [29]. Thus, by implementing this
computational procedure, we can treat Problem (P) as a standard mathematical programming problem
and solve it accordingly using existing techniques. This yields the optimal time-delays and the optimal
system parameters that minimize the cost functional.

4 Numerical examples

To test the performance of the optimization method developed in the previous section, we consider
two examples. Example 4.1 is a time-delay estimation problem for a nonlinear multistage system first
considered in [32]. Example 4.2 is a parameter identification problem for a realistic fed-batch fermentation
process.

4.1 Time-delay estimation for a 3-stage system

We consider the following two-dimensional delayed multistage system with 3 stages and 1 time-delay [32]:
{

ẋ1(t) = 2x1(t)x2(t) + x2(t − α),
ẋ2(t) = 3x1(t) + 4x2(t − α),

if t ∈ (0, 0.15), (59)

{

ẋ1(t) = −2x1(t)x2(t) + sin(x2(t − α)),
ẋ2(t) = x1(t)x2(t) + x1(t − α)x2(t − α),

if t ∈ (0.15, 0.5211), (60)

{

ẋ1(t) = t2 − 2x1(t) + 3x2(t − α),
ẋ2(t) = −x2(t) + x1(t − α)x2(t − α),

if t ∈ (0.5211, 1), (61)

with initial conditions
x1(t) = t − 1, x2(t) = t2 + 1, t ≤ 0. (62)

The switching times t1 = 0.15 and t2 = 0.5211 in (59)-(61) are the optimal switching times determined
in [32] under the assumption that α is fixed and known. Here, we assume that α is unknown and our
goal is to estimate its value using given output data. We assume that α lies within the interval [0.01, 1].
We also assume that x2 is the only state that can be measured. To generate the observed data, we
simulate the multistage system (59)-(62) with α = 0.5. This yields the observed data yl = x2(τl|0.5),
where τl = 0.1l − 0.05, l = 1, . . . , 10, are fixed sample times. Thus, the optimal time-delay estimation
problem is: choose α ∈ [0.01, 1] to minimize

J(α) =
10
∑

l=1

|x2(τl|α) − yl|2 (63)

subject to the multistage system (59)-(61) and the initial conditions (62).
Clearly, the optimal solution for this problem is α = 0.5. Our goal is to recover this optimal solution

by using the computational method in Section 3 to minimize (63). To do this, we wrote a Visual C++
program that combines the gradient computation algorithm described in Section 3 with the optimization
code NLPQLP [34]. This program uses the fourth-order Runge-Kutta integration scheme to solve the state
and auxiliary systems simultaneously. Computational results for initial guesses of α = 0.01 and α = 0.9
are summarized in Table 1 and Fig. 1. Note that our program only needed at most eight iterations to
converge from either initial guess to the optimal solution α = 0.5.
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Table 1 Convergence of the time-delay estimate in Example 4.1. The initial guesses are α = 0.01 and α = 0.9 and i denotes
the iteration number.

i αi J(αi) i αi J(αi)

0 0.01000 4.68160× 10−1 0 0.90000 1.86337× 10−1

1 0.98510 3.29317× 10−1 1 0.27700 7.47820× 10−2

2 0.43911 5.16643× 10−3 2 0.45364 3.00165× 10−3

3 0.47823 6.71816× 10−4 3 0.51571 3.52834× 10−4

4 0.49580 2.54658× 10−5 4 0.49953 3.09494× 10−7

5 0.49944 4.46961× 10−7 5 0.49999 7.28361× 10−11

6 0.49998 5.26670× 10−10 6 0.50000 1.48039× 10−18

7 0.49999 1.25571× 10−14

8 0.50000 9.08580× 10−19

0 0.2 0.4 0.6 0.8 1
−0.2
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(a)
0 0.2 0.4 0.6 0.8 1

−0.2
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0.4

0.6

0.8

1

1.2

1.4

1.6

+ Observed data

(b)

Fig. 1 Numerical convergence of the observed state in Example 4.1: The red lines show the state x2 at each iteration; the
blue crosses show the observed data (which corresponds to α = 0.5). (a) Initial guess α = 0.01. (b) Initial guess α = 0.9.

4.2 Parameter identification for a fed-batch fermentation process

We now consider the fed-batch fermentation process for converting glycerol to 1,3-propanediol (1,3-PD)
using the microorganism Klebsiella pneumoniae. This process consists of two modes: batch mode and
feeding mode. The fed-batch process begins with batch mode, in which no substrate is added to the
fermentor. After some time in batch mode, the biomass begins to grow exponentially. Once the exponential
growth phase is completed and the growth rate stabilizes, the feeding mode begins. In the feeding mode,
the substrates of glycerol and alkali are added continuously to the fermentor, thus helping to maintain
a suitable environment for cell growth. At the end of the feed, another batch process begins, and so on.
The fed-batch process switches back and forth between the batch and feeding modes throughout the time
horizon [35].

In batch mode, the mass balance equations for the biomass, substrate and 1,3-PD are given by






ẋ1(t) = µ(x2(t))x1(t − α),
ẋ2(t) = −q2(x2(t))x1(t − α),
ẋ3(t) = q3(x2(t))x1(t − α),

(64)

where x1(t), x2(t), x3(t) are the extracellular concentrations of biomass, glycerol and 1,3-PD in the fer-
mentor at time t, respectively. Furthermore, α is a time-delay; µ(x2(t)) is the specific growth rate of
cells; q2(x2(t)) is the specific consumption rate of substrate; and q3(x2(t)) is the specific formation rate
of 1,3-PD. The delay in (64) arises because nutrient metabolization does not immediately lead to the
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production of new biomass [36]. The functions µ(x2(t)), q2(x2(t)) and q3(x2(t)) are given by

µ(x2(t)) =
∆1x2(t)

x2(t) + k1

,

q2(x2(t)) = m2 + Y2µ(x2(t)) +
∆2x2(t)

x2(t) + k2

,

q3(x2(t)) = −m3 + Y3µ(x2(t)) +
∆3x2(t)

x2(t) + k3

,

where ∆1, k1, m2, Y2, ∆2, k2, m3, Y3, ∆3, k3 are model parameters whose biological meanings are explained
in [37].

During the feeding mode, the mass balance equations for the biomass, substrate and 1,3-PD are given
by







ẋ1(t) = µ(x2(t))x1(t − α) − D(t)x1(t),
ẋ2(t) = D(t)((1 + r)−1cs0 − x2(t)) − q2(x2(t))x1(t − α),
ẋ3(t) = q3(x2(t))x1(t − α) − D(t)x3(t),

(65)

where r is the velocity ratio of adding alkali to glycerol; cs0 is the concentration of the initial feed of
glycerol; and D(t) is the dilution rate at time t.

Let ti, i = 1, 2, . . . , N, be the times at which the fermentation process switches between the batch and
feeding modes. Then the dilution rate in the interval [ti−1, ti] is given by

D(t) =
(1 + r)vi

V (t)
, (66)

V (t) = V0 +

i−1
∑

j=1

(1 + r)(tj − tj−1)vj + (1 + r)(t − ti−1)vi. (67)

In (66) and (67), vi ≥ 0 is the constant feeding rate of glycerol during the interval [ti−1, ti], i = 1, 2, . . . , N,

and V0 is the initial volume of culture fluid in the fermentor.
Let ζ := (∆1, k1, m2, Y2, ∆2, k2, m3, Y3, ∆3, k3)

⊤ be the model parameter vector. We assume that the
time-delay α lies within the interval [0.01, 5]. We also assume that the components of ζ satisfy the lower
and upper bounds given in Table 2. Our goal is to optimally choose α and ζ to fit some real output data
from an experiment conducted in China [38]. The data set consists of 12 sample times and the biomass,
glycerol and 1,3-PD concentrations at each of these times. We denote the concentrations of biomass,
glycerol and 1,3-PD measured at the sample time τl by yl

1
, yl

2
and yl

3
, l ∈ {1, 2, . . . , 12}, respectively.

Then, the cost functional in this example is the following weighted least squares error function:

J(α, ζ) =

3
∑

ℓ=1

12
∑

l=1

wl
ℓ|x(τl|α, ζ) − yl

ℓ|
2 (68)

where wl
ℓ := (yl

ℓ)
−2 is a weight used to normalize the contribution of each term. The parameter identifica-

tion problem is: given the multistage system with subsystems (64) and (65), choose α and ζ to minimize
the cost functional (68) subject to α ∈ [0.01, 5] and the model parameter bounds in Table 2.

The initial functions for this parameter identification problem were constructed by applying cubic
spline interpolation [39] to the experimental data before the zero time point [38]. The other parameters
are r = 0.75, cs0 = 10762mmolL−1, N = 1355, V0 = 5L and T = 24.16h. The first batch mode lasts for
5.33 hours. After this, the fed-batch process proceeds in phases, where each phase consists of multiple
batch and feeding modes. There are 9 phases in total (Phs.I-IX). In each one of Phs.I-IX, the same feed-
ing rates, namely, 0.2103mLs−1, 0.2103mLs−1, 0.1992mLs−1, 0.2103mLs−1, 0.2103mLs−1, 0.2214mLs−1,

0.2548mLs−1, 0.2548mLs−1, and 0.2548mLs−1 for the feeding processes were applied. The durations of
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Table 2 Optimal values, initial guesses, and lower and upper bounds for the model parameters in Example 4.2.

Parameter ∆1 k1 m2 Y2 ∆2

Optimal value 0.8037 0.4856 0.2977 144.912 7.8367
Initial guess 1.4746 0.5148 0.9167 275.33 19.991
Lower bound 0.438 0.14 0.2977 64.10 5.945
Upper bound 2.19 0.7 3.988 320.512 29.727

Parameter k2 m3 Y3 ∆3 k3

Optimal value 9.4632 12.2557 80.8439 20.2757 38.75
Initial guess 12.615 8.1909 114.79 26.002 24.071
Lower bound 4.367 2.451 33.84 8.865 7.75
Upper bound 21.847 12.257 169.225 44.32 38.75

the feeding processes in Phs.I-IX were 5, 7, 8, 7, 6, 4, 3, 2, and 1 seconds in each 100 seconds, leaving
95, 93, 92, 93, 94, 96, 97, 98, and 99 seconds for batch processes, respectively.

By extending the Visual C++ program used in Example 4.1, we obtained the optimal time-delay
α∗ = 0.1568h and the optimal model parameters listed in Table 2. The entire optimization process
took 38 iterations. The corresponding optimal cost functional value is 0.51486. Here, the initial guess
of the time-delay is 0.31559h and the initial guesses of the model parameters are listed in Table 2. For
comparison, we also used the Particle Swarm Optimization (PSO) algorithm developed in [35] to solve
this example. The parameters in the PSO algorithm are: the number of particles in the swarm is 200, the
maximal number of iterations is 300, and all other parameters are the same as those in [35]. Using PSO,
we obtained an optimal cost functional value of 0.61387. The time taken by PSO is 15 minutes, which is
10 times longer than our new method. Furthermore, under the obtained optimal time-delay and model
parameters, we plotted the concentration changes of the biomass, glycerol and 1,3-PD with respect to the
fermentation time. We also showed the numerical convergence of the state trajectories in Fig. 2. From
Fig. 2, we can see that the obtained optimal state trajectories are good fits for the experimental data.

5 Conclusions

In this paper, we investigated the optimal parameter selection problem for nonlinear multistage systems
with time-delays. This problem class arises in the mathematical modelling of the fed-batch fermentation
process for 1,3-propanediol production (see Example 4.2). We first derived the gradients of the system
state with respect to the time-delays and system parameters. We then developed a gradient-based opti-
mization algorithm to find the optimal time-delays and system parameters. To the best of our knowledge,
this is the first algorithm in the literature for simultaneously optimizing time-delays and system param-
eters in a nonlinear multistage system. The effectiveness of this algorithm was verified using two highly
nonlinear numerical examples.
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Fig. 2 Convergence of the optimal state trajectories in Example 4.2. The read lines show the final trajectories from our
new algorithm; the green lines show the optimal trajectories from PSO.
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